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ABSTRACT 

In this study, the interrelation concepts of trivariate distribution function, trivariate survival function, 

trivariate probability density function and trivariate hazard rate function of trivariate Weibull distribution 

are presented. The goal of this contribution is to estimate the trivariate Weibull hazard rate parameters. To 

reach this goal, we will use an analitical approach in estimating called the Maximum Likelihood Estimation 

(MLE) method. Using numerical iterative procedure the scale parameters, the shape parameters and the 

power parameter estimators on trivariate hazard rate of trivariate Weibull distribution must be obtained. The 

MLE technique estimates accurately the trivariate Weibull hazard rate parameters. 

 

Keywords: Trivariate Weibull Distribution, Parameter Estimation, Trivariate Weibull Hazard Rate, 

Maximum Likelihood Estimation (MLE) 

 

1. INTRODUCTION 

 The Weibull distribution is characterized in the class 
of absolutely continuous distributions by two parameters, 
one is the shape parameter, say γ and the other is the 
scale parameter, say η. The Weibull distribution plays a 
central role in the analysis of survival or failure time 
data. For survival data, the proportional hazard model is 
the most popular model. Moreover, the Weibull distribution 
is good to be used in parameterized the proportional hazard 
model because of its flexibility, allowing increasing, 
decreasing or constant hazard rate function. 
 The literature on parameter estimation for the 

Weibull distribution is vast. So, we will select only some 

key papers. The first study, Tuerlinckx (2004), he 

derived the Laplace tranform of the positive stable 

density. His proposition had been applied as a useful 

vehicle to derive a multivariate survival function of 

Weibull distribution.   

 The other papers based on analytical methods of 

parameter estimation are Hanagal (2005), he propose a new 

bivariate Weibull regression model on censored samples 

with common covariates and obtaining the maximum 

likelihood estimators for parameters, Hanagal (2006) 

developed a maximum likelihood estimation procedure for 

a bivariate frailty regression model. Lee and Wen (2009) 

propose a multivariate Weibull model and derived the 

explicit form of PDF, CDF and general moment.  

 In this study, we propose a new parameter 
estimation on trivariate Weibull distribution related to 
the consideration of hazard rates. The plan of this study 
is organized as follows. We will introduce the Weibull 
distribution and its related functions, next we derive 
estimators for the parameters of the proposed model 
and the lastly, we present the results, discussion and 
deduce a few conclusion. Unfortunately, at this stage of 
the investigations there are no real data for iterating our 
proposed parameter estimation. 

2. MATERIALS AND METHODS 

 Let T be a continuous nonnegative random variable 
representing the failure time of an individual from a 
homogeneous population with probability density 
function fT(t) and cummulative distribution functon FT(t) 
= P(T ≤ t). The complementary cumulative distribution 
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function ST(t) = 1 - FT(t) = P(T > t) is called  survival 
function. ST(t) is the probability of surviving an age of t. 
The probability density fuction fT(t) of random variable T is 
then equal to dFT(t)/dt or equivalenly-dST(t)/dt.  
 The univariate hazard rate hT(t) of failure time T 

is defined as the probability of failure during a very 

small time interval, assuming that the individual has 

survived to the beginning of the interval: 

 

T

T
t 0

T

T T

T

T T

P(t T t t | T t) dF (t) / dt
h (t) lim

t S (t)

d(1 S (t)) / dt dS (t) / dt d
ln S (t)

S (t) S (t) dt

∆ →

≤ < + ∆ ≥
= =

∆

− −
= = = −

 

 

for all t such that ST(t)>0.  Another expression of hT(t) as 

defined above is hT(t) = fT(t)/ST(t) (Navarro, 2007). This 

hazard rate plays an important role in survival data analysis. 

 Correspondingly, the cumulative hazard rate 

function of failure time T is defined as: 

 
t

T T T

0

(t) h (s) ds lnS (t)= = −∫H  

 

hence, the link between the cumulative hazard rate HT(t) 

and the survival function ST(t) is done by the following 

relationship: 
 

 ( )T T
S (t) exp (t)= −H  

 
this equation has been noted by (Singpurwalla, 2006). 

 Unlike the univariate setup, there are various 

definitions of multivariate hazard (failure) rate functions.  

One can define the multivariate hazard rate in more than 

one way. In the case of bivariate hazard rate function (for 

overviews, see Kundu and Gupta, 2010a).  

 Let (T1,T2)
T be a continuous nonnegative random 

vector with the joint survival function ST1,T2(t1,t2) = 

P(T1>t1,T2>t2), the joint distribution has the form 

FT1,T2(t1,t2) = P(T1≤t1,T2≤t2).  This distribution can be 

defined  in terms of survival functions as: 
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∩ ∩
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where ST1(t1) = P(T1>t1) and ST2(t2) = P(T2>t2) are 

marginal survival functions of T1 and T2, respectively. 

 Similarly, the joