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Abstract: The performance of five linear models to predict the daily mean PM10 concentrations was 
compared. The linear models proposed were: (i) multiple linear regression; (ii) principal component 
regression; (iii) independent component regression; (iv) quantile regression; and (v) partial least 
squares regression. The study was based on data from an urban site in Oporto Metropolitan Area and 
the analysed period was from January 2003 to December 2005. The linear models were evaluated with 
two datasets of different sizes belonging to the analysed period. Environmental data (SO2, CO, NO, 
NO2 and PM10 concentrations) and meteorological data (temperature, relative humidity and wind 
speed) were used as PM10 predictors.During the training step, quantile regression presented the lowest 
residual errors for the two datasets. Independent component regression was the worst model using the 
larger dataset. Multiple linear regression, principal component regression and partial least squares 
regression presented similar results for both datasets. During the test step, independent component 
regression and quantile regression showed bad performance, while multiple linear regression, principal 
component regression and partial least squares regression presented similar results using the larger 
dataset. For the smaller dataset, the models that remove the correlation of the variables (principal 
component regression, independent component regression and partial least squares regression) 
presented better results than multiple linear regression and quantile regression. Independent component 
regression was the linear model with the lowest value of residual error. Concluding, the dataset size is 
also an important parameter for the evaluation of the models concerning the prediction of variables. 
The prediction of the daily mean PM10 concentrations was more efficient when using independent 
component regression for the smaller dataset and partial least squares regression for the larger datasets. 
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INTRODUCTION 
 
 Atmospheric particulate matter is made up of solid 
and liquid particles suspended in the atmosphere. They 
are emitted by: (i) natural (volcanic eruptions, seismic 
activity, forest fires, winds of great intensity or natural 
particle transport from the dry regions); and (ii) 
anthropogenic sources (all types of combustion and 
some industrial processes). In Europe, particulate 
matter is one of the most important air pollutants 
responsible for loss of human health[1]. In the last 
decade, several studies about health effects of 
particulate matter were published[2-5]. Long exposure to 
PM10 (particles with diameter smaller than 10 µm) and 
to PM2.5 (particles with diameter smaller than 2.5 µm) 
has been associated with respiratory and cardiovascular 
diseases. Recent research seems to indicate that 

particles with smaller sizes are associated with 
childhood morbidity and mortality[5]. 
 The selection of the modelling techniques must 
consider some features, such as, complexity, flexibility, 
accuracy and speed of computation. The interpretability 
is also a very important characteristic of a model[6]. 
Without interpretability, the model is only used for 
prediction. In many situations, this type of model is 
enough. But in some cases, it is relevant to know the 
correlations between input variables and predictive 
variables. Furthermore, an interpretable model provides 
a sense of confidence. Comparing to the nonlinear 
models, linear models are simple and interpretable, 
taking less computation time. 
 Recently, several attempts have been made to 
model PM10 concentrations using different models. G. 
Corani[7] tried to predict this pollutant using feed-
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forward neural networks, pruned neural networks 
(nonlinear approaches) and lazy learning (local linear 
modelling approach). Comparing these three 
methodologies, lazy learning presents slightly better 
results than the other methods. Perez et al.[8] developed 
a neural network (nonlinear approach) to predict the 
maximum of the 24-h moving average of PM10 
concentration on the next day. This method was 
compared with linear perceptron (linear approach) and 
presented slightly better performance. Fuller et al.[9] 
used an empirical model to predict concentrations of 
PM10 at background and roadside locations. The 
method was based on the regression analysis between 
PM10 and NOx. The model accurately predicted daily 
mean PM10 concentrations but presented some 
limitations. For example, it depends of the existence of 
a consistent relationship between PM10 and NOx 
emissions. Thus, the studies that compared linear and 
nonlinear models[7,8] did not find a significant 
difference in the results obtained by the different 
methodologies. 
 This paper aims to analyse the performance of 
linear models, obtained by different methodologies, to 
predict the next day daily mean PM10 concentrations. 
The considered models were: (i) multiple linear 
regression; (ii) principal component regression; (iii) 
independent component regression; (iv) quantile 
regression; and (v) partial least squares regression. The 
explanatory variables were meteorological data (daily 
means of temperature, relative humidity and wind 
speed) and environmental data (daily means of CO, 
SO2, NO, NO2 and PM10 concentrations of the previous 
day). 

