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Abstract: A meshless approach, collocation discrete least square (CDLS) method, is extended in this 
paper, for solving elasticity problems and grid irregularity effect is assessed. In the present CDLS 
method, the problem domain is discretized by distributed field nodes. The field nodes are used to 
construct the trial functions. The moving least-squares interpolant is employed to construct the trial 
functions. Some collocation points that can be independent of the field nodes are used to form the total 
residuals of the problem. The least-squares technique is used to obtain the solution of the problem by 
minimizing the summation of the residuals for the collocation points. The final stiffness matrix is 
symmetric and therefore can be solved directly via efficient solvers. The boundary conditions are 
easily enforced by the penalty method. The present method does not require any mesh so it is a truly 
meshless method. Numerical examples are studied in detail, which show that the present method is 
stable and possesses good accuracy, high convergence rate and high efficiency for both regular and 
irregular point distribution.  
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INTRODUCTION 

 
 The finite element method (FEM) has been the 
most frequently used numerical method in engineering 
during the three past decades. It has been used in most 
fields of applied sciences such as computational solid 
mechanics [1, 2, and 3] and so on. Mesh-based methods are 
not well suited to the problems associated with 
extremely large deformation and problems associated 
with frequently remeshing. To avoid these drawbacks 
of the FEM, a new class of numerical methods, 
meshless methods (also called mesh-free methods) have 
been developing [4, 5] in the recent decade. These 
methods have become an important tool in 
computational solid mechanics, owing to their 
advantages over the traditional finite element method 
(FEM), finite-volume method (FVM), and finite-
difference method (FDM). Meshless methods rely only 
on a group of scatter points, which means not only that 
the burdensome work of mesh generation is avoided, 
but also more accurate description of irregular complex 
geometries can be achieved. Furthermore, the meshless 
approximation has higher smoothness, and no 
additional post-processing is needed. 
 In the field of meshless methods for solving 
elasticity problems, Krysl and Belytschko [6] employed 

Element-Free Galerkin Method (EFGM) to analyze thin 
plates; Onate et al. [7] proposed a stabilization technique 
by introducing new terms in both the governing 
equations and the traction boundary conditions to solve 
elasticity problems; Kwon et al. [8] presented a least-
squares meshfree method for solving linear elastic 
problems; Zhang et al. [9] proposed a meshless weighted 
least-squares (MWLS) method, to solve problems of 
elastostatics; Atluri et al. proposed a MLPG mixed 
collocation method [10] and MLPG mixed finite 
difference method [11] for solid mechanics.  
 All the above meshless methods can be categorized 
into two groups according to their discretization 
scheme. The first group is Galerkin-based meshless 
methods (GBMMs), of which the EFGM proposed by 
Belytschko in 1994 [12] is a famous representative. In 
GBMMs, the highest order of derivatives is lowered by 
using a weak form of the original partial differential 
equations (PDEs). The accuracy of GBMMs is high, 
and good stability can always be obtained. The main 
shortcoming of GBMMs is that the integrals in the 
weak form must be evaluated properly. One way of 
evaluating integrals is to use a background mesh, which 
makes the method not truly meshless; another is to use 
nodal integration [13], which results in significant errors 
because the divergence theorem used in the 
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establishment of the weak form demands accurate 
integration [14]. In addition, because meshless shape 
functions are too complex to be expressed in closed 
form, a delicate background mesh and a large number 
of quadrature points are always employed, which 
decreases the efficiency seriously. As a consequence, 
GBMMs are much more computationally expensive 
than the FEM [15].  
 The other group of meshless methods is built on 
collocation schemes. The SPH, FPM, least-square 
collocation meshless method [16], and point weighted 
least-square (PWLS) method [17] all belong to this 
group. These methods are very efficient and easy to 
program, but they usually suffer from poor stability, 
and the accuracy often goes down near the boundary. 
 The universal law of least squares can be used for 
discretization. In fact, it has been introduced into the 
FEM successfully [18]. A truly meshless method based 
on the least-squares approach, the collocation discrete 
least-squares (CDLS) method, was proposed to solve 
Poisson’s equation [19] and free surface seepage problem 
[20] and also was presented for error estimation and 
adaptive refinement in one dimensional fluid mechanics 
[21]. Because of using the least-squares technique and 
more collocation points the CDLS method is not 
bothered by instability as collocation-based meshless 
methods. In this research the CDLS method is extended 
for elasticity problems and effect of grid irregularity is 
assessed.  
 

