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Abstract: Problem statement: EEG signals during epileptic seizure can be presented as an 
algebraic structure, namely semigroup of upper triangular matrices. Approach: EEG signals during 
seizure were recorded and composed into set of matrices. They were transformed into upper 
triangular matrices using QR-Schur decomposition and finally as a semigroup of upper triangular 
matrices. Results: EEG signals during epileptic seizure were transformed as a semigroup of upper 
triangular matrices under matrix multiplication. Conclusion: This study described the procedure to 
transform signal during epileptic seizure (brainstorm) into an algebraic structure. This is the key step 
that will enable us to further proceed to obtain some pattern out of the seizure data in our future 
research. 
 
Key words: Electroencephalography, semigroup 

 
INTRODUCTION 

 
 Electroencephalography (EEG) is a recording of 
electrical activity originating from the brain. It plays an 
important diagnostic role in epilepsy and provides 
supporting evidence of a seizure disorder as well as 
assisting with classification of seizures. EEG has been 
used extensively to record the abnormal brain activity 
associated with epileptic seizures. It is recorded on the 
surface of the scalp using electrodes, thus the signal is 
retrievable non-invasively. Abnormal patterns such as 
spikes, sharp waves and, spikes and wave complexes 
can be recorded. The type of activity and the area of the 
brain that is recorded from EEG will assist the 
physician in prescribing the correct medication for 
certain type of epilepsy. Patients with epilepsy that 
cannot be controlled by medication will often have 
surgery in order to remove the damaged tissue. Thus the 
EEG plays an important role in localizing this tissue.  
 EEG analysis still relies mostly on its visual 
inspection. Due to the fact that visual inspection is very 
subjective and hardly allows any statistical analysis or 
standardization, several methods were proposed in 
order to quantify the information of the EEG. Among 
these, the Fourier Transform emerged as a very 
powerful tool capable of characterizing the frequency 
components of EEG signals, even reaching diagnostic 
importance. However, Fourier Transform has some 

disadvantages that limit its applicability and therefore, 
other methods for extracting “hidden” information from 
the EEG signals was necessary.  
 
Literature review: Fuzzy Topographic Topological 
Mapping (FTTM) is a novel method for solving 
neuromagnetic inverse problem to determine the current 
source, i.e., epileptic foci. FTTM Version 1 has been 
developed to present a 3-D view of an unbounded 
single current source (Ahmad et al., 2008b; Yun and 
Ahmad, 2003) in one angle observation (upper of a 
head model). Basically, this newly developed model is 
a topological mapping which contains some fuzzy 
structures and it comprises four components linked by 
three different algorithms as shown in Fig. 1. 
 The four components are Magnetic Contour Plane 
(MC), Base Magnetic Plane (BM), Fuzzy Magnetic Field 
(FM)  and  Topographic  Magnetic  Field  (TM) Fig. 1. 
 

 
 
Fig. 1: FTTM version 1 
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MC is actually a magnetic field on a plane above a 
current source with z = 0. The plane is lowered down to 
BM, which is a plane of the current source with z = -h. 
Then the entire BM is fuzzified into a Fuzzy 
environment (FM), where all the magnetic field 
readings are fuzzified. The final process is 
defuzzification of the fuzzified data to obtain a 3-D 
view of the current source (TM).  
 Ahmad et al. (2008a) has developed a new method 
for mapping high dimensional signal, namely EEG into 
a low dimensional space (MC). The whole processes of 
this novel model consisted three main parts. The first 
part was flattening the EEG where the transformation of 
three dimensional space into two dimensional space 
that involved location of sensor in patients head with 
EEG signal. The second part is the EEG signal was then 
processed using Fuzzy c-Means. The last part was to 
find the optimal number of cluster by using cluster 
validity analysis. 
 Ahmad's EEG coordinate system Fig. 2a is defined 
as: 
 
CEEG = {((x, y, z), ep): x, y, z, ep∈R and x2+y2+z2 = r2} 
 
where, r is the radius of a patient head. She modeled the 
human’s head as a sphere.  
 

 
(a) 

 

 
(b) 

 
Fig. 2: (a) EEG coordinate system (b) EEG projection 

 Furthermore, the mapping of CEEG to a plane (MC) 
is defined as follows. 
 St: CEEG→MC Fig. 2b such that: 
 

( )( )
( )p

t p p
e x,y,z

rx iry rx ryS  x,  y,  z ,  e ,e ,
r z r z r z
+⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠   

 Both CEEG and MC were designed and proven in 
(Yun and Ahmad, 2003) as 2-manifolds. Ahmad et al. 
(2008a) also had shown that St is a one to one function 
as well as being conformal. With the fact that St is 
conformal, therefore the mapping can preserve 
information, in particular angle and orientation of the 
surface and EEG signal recorded from the surface of 
high dimensional into a low dimensional spaces; i.e. 
mapping EEG signal into a plane. Then, Ahmad et al. 
(2008a) implements this technique followed by 
clustering on the real time EEG data obtained from 
patients who suffer from epileptic seizure.  
 The signals were digitized at 256 samples per 
second using Nicolet One EEG software. The average 
potential difference was calculated from the 256 
samples of raw data at every second. Similarly to the 
position of electrodes, the EEG signal was also 
preserved during this new method. Subsequently, every 
single second of the particular average potential 
difference was stored into a file which contains the 
position of electrode on MC plane. 
 