MODELS 
 
Multiple Linear Regression: Multiple linear 
regression (MLR) attempts to model the relationship 
between two or more explanatory variables and a 
response variable, by fitting a linear equation to the 
observed data. The dependent variable (y) is calculated 
by: 
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where xi (i=1,…,k) are the explanatory variables, 

iβ̂ (i=0,…,k) are the regression coefficients, and ε is the 
error associated with the regression and assumed to be 
normally distributed with both expectation value zero 
and constant variance[10]. 

The predicted value given by the regression model 
( ŷ ) is calculated by: 
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The most common method to estimate the 

regression parameters iβ̂  is the minimization of the 
sum of square errors (SSE). The equation is as follows: 
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Principal Component Regression: Principal 
component regression (PCR) is a method that combines 
linear regression and principal component analysis 
(PCA). PCA creates new variables, the principal 
components (PC), that are orthogonal and uncorrelated. 
These variables are linear combinations of the original 
variables. The PC are ordered in such a way that the 
first component has the largest fraction of the original 
data variability[11-13]. To evaluate the influence of each 
variable in the PC, varimax rotation is generally used to 
obtain the rotated factor loadings that represent the 
contribution of each variable in a specific PC. PCR 
establishes a relationship between the output variable 
(y) and the selected PC obtained from the explanatory 
variables (xi). 

 
Independent Component Regression: Independent 
component regression (ICR) is a method that combines 
linear regression and independent component analysis 
(ICA). In ICA, the input variables are considered linear 
combinations of latent variables. These latent variables 
are considered nongaussian and independent[14]. 
Therefore, they are called independent components 
(IC). PCA and ICA are considered linear representation 
models. While PCA determines the orthogonal 
variables (PC), ICA tries to find independent variables 
(IC). ICR establishes a relationship between the output 
variable (y) and the selected IC obtained from the 
explanatory variables (xi) 

 
Quantile Regression: Quantile regression (QR) was 
introduced by Koenker and Bassett[15] and can be seen 
as a natural extension of the least squares estimation of 
conditional mean models. This method presents some 
advantages when compared with ordinary least squares 
regression. For example, it allows the examination of 
the entire distribution of the variable of interest rather 
than a single measure of the central tendency of its 
distribution. It can also provide information about any 
linear or nonlinear relationships between the dependent 
variable and the explanatory variables without an a 
priori knowledge of the type of (potential) non-
linearities. Thus, it is more flexible to model data with 
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heterogeneous conditional distribution. To describe the 
quantile function, a random variable Y with the 
distribution function y)Pr(YF(y) ≤=  is considered. 
The quantile function Q(�) with �∈ [0, 1] is defined as 
follows: 

{ }ττ ≥= )(:inf)( yFyQ  (4) 
 
The median is Q(1/2), the first quartile is Q(1/4) 

and the first decile is Q(1/10). The median regression 
minimizes a sum of absolute errors. The remaining 
conditional quantile functions are estimated by 
minimizing an asymmetrically weighted sum of 
absolute errors: 
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Equation 6 presents a way to calculate the model 

parameters, considering quantile approach and the 
regression equation given by Equation 2: 
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Partial Least Squares Regression: Partial least 
squares regression (PLSR) is probably the least 
restrictive of the various multivariate extensions of the 
MLR model[16]. This flexibility allows it to be used in 
situations where the use of traditional multivariate 
methods is severely limited, such as when there are 
fewer observations than predictor variables. In these 
situations, the MLR approach is not feasible due to the 
multicollinearity between the explanatory variables. 

PLSR is based on linear transition from a large 
number of original descriptors to a new variable space 
based on small number of orthogonal factors (latent 
variables - LV)[16]. In other words, factors are 
orthogonal and linear combinations of original 
descriptors. Unlike some similar approaches (e.g. PCR), 
LV are chosen in such a way that provides maximum 
correlation with dependent variable. Thus, PLSR model 
contains the smallest necessary number of factors. 