MATERIALS AND METHODS 
 
 In the present CDLS method, the problem domain 
is discretized by distributed field nodes. The field nodes 
are used to construct the trial functions by employing 
the moving least-squares interpolant. Some collocation 
points that can be independent of the field nodes are 
used to form the total residuals of the problem. The 
least-squares technique is used to obtain the solution of 
the problem by minimizing the summation of the 
residuals for the collocation points.  
 
Moving least square shape functions: Among the 
available meshless approximation schemes, the moving 
least squares (MLS) method [22] is generally considered 
to be one of the best methods to interpolate random data 
with a reasonable accuracy, because of its 
completeness, robustness and continuity [10, 23]. With the 
MLS interpolation, the unknown function ߶ is 
approximated by: ߶ሺܠሻ ൌ  ሻܠሻܽሺܠሺ

ୀଵ ൌ  ሻ   ሺ1ሻܠሺ܉ሻܠTሺܘ

where PT (X) is a polynomial basis in the space 
coordinates, and m is the total number of the terms in 
the basis. For a 2D problem we can specify ܘT ൌ ሾ1 ݔ ݕ ݔଶ ݕ ݕݔଶሿ for  ݉ ൌ  6.  ܽሺܺሻ is the vector of 
coefficients and can be obtained by minimizing a 
weighted discrete L2 norm as follows: ܬ ൌ  ୨൯ܠT൫ܘሻ൫ܠሺݓ ሻܠሺ܉ െ ൯ ଶ  ேݑ

ୀଵ  ሺ2ሻ 

 The weight function ݓሺܠሻ ൌ ܠ൫ݓ െ  ୨൯ is usuallyܠ
built in such a way that it takes a unit value in the 
vicinity of the point j where the function and its 
derivatives are to be computed and vanishes outside a 
region Ω݆ surrounding the point ݆ܠ and N is the number 
of nodes in the domain. In this research the cubic spline 
weight function is considered as follows: 

൫dത൯ݓ ൌ ۔ۖەۖ
ۓ 23 െ 4 ҧ݀ଶ  4 ҧ݀ଷ         ҧ݀  12    43 െ 4 ҧ݀  4 ҧ݀ଶ െ 43 ҧ݀ଷ    12 ൏ ҧ݀  10         ҧ݀  1  ሺ3ሻ 

where ҧ݀ ൌ ฮܠ െ ୨ฮܠ ݀௪⁄  and ݀௪ is the size of influence 
domain of point ܠ୨. 
Minimization of equation (2) leads to ߶ሺܠሻ ൌ  ሻ ሺ4ሻܠሻ۰ሺܠଵሺିۯሻܠሺ்ܘ
where ۯሺܠሻ ൌ  w୨ሺܠሻ ୨൯ܠ൫்ܘ୨൯ܠ൫ܘ

ୀଵ  ሺ5ሻ ۰ሺܠሻ ൌ ሾݓଵሺܠ െ ,ଵሻܠሺܘଵሻܠ ܠଶሺݓ െ , ଶሻܠሺܘଶሻܠ … , ܠሺݓ െ  ୬ሻሿ ሺ6ሻܠሺܘ୬ሻܠ

 Comparing equation (4) with the well known form 
of equation (7) yields to equation (8) ߶ሺܠሻ ൌ ሻܠTሺۼ ሺ7ሻ ۼTሺܠሻ ൌ ሻܠሻ۰ሺܠଵሺିۯሻܠTሺܘ ሺ8ሻ 
where ۼTሺܠሻ contains the shape functions of nodes at 
point ܠ  which are called moving least square (MLS) 
shape functions. 
 