MATERIALS AND METHODS 
 
 In our study, we rewrite MC in terms of square 
matrices. Therefore every single second of the 
particular average potential difference was stored into a 
square matrix which contains the position of electrode 
on MC plane. Thus Magnetic Contour Plane became a 
set of (n×n) square matrices defined as: 
 

{ }n ij t ij tn n
MC (z) : i, j , (z)

×

+⎡ ⎤= β ∈ β ∈⎣ ⎦ Z R  
 
where, ij t(z)β  is a potential difference reading of EEG 
signals from a particular ij sensor at time t. 
 
Semigroup of MCn: We are going to show that the 
nonempty set of square matrices (EEG signals) satisfies 
all the axioms of a semigroup given in (Whitelaw, 
1978) under matrix multiplication. In other words, we 
are going to show that: 
 
• { }n ij t ij tn n

MC (z) : i, j , (z)
×

+⎡ ⎤= β ∈ β ∈⎣ ⎦ Z R is closed with 

respect to matrix multiplication 
• matrix multiplication on MCn is associative 
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Theorem 1: The set of (n×n) square matrices MCn is a 
semigroup under matrix multiplication. 
 
Proof: Firstly, let us show that MCn is closed with 
respect to matrix multiplication. We pick: 
 

1,1 1,n

n,1 n,n

1 1
A

1 1

⎛ ⎞β β
⎜ ⎟

= ⎜ ⎟
⎜ ⎟β β⎝ ⎠
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M O M
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 Notice we go across the i-th row of the first matrix 
and down the k-th column of the second matrix to 
obtain the entry in position (i, k): 
 

n1,k

i,1 i,2 i,n i, j j,k

j 1
n,k

k k

2
i 1 1 1 i 1 2

2 =
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 Now β1i,j, j,k2β ∈ �  for a particular time t +∈R  
and without loss of generality, i, j j,k1 2β β ∈R  for some 

time t +∈R , thus 

n

i,j j,k

j 1

1 2
=

β β ∈∑ � . Since A, B ∈MCn 

are arbitrary, therefore AB∈MCn and hence MCn is 
closed with respect to matrix multiplication. 
 Secondly, let us show that matrix multiplication on 
MCn is associative. Pick: 
 

i,j j,k k,l (nn)(nn) (nn)
A 1 ,B 2 ,C 3⎡ ⎤ ⎡ ⎤ ⎡ ⎤= β = β = β⎣ ⎦⎣ ⎦ ⎣ ⎦  
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Since: 
 

n n n n

i, j j, k i, j j, kk,l k,l

k 1 j 1 j 1 k 1

1 2 3 1 2 3 ,
= = = =

β β β = β β β∑ ∑ ∑ ∑
 

we have 

(AB) C = A (BC). The associativity of MCn reveals that 
historical event is preserved in time (Nehaniv and 
Dautenhahn, 1998). It means that the property of time is 
actually embedded in MCn. 
 We have shown that: 
 
• { }n ij t ij tn n

MC (z) : i, j , (z)
×

+⎡ ⎤= β ∈ β ∈⎣ ⎦ Z R is closed with 

respect to matrix multiplication 
• matrix multiplication on MCn is associative 
 
 In other words, Magnetic Contour plane (MC) is a 
semigroup of square matrices under matrix 
multiplication.  
 
Triangularization of MCn: There are many methods to 
triangularize a matrix ij t n n

(z)
×

⎡ ⎤β⎣ ⎦  in MCn. For example, 

Elementary, Householder and Givens matrices can be 
used to achieve important matrix factorization such as 
LU and its variants, QR and reduction to a Hessenberg 
form of a matrix. 
 Since our main purpose in this study is to prove 
MCn as a semigroup of (n×n) upper triangular matrices 

nMC "  and every element in nMC "  as a block matrix 
then we will choose the Schur decomposition to 
decompose our square matrix ij t n n

(z)
×

⎡ ⎤β⎣ ⎦ in MCn. 
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 If the matrix A is real as in our case, then the real 
Schur Decomposition is computed, in which the matrix 
Q is orthogonal and U is block upper triangular with 
blocks of size at most 2×2 along the diagonal: 
 
 TQ AQ U=   
 
Theorem 2 (Datta, 1995): Let A be an n×n real matrix. 
Then there exists an n×n orthogonal matrix Q such that: 
 

11 12 1k

22 2kT

kk

R R R
0 R R

Q AQ R

0 0 R

⎛ ⎞
⎜ ⎟
⎜ ⎟= = ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

L

L

M M O M

L  
 
where, each Rii is either a scalar or a 2×2 matrix. The 
scalar diagonal entries correspond to real eigenvalues 
and 2×2 matrices on the diagonal correspond to 
complex conjugate eigenvalues. 
 