PLSR decomposes both explanatory variables (X) 
and the output variables (Y) as a product of a common 
set of orthogonal factors and a set of specific loadings. 
The complete procedure is as follows[16]: 
 
Step 1: Normalization of X and Y: XXX /0 =  and 

YYY /0 = ; 

Step 2: Definition of the vector u with random values; 

Step 3: Estimation of the X weights: 
uX

uX
w

T
k

T
k= ; 

Step 4: Estimation of the X factor scores (LV): 

wX
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k
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Step 5: Estimation of the Y weights: 
tY
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c

T
k

T
k= ; 

Step 6: Estimation of the Y factor scores: cYu k= ; 
Step 7: Repetition of the steps 3 to 6 until the 

convergence of t; 
Step 8:   Determination of the value of b used to predict 

Y from t: utb T= ; 
Step 9: Determination of the X factor loadings: 

tXp T
k= ; 

Step 10: Elimination of the effect of t from X and Y: 
T

kk tpXX −=+1  and T
kk btcYY −=+1 ; 

Step 11: Repetition of the steps 2 to 10 until the 
determination of a selected number of LV. 

Each vector t, u, w, c and p is stored in the columns of 
the correspondent matrices (T, U, W, C and P) and the 
scalar b is stored in a diagonal matrix (B). If kX  is a 
null matrix, all latent variables were determined.  

The prediction of the dependent variable is done by 

PLS
T XBTBCY ==ˆ . If all latent variables are used, the 

results of PLSR are similar to that obtained by PCR. 
 

Regression parameters validation: It is important to 
know which explanatory variables are relevant to 
predict the dependent variable. For the studied models, 
PLSR is the only one that includes this step in its 
procedure. For MLR, PCR and ICR, the significance of 
each regression parameter in the models was evaluated 
through the calculation of their confidence interval. The 

parameter iβ̂  is statistically significant if[17]: 
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where t is the Student t distribution, n is the number of 
points, k is the number of parameters, α is the 
significance level, σ̂  is the standard deviation given by 
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For QR, bootstrap estimates of standard error (at 
the 95% confidence level) were calculated by randomly 
sampling each dataset with replacement (1000 times). 

 
Performance indexes: The linear models were 
compared through the calculation of the following 
statistical parameters: mean bias error (MBE), mean 
absolute error (MAE), root mean squared error 
(RMSE), index of agreement (d2), that are commonly 
referred in literature[18, 19]. 

MBE indicates if the observed values are over or 
under estimated. MAE and RMSE measure residual 
errors, which give a global idea of the difference 
between the observed and the modelled values. The 
values of d2 compare the difference between the mean, 
the predicted and the observed variables, indicating the 
degree of error free for the predictions[18, 19]. 

 
DATA 

 
This study aims to predict the daily mean PM10 

concentration of the next day. The concentrations of 
pollutants (SO2, CO, NO, NO2 and PM10) were 
recorded in an urban site (Matosinhos) with traffic 
influences situated in Oporto Metropolitan Area, 
Northern Portugal. SO2 concentrations were obtained 
by the ultraviolet fluorescence method; CO 
concentrations were measured through nondispersive 
infrared spectrometric; NO2 was obtained through the 
chemiluminescence method; PM10 concentrations were 
obtained through the beta radiation attenuation method. 
These equipments were submitted to a rigid 
maintenance program and calibrated periodically. 
Measurements were continuously made and hourly 
average concentrations (in micrograms per cubic meter) 
were registered. Meteorological variables were 
measured on the left edge of Douro River at an altitude 
of 90 m approximately. These variables are hourly 
means of: air temperature (T), relative humidity (RH) 
and wind speed (WS). Daily average values for these 
variables were calculated and used if more that 75% of 
hourly values were available. The period of 
measurement was from January 2003 to December 
2005. To evaluate the influence of the dataset size in 
the performance of the linear models, two datasets with 
different sizes were considered: (i) dataset 1 (DS1) 
considered 2003, 2004 and the first three trimesters of 
2005 as training period and the last trimester of 2005 as 
test period; and (ii) dataset 2 (DS2), January 2003 to 
May 2003 was considered as training period and June 
2003 was considered as test period. Additionally, QR 
and PLSR models required a validation period. For 
DS1, the last trimester of 2004 was considered as a 

validation period. For DS2, May 2003 was considered 
as a validation period. The explanatory variables were 
standardized (zero mean and unit standard deviation).  