Collocation discrete least square (CDLS) method: 
Consider the following partial differential equation ܮሺ߶ሻ  ݂ ൌ 0 ݅݊ Ω ሺ9ሻ 
 Subject to appropriate Dirichlet and Neumann 
boundaries ߶ െ ߶ത ൌ 0 ݊ ௨߁ ሺ10ሻ ܤሺ߶ሻ െ ҧݐ ൌ 0 ݊ ௧߁ ሺ11ሻ
where L and B are partial differential operators and f 
represents external forces or source term on the 
problem domain. 
 Upon discretization of the problem domain and its 
boundaries using Equation (7) defined as the residual of 
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partial differential equation at a typical collocation 
point k is: ܴஐሺܠሻ ൌ ሻ൯ܠ൫߶ሺܮ  ݂ሺܠሻ   , ݇ ൌ  ሺ12ሻ ܯ ~1
 The residual of Neumann boundary condition at 
typical collocation k on the Neumann boundary can also 
be written as: ܴ௧ሺݔሻ ൌ ሻ൯ݔ൫߶ሺܤ െ ,   ሻݔҧሺݐ ݇ ൌ  ௧ ሺ13ሻܯ ~1
and finally the residual of Dirichlet boundary condition 
at collocations on the Dirichlet boundary could be 
stated by: ܴ௨ሺݔሻ ൌ ߶ െ ߶തሺݔሻ               , ݇ ൌ  ௨ ሺ14ሻܯ ~1
where Mt is the number of collocation points on the 
Neumann boundary, Mu is the number of collocation 
points on the Dirichlet boundary and M is the total 
number of collocation points. A penalty approach is 
used to form the total residual of the problem defined 
as: ܫ ൌ ൫ܴஐଶ ሺݔሻ൯ெ

ୀଵ  ௧ߙ ൫ܴ௧ଶሺݔሻ൯ெ
ୀଵ  

        ߙ௨ ൫ܴ௨ଶሺݔሻ൯ெೠ
ୀଵ  

ሺ15ሻ 

where  ߙ௧ and  ߙ௨ are penalty coefficients for Neumann 
and Dirichlet boundary conditions respectively. 
Minimization of the functional with respect to nodal 
parameters ሺ ߶ , ݅ ൌ  1,2, . . . , ݊ ሻ leads to the following 
system of equations: ۹ ൌ  ۴ ሺ16ሻ
where ۹ ൌ ሾܮሺۼሻሿT ሾܮሺۼሻሿெ

ୀଵ  

         ߙ௧ ሾܤሺۼሻሿT ሾܤሺۼሻሿெ
ୀଵ  

         ߙ௨  ெೠۼ Tۼ
ୀଵ        

ሺ17ሻ 

ࡲ  ൌ െ ሾܮሺۼሻሿ T ݂ெ
ୀଵ  

         ߙ௧ ሾܤሺۼሻሿ T ҧெݐ
ୀଵ  

         ߙ௨ ሾۼሿT ߶തெೠ
ୀଵ  

ሺ18ሻ 

 The stiffness matrix K in Eq. (16) is square ሺܰ ൈ ܰሻ, symmetric and positive definite. Therefore, 

the final system of equations can be solved directly via 
efficient solvers. 
 

RESULTS AND DISCUSSION 
 

 In this section, two 2D numerical examples, which 
are solved by the CDLS method, are presented. The 
examples include: 1) a cantilever beam under end point 
load, and 2) an infinite plate with a circular hole under 
uniaxial load which is solved with both regular and 
irregular node distribution. 