Remark: The matrix R in theorem 2 is known as the 
real Schur form of A. 
 Before we present the basic QR iteration method 
for computing the real Schur form of A we will present 
the QR factorization of A using Householder matrix. 
 
Theorem 3 (Datta, 1995): Given an n×n matrix A, 
there exists an orthogonal matrix Q and an upper 
triangular matrix R such that: 
  
A = QR 
 
 The matrix Q can be written as Q = H1H2 …Hn-1 
where each Hi is a Householder matrix. 
 
Definition 4 (Datta, 1995): A matrix of the form:  
 

T

T

2uuH I
u u

= −  

 
where, u is a nonzero vector, is called a Householder 
matrix. 
 
Basic QR iteration (Datta, 1995): We first present the 
basic QR iteration method: 
 
Set A0 = A 
 
 Now compute a sequence of matrices (Ak) defined 
by: 
A0 = Q0R0 (Using theorem 3) 

1 0 0 1 1

2 1 1 2 2

A R Q Q R
A R Q Q R

= =

= =
 

 
 In general: 
 

K K K K 1 K 1A Q R R Q k  1,  2− −= = = …  
 
 The matrices in the sequence {Ak} have a very 
interesting property. Each matrix in the sequence is 
orthogonally similar to the previous one and is, 
therefore, orthogonally similar to the original matrix. 
For example: 
 
 T

1 0 0 0 0 0A R Q Q A Q= =  (Because T
0 0 0Q A R= ) 

 T
2 1 1 1 1 1A R Q Q A Q= =   

  
 Thus, A1 is orthogonally similar to A and A2 is 
orthogonally similar to A1. Therefore, A2 is 
orthogonally similar to A, as the following computation 
shows: 
 

( ) ( ) ( )TT T T
2 1 1 1 1 0 0 0 1 0 1 0 0 1A Q A Q Q Q A Q Q Q Q A Q Q= = =  

 
 Because each matrix is orthogonally similar to the 
original matrix A therefore it has the same eigenvalues 
as A, then the sequence {AK} converges to a triangular 
matrix.  
 
Theorem 5: The set of (n×n) square matrices MCn, 
where: 
 
 { }n ij t ij tn n
MC (z) : i, j , (z)

×

+⎡ ⎤= β ∈ β ∈⎣ ⎦ Z R  

 
can be transformed to the set of (n×n) upper triangular 
matrices nMC " , where: 
 

ij t ij tn n
n

ij t

(z) : (z) 0 1 j i n,
MC "

i, j , (z)
×

+

⎧ ⎫⎡ ⎤β β = ∀ ≤ < ≤⎣ ⎦⎪ ⎪= ⎨ ⎬
⎪ ⎪∈ β ∈⎩ ⎭Z R

 

 
Proof: Let 
 

{ }n ij t ij tn n
MC (z) : i, j , (z)

×

+⎡ ⎤= β ∈ β ∈⎣ ⎦ Z R
 

 
 By using theorem 3 and the basic QR iteration we 
obtain the form nMC "  which is the real Schur form of 
MCn. 
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Semigroup of nMC " : We are going to show that the set 
of upper triangular matrices nMC "  satisfies all the 
axioms of a semigroup given in (Whitelaw, 1978) under 
matrix multiplication. In other words, we are going to 
show that 
 

• 
ij t ij tn n

n

ij t

(z) : (z) 0 1 j i n,
MC "

i, j , (z)
×

+

⎧ ⎫⎡ ⎤β β = ∀ ≤ < ≤⎣ ⎦⎪ ⎪= ⎨ ⎬
⎪ ⎪∈ β ∈⎩ ⎭Z R

is 

closed with respect to matrix multiplication  
• Matrix multiplication on nMC "  is associative 
 
Theorem 6: The set of (n×n) upper triangular matrices 

nMC " is a semigroup under matrix multiplication. 
 
Proof: Using similar proof as given in theorem 1, we 
arrive at the proof of our theorem.  
 

RESULTS 
 
 In this study, we have shown that Magnetic 
Contour Plane of Fuzzy Topographic Topological 
Mapping (FTTM) which contains the EEG signals 
during epileptic seizure can be transformed into a 
semigroup of upper triangular matrices under matrix 
multiplication.  
 

DISCUSSION 
 
 We have shown that the EEG signals during 
epileptic seizure can be viewed as a semigroup of upper 
triangular matrices under matrix multiplication. We 
demonstrated the possibility of transforming from one 
structure to the other, namely from topological to 
algebraic structure of EEG signals during seizure. 
 

CONCLUSION 
 
 This research will enable us to proceed further in 
identifying characteristics of EEG signals during 
epileptic seizure. 
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