 
RESULTS AND DISCUSSION 

 
Table 1 presents the correlation coefficients 

between pollutants and meteorological variables for the 
two analysed datasets (DS1 – upper triangular matrix; 
DS2 – lower triangular matrix). These coefficients 
provide a measure of linear relationship between two 
variables. Values in bold correspond to statistically 
significant coefficients [20]. For the evaluation of their 
statistical significance, the critical correlation 
coefficient was calculated (with a significance level of 
0.05). A correlation coefficient is significant if its 
absolute value is greater than the critical value. In this 
preliminary analysis, concerning the correlations with 
the next day PM10 concentration (PM10|d+1), only 
temperature was not considered statistically significant 
for DS2. The explanatory variables that presented 
highest correlation with PM10|d+1 were CO, NO, NO2 
and PM10 concentrations (for both datasets). In both 
datasets, as it was expected, PM10|d+1 concentration had 
positive correlations with SO2, CO, NO and NO2. Some 
combustion and industrial processes (important PM10 
sources) also increase the emission of these pollutants. 
PM10|d+1 concentration had negative correlation with RH 
and WS. In wet weather, the particles in suspension can 
stick on the surface and can be whirled up into the air in 
dry weather. For high values of WS, there is an efficient 
dispersion of pollutants. Thus, high values of WS 
correspond to low pollutant concentrations. PM10|d+1 

concentration had also positive correlation with its 
concentration of the previous day. 

For the statistical evaluation of the regression 
parameters, a t-test (significance level of 0.05) was 
performed for MLR, PCR and ICR. Considering the 
statistically significant parameters, new regressions 
were performed. Table 2 shows the statistically 
significant regression parameters for MLR, PCR and 
ICR. For MLR, the parameters β1 to β8 correspond to 
SO2, CO, NO, NO2, T, RH, WS and PM10, respectively. 
The variables considered important for the prediction of 
the next day PM10 concentration were: (i) CO, NO2, T, 
RH and PM10 for DS1; and (ii) CO, NO, NO2 and T for 
DS2. For PCR, the parameters βi (i=1, 8) correspond to 
each PC. All PC were used as input variables in PCR. 
However, the important predictors of PM10 
concentration considered by this method were: (i) PC1 
to PC6 for DS1; and (ii) PC1, PC2, PC4 and PC8 for 
DS2. Table 3 shows the rotated factor loadings for DS1 
and DS2 that represent the contribution of each variable  
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Table 1: Correlation coefficients between pollutants and meteorological variables for the two analysed datasets (DS1 – upper triangular matrix; 

DS2 – lower triangular matrix). 

 SO2 CO NO NO2 T RH WS PM10 PM10|d+1 
 

SO2 1 0.171 0.329 0.430 0.297 -0.163 -0.155 0.371 0.276  

CO 0.510 1 0.860 0.786 -0.374 -0.086 -0.343 0.638 0.486  

NO 0.575 0.917 1 0.798 -0.211 -0.062 -0.328 0.565 0.439  

NO2 0.619 0.882 0.832 1 -0.043 -0.318 -0.283 0.734 0.594  

T -0.089 -0.433 -0.366 -0.295 1 -0.251 -0.022 0.168 0.153  

RH -0.333 -0.138 -0.167 -0.338 -0.270 1 -0.278 -0.275 -0.323  

WS -0.221 -0.532 -0.447 -0.482 0.188 -0.065 1 -0.234 -0.150  

PM10 0.436 0.773 0.684 0.778 -0.012 -0.289 -0.401 1 0.685  

PM10|d+1 0.352 0.640 0.551 0.675 -0.052 -0.337 -0.289 0.669 1  

Values in bold correspond to statistically significant correlation coefficients 
 
Table 2. Statistically significant regression parameters for MLR, PCR and ICR using both datasets (DS1 and DS2). 

  β0 β1 β2 β3 β4 β5 β6 β7 β8  

M
L

R
   SO2 CO NO NO2 T RH WS PM10  

DS1 42.12  2.36  2.88 1.98 -2.74  10.82  
DS2 40.89  16.17 -8.17 10.54 5.87     

PC
R

   PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8  
DS1 42.12 7.35 4.35 1.41 4.82 4.87 5.19    
DS2 40.89 7.62 3.90  7.23    -13.49  

IC
R

   IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8  
DS1 26.39 7.57  3.14  -2.95 1.65 2.49 3.19  
DS2 6.11 7.50 8.15 6.42  -10.83 -3.55  4.22  

 
Table 3. Varimax rotated loadings using both datasets (DS1 and DS2). 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8  

D
S1

 

SO2 -0.171 0.159 -0.061 0.960 0.065 -0.121 -0.035 0.002  
CO -0.842 -0.277 -0.176 0.020 0.050 -0.318 -0.008 -0.280  
NO -0.952 -0.090 -0.132 0.162 -0.003 -0.144 0.034 0.139  
NO2 -0.742 -0.014 -0.129 0.234 0.223 -0.355 -0.449 -0.004  