Fig. 1: A cantilever beam under a point load at the   
end 
 

Fig. 2: The nodal configuration of the cantilever beam 
for d=0.5 (125 nodes, 221 collocation points) 
 
Cantilever beam: A cantilever beam under a point load 
at the end (see Fig. 1) is solved as the first example. For 
this problem, the exact stress and displacement solution 
for plane stress is given in Timoshenko and Goodier [24] 
as ߪ௫ ൌ െ ܲሺܮ െ ܫݕሻݔ ௬ߪ  ൌ 0  ߬௫௬ ൌ ܫ2ܲ ሾܿଶ െ  ଶሿ ሺ19ሻݕ

And ݑ ൌ െ ܫܧ6ݕܲ ሾ3ݔሺ2ܮ െ ሻݔ  ሺ2  ଶݕሻሺݒ െ ܿଶሻሿ ݒ ൌ ܫܧ6ݕܲ ሾݔଶሺ3ܮ െ ሻݔ  ܮሺݒ3 െ ଶݕሻݔ ሺ4   ሿ ሺ20ሻݔሻܿଶݒ5

where ܫ ൌ  2ܿଷ/3 is the moment of inertia for a beam 
with rectangular cross-section and unit thickness. The 
problem is solved using the CDLS method under plane 
stress condition with the following constants:  ܲ ൌ  1, 
E = 1000, c = 1, L =12 and v = 0.3. 
 Regular uniform nodal configurations with nodal 
distances, d, of 1.0, 0.5, and 0.25 are used. The 
corresponding numbers of nodes are 39, 125, and 441, 
respectively. And the corresponding numbers of 
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collocation points are 63, 221, and 825, respectively. 
The nodal configuration for d = 0.5 is shown in Fig. 2. 
This problem is simulated using the MLS with the 
second order polynomial basis. Fig. 3 shows the vertical 
displacement along the central line of the beam for the 
three nodal configurations. The simulation results agree 
with the analytical solution very well. Fig. 4 shows the 
stress ߪ௫௫ at stations along upper surface of the 
cantilever beam for the three nodal configurations and a 
very good agreement with the analytical solution is 
obtained. The contours of ߪ௫௫ stress displayed over the 
deformed shape for the nodal configuration with d = 
0.25 are shown in Fig. 5.  
 

Fig. 3: The vertical displacement of the cantilever beam 
under the end load 
 

Fig. 4: Stress ߪ at stations along upper surface of the 
cantilever beam 
 The convergence rate is studied with three nodal 
configurations (d =1.0, 0.5, and 0.25). The following 
error norm is used for showing the convergence rate in 
Fig. 6: 

݁ఙ ൌ ඥ∑ ሺ࣌ െ ഥሻ்ேୀଵ࣌ ሺ࣌ െ ∑ഥሻට࣌ ഥேୀଵ࣌ഥ்࣌  ሺ21ሻ 

where N is the total number of nodes, ࣌ and ࣌ഥ are the 
approximation and exact stress values at node ܠ୧, 
respectively. 
 The results clearly show that a stable convergence 
rate is obtained for the present CDLS method.  

 

Fig. 5: Contours of ߪ௫௫ stress displayed over the 
deformed shape(Regular grid of 441 nodes) 

 

Fig. 6: The convergence rate in the cantilever beam 
under the end load 
 

Fig. 7: An infinite plate with a circular hole under a 
uniaxial load 
 
Infinite plate with a circular hole: In the second 
example, we show the computational results of an 
infinite plate with a circular hole subjected to a uniaxial 
traction t at infinity as shown in Fig. 7. The exact 
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solutions for stresses and displacements for this 
problem are ߪ௫ ൌ ݐ ቊ1 െ ܽଶݎଶ 32 cosሺ2ߠሻ  cosሺ4ߠሻ൨ 3ܽସ2ݎସ cosሺ4ߠሻൠ  ߪ௬ ൌ െݐ ቊܽଶݎଶ 12 cosሺ2ߠሻ െ cosሺ4ߠሻ൨ 3ܽସ2ݎସ cosሺ4ߠሻൠ ߬௫௬ ൌ െݐ ቊܽଶݎଶ 12 sinሺ2ߠሻ  sinሺ4ߠሻ൨െ 3ܽସ2ݎସ sinሺ4ߠሻൠ 

 

ሺ22ሻ 

and  ݑ ൌ ܩ4ݐ ൜ݎ ߢ െ 12  cosሺ2ߠሻ൨          ܽଶݎ ሾ1  ሺ1  ሻߢ cosሺ2ߠሻሿ െ ܽସݎଷ cosሺ2ߠሻቋ ݑఏ ൌ ܩ4ݐ ቊሺ1 െ ሻߢ ܽଶݎ െ ݎ െ ܽସݎଷቋ sinሺ2ߠሻ 

 

ሺ23ሻ 

 respectively. In the above equations, G is the shear 
modulus and ߢ ൌ ሺ3 െ ሻߥ ሺ1  ⁄ሻߥ  with v the Poisson’s 
ratio. Due to symmetry, only the upper right square 
quadrant of the plate is modeled [see Fig. 8]. The edge 
length of the square is 5a, with a being the radius of the 
circular hole. The exact analytical displacements 
solution is imposed on the left and bottom edges, and 

the tractions obtained from the analytical solution [Eq. 
22] are applied to the top and right edges. The 
periphery of the circular hole is traction-free. 
 The problem is solved using the CDLS method, 
under a plane stress condition, with the following 
constants: t =1, E = 1000, and v=0.3. For assessment of 
grid irregularity effect on results of CDLS method, 
three regular nodal configurations with 53, 183 and 721 
nodes, respectively, and also three irregular nodal 
distributions with 49, 179 and 657 nodes, respectively, 
are used. The regular and irregular grids with 183 and 
179 nodes, respectively, are shown in Fig. 8. The MLS 
with quadratic basis is used in the simulation. The 
horizontal displacement ݑ௫ along the bottom edge (y = 
0), and the stress component ߪ௫௫ along the left edge (x 
= 0) obtained with the regular and irregular grids are 
shown in Fig. 9 and Fig. 10, respectively. The contours 
of ߪ௫௫ stress obtained with the regular and irregular 
nodal configurations of 721 and 657 nodes are plotted 
in Fig. 11. Compared with the analytical solutions, 
good agreements are obtained for both the 
displacements and stresses. These results also show that 
the CDLS method possesses good accuracy for both 
regular and irregular grids.  
Fig. 12 shows convergence rate with three regular nodal 
configurations (n =53, 183, and 721) and three irregular 
nodal configurations (n =49, 179, and 657). A stable 
and monotonic convergence rate is observed for the 
problem. It is remarkable that similar convergence rates 
are obtained for both regular and irregular grids.

(a)                       (b)  
Fig. 8: Infinite plate with a circular hole. (a) The regular grid (N=183, M=335), and (b) the irregular grid (N=179, 
M=334) 
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(a)          (b)  
Fig. 9: The horizontal displacement along y = 0 for (a) the regular, and (b) irregular grid 

 

(a)         (b)  
Fig. 10: The normal stress ߪ௫௫ along x = 0 for (a) the regular, and (b) irregular nodal configurations 

 

(a)  (b)  
Fig. 11: The normal stress σ୶୶ contours displayed over the deformed shape. (a) Regular grid of 721 nodes, and (b) 

irregular grid of 657 nodes 

CONCLUSION 
 

 In this article, the collocation discrete least square 
(CDLS) method is extended to solve elasticity problems 
and grid irregularity effect is assessed. The final 
coefficient matrix obtained by the present method is 

symmetric and therefore can be solved directly via 
efficient solvers. The boundary conditions are easily 
enforced by penalty method. Because of no need to any 
mesh, this method is a truly meshless method. Results 
of the numerical examples show that the present 
method is stable and have good accuracy, high 
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convergence rate and high efficiency for both regular 
and irregular grids. All of these advantages of the 
CDLS ensure that it is a very potential meshless method 
for the applications in elasticity problems.  
 

Fig. 12: The convergence rate of the infinite plate with 
a circular hole 
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