T 0.177 0.957 -0.033 0.160 0.132 -0.088 0.000 0.010  
RH 0.076 -0.127 -0.160 -0.065 -0.967 0.106 0.033 0.004  
WS 0.194 -0.031 0.962 -0.062 0.161 0.077 0.021 0.008  

PM10 -0.440 0.129 -0.094 0.161 0.141 -0.855 -0.053 -0.011  

D
S2

 

SO2 -0.281 -0.028 -0.076 0.929 0.167 -0.146 0.045 0.006  
CO -0.753 -0.276 -0.275 0.209 0.053 -0.429 0.081 0.211  
NO -0.878 -0.186 -0.190 0.280 0.065 -0.258 0.000 -0.096  
NO2 -0.607 -0.180 -0.250 0.327 0.225 -0.439 0.432 0.013  

T 0.204 0.964 0.068 -0.029 0.150 -0.016 -0.027 -0.005  
RH 0.082 -0.147 -0.050 -0.150 -0.967 0.107 -0.031 -0.001  
WS 0.225 0.070 0.955 -0.074 0.055 0.151 -0.037 -0.006  

PM10 -0.442 0.064 -0.181 0.162 0.141 -0.848 0.046 -0.004  
Values in bold indicate the variables that most influence each principal component. 

 
in a specific PC. In both datasets, PC1 is heavily loaded 
by CO, NO and NO2 and PC2 to PC6 had greater 
contributions of T, WS, SO2, RH and PM10, 
respectively. Thus, the most important original 
variables selected by PCR were: (i) all variables for 
DS1; and (ii) SO2, CO, NO, NO2 and T for DS2. 
Similarly to PCR, with ICR the parameters βi (i=1, 8) 
correspond to each IC. All IC were used as input 
variables in ICR. However, the important predictors of 
PM10 concentration considered by this method were: (i) 

IC1, IC3, IC5, IC6, IC7 and IC8 for DS1; and (ii) IC1, 
IC2, IC3, IC5, IC6 and IC8 for DS2. Table 4 presents 
the correlation matrix between the original variables 
and IC. These correlation values showed the importance 
of each original variable on the prediction of PM10 
concentration. Thus, the original variables considered 
relevant for prediction of PM10 concentration were: (i) 
SO2, CO, NO, NO2, WS and PM10 for DS1; and (ii) 
CO, NO, NO2, T, RH, WS and PM10 for DS2. 
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Table 4. Correlation matrix between the original variables and the IC using both datasets (DS1 and DS2). 

  IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8  

D
S1

 

SO2 0.329 0.038 0.012 -0.129 0.014 0.923 0.107 0.096  
CO 0.410 0.203 0.005 0.486 -0.244 0.003 0.288 0.642  
NO 0.428 0.146 0.041 0.195 0.138 0.110 0.235 0.818  
NO2 0.807 0.170 0.167 0.228 0.027 0.128 0.323 0.346  

T 0.291 0.040 -0.053 -0.901 -0.235 0.120 -0.081 -0.152  
RH -0.521 0.776 -0.011 0.102 0.212 0.010 -0.256 0.071  
WS 0.133 -0.543 -0.018 0.127 0.037 -0.065 -0.798 -0.172  

PM10 0.526 0.141 0.582 0.010 -0.426 0.152 0.163 0.364  

D
S2

 

SO2 -0.137 0.300 0.389 0.118 -0.470 -0.111 0.700 -0.013  
CO 0.369 0.287 0.600 -0.102 -0.636 0.065 -0.055 -0.019  
NO 0.018 0.290 0.775 -0.064 -0.550 0.012 -0.088 -0.031  
NO2 0.124 0.498 0.331 -0.011 -0.782 -0.043 -0.017 0.110  

T -0.053 0.201 -0.078 0.475 0.550 -0.143 0.097 0.621  
RH -0.060 -0.616 0.000 -0.465 0.035 0.591 -0.023 0.223  
WS -0.232 -0.661 -0.241 0.551 0.058 -0.364 -0.057 -0.082  

PM10 0.385 0.306 0.431 -0.153 -0.474 -0.384 -0.017 0.421  
Values in bold correspond to statistically significant correlation coefficients 
 
Table 5. Statistically significant regression parameters for QR using both datasets (DS1 and DS2). 

 τ β0 β1 β2 β3 β4 β5 β6 β7 β8  

D
S1

 

  SO2 CO NO NO2 T RH WS PM10  
0.10 23.7  5.39   3.72 -3.50  4.6  
0.30 33.6     0.64 -2.73  12.3  
0.50 40.8     0.47 -2.41  15.7  
0.70 49.0    2.25  -2.32  16.3  
0.90 62.3    7.33    16.7  

D
S2

 

  SO2 CO NO NO2 T RH WS PM10  
0.10 22.7  13.80   2.99 -2.45    
0.30 22.9          
0.50 33.3          
0.70 47.2        21.0  
0.90 62.3 -5.85   26.86      

 
Table 5 shows the statistically significant 

regression parameters for quantile regression. Five 
percentiles (τ) � were selected. For the evaluation of the 
statistical significance of the regression parameters, 
their confidence intervals (significance level of 0.05) 
were determined by the application of bootstrap 
(calculated with 1000 times replacements). For DS1, 
the results showed that RH and PM10 concentration 
were the most important explanatory variables. CO 
concentration and T were important only in low values 
of τ�, while NO2 concentration was relevant in high 
values of τ�. For DS2, SO2, NO2 and PM10 
concentrations were important for high values of τ, 
while CO concentration, T and RH were relevant for 
low values of τ. 

For PLSR, it is important to determine the number 
of the LV needed to obtain the best generalisation for 
the prediction of PM10 concentrations. The validation 
period was used to determine the number of LV that 
presents the lowest value of error and in both datasets, 
two variables were achieved. Table 6 shows the 
regression parameters for PLSR (BPLS) and the rotated 

factor loadings that represent the contribution of each 
variable in a specific LV. For DS1, LV1 was heavily 
loaded by the CO, NO, NO2 and PM10 concentrations, 
while LV2 had a great contribution of T. For DS2, LV1 
was heavily loaded by the SO2, CO, NO, NO2 and PM10 
concentrations, while LV2 had a great contribution of 
T. 

Table 7 shows the performance indexes for the 
different linear models for the training period. ICR 
presented bad performance in the larger dataset (DS1). 
QR was the linear method that presented better 
performance using the two datasets. 

In the test step and for MLR, PCR and ICR, PM10 
concentrations were determined by the application of 
the regression equations achieved in the training step. 
For this step, the application of QR needs to predict the 
PM10 percentile for each validation point, following the 
application of the correspondent regression equation. 
The PM10 percentile was determined applying the k-
nearest neighbour (k-NN) algorithm. This algorithm 
was used for classifying objects based on closest 
examples in the training data. It was based on the 
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Table 6. Regression parameters for PLSR (BPLS) and the rotated factor 
loadings using both datasets (DS1 and DS2). 

 DS1  DS2 
 BPLS LV1 LV2  BPLS LV1 LV2 

SO2 0.025 0.504 -0.060  -0.010 0.722 -0.273 
CO 0.115 0.826 -0.371  0.196 0.960 -0.041 
NO 0.041 0.822 -0.431  0.081 0.918 -0.112 
NO2 0.172 0.936 -0.097  0.189 0.955 -0.003 

T 0.149 0.087 0.685  0.096 -0.438 0.700 
RH -0.180 -0.395 -0.602  -0.138 -0.371 -0.459 
WS 0.008 -0.309 0.374  0.017 -0.545 0.286 

PM10 0.327 0.868 0.266  0.287 0.847 0.393 
Values in bold indicate the variables that most influence each latent variable. 
 
Table 7: Performance indexes of the different linear models for the 

training period using both datasets (DS1 and DS2). 
  R MBE MAE RMSE d2 

D
S1

 

MLR 0.71 0.00 11.99 15.92 0.81 
PCR 0.71 0.00 11.96 15.91 0.81 
ICR 0.43 0.00 15.58 20.45 0.55 
QR 0.79 2.60 9.93 14.21 0.92 

PLSR 0.70 0.00 12.45 16.38 0.81 

D
S2

 

MLR 0.72 0.00 12.78 16.55 0.82 
PCR 0.73 0.00 12.51 16.42 0.83 
ICR 0.74 0.00 12.18 16.27 0.83 
QR 0.84 1.24 7.99 13.07 0.94 

PLSR 0.72 0.00 12.78 16.80 0.82 
 

Table 8: Performance indexes of the different linear models for the 
test period using both datasets (DS1 and DS2). 

  R MBE MAE RMSE d2 

D
S1

 

MLR 0.74 -1.12 12.66 18.43 0.83 
PCR 0.74 -0.90 12.68 18.37 0.84 
ICR 0.68 -1.90 13.97 20.22 0.71 
QR 0.60 2.16 15.20 21.95 0.86 

PLSR 0.75 -2.07 12.24 18.13 0.83 

D
S2

 

MLR 0.70 5.92 11.76 13.84 0.84 
PCR 0.76 -0.25 10.87 12.64 0.86 
ICR 0.79 0.64 10.02 11.83 0.88 
QR 0.72 -3.44 11.14 13.53 0.86 

PLSR 0.77 4.34 10.50 12.48 0.87 
 

Euclidean distance between the correspondent 
validation point and the training points. The evaluation 
of the optimal value of k nearest training samples 
depends of the dataset. A good value of k can be 
achieved using cross-validation. The k-NN algorithm is 
as follows: 
Step 1:  Selection of the k value; 
Step 2:  Determination of k nearest training points from 

the validation point; 
Step 3:Determination of the percentile of PM10 

concentration values correspondent to these 
training points; 

Step 4: Application of the QR equations correspondent 
to these percentiles using the validation point: 

i

k

i
ii xy �

=

+=
1

0
ˆˆˆ ββ ; 

Step 5: Determination of the average of the k values of    
iŷ ; 

Step 6: Repetition of the steps 2 to 5 for all validation 
points; 

Step 7: Determination of the error associated to the 
value of k, based on the difference of the 
average values calculated above and the true 
values; 

Step 8: Repetition of the steps 1 to 7 for different 
values of k; 

Step 9: Determination of the lowest value of error 
associated to the optimal value of k. 

 
For the test step, it was necessary 23 and 5 nearest 

points for prediction of the percentile of the test points 
using DS1 and DS2, respectively. For PLSR, PM10 
concentrations were determined through the BPLS 
(equation PLSXBY =ˆ ) achieved with the number of LV 
obtained in the validation step. Table 8 presents the 
performance indexes achieved in the test step using 
DS1 and DS2. The results showed that for the larger 
dataset (DS1), QR and ICR presented the highest values 
of residual error and the remained models had similar 
results. For DS2, ICR presented the best performance, 
achieving the lowest value of RMSE. The other models 
that remove the correlation between the input variables 
(PCR and PLS) also presented good results. MLR and 
QR achieved similar performance indexes.  
 

CONCLUSIONS 
 

Five linear models were used to predict the daily 
mean PM10 concentrations using as predictors air 
pollutant (SO2, CO, NO, NO2 and PM10) concentrations 
and meteorological parameters (temperature, relative 
humidity and wind speed) for two datasets with 
different sizes. PM10 concentration presented positive 
correlation with SO2, CO, NO and NO2 concentrations 
due to the similar emission sources. It was also 
positively correlated with temperature and negatively 
with relative humidity and wind speed. In wet weather, 
the particles in suspension can stick on the surface and 
can be whirled up into the air in dry weather. For high 
values of wind speed, there is an efficient dispersion of 
pollutants. 

As the selected models are all linear, they are 
interpretable and their results were used to determine 
which variables were important in the prediction of 
daily mean PM10 concentrations. All models considered 
different group of important variables, however CO and 
NO2 were always selected. 
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During the training step, quantile regression 
presented the lowest residual errors using the two 
datasets. Multiple linear regression, principal 
component regression and partial least squares 
regression presented similar results. Independent 
component regression presented bad performance in the 
dataset 1, which may be the result of the dataset size. 

During the test step and for the dataset 1, 
independent component regression and quantile 
regression showed bad performances, while multiple 
linear regression, principal component regression and 
partial least squares regression presented similar results. 
Using the smaller dataset (dataset 2), the models that 
remove the correlation of the variables (principal 
component regression, independent component 
regression and partial least squares regression) 
presented better results than multiple linear regression 
and quantile regression. Independent component 
regression was the linear model with the lowest value 
of residual error. 

Concluding, the dataset size is also an important 
parameter for the evaluation of the models concerning 
the prediction of variables. The prediction of the daily 
mean PM10 concentrations was more efficient when 
using independent component regression for the smaller 
dataset and partial least squares regression for the larger 
dataset. 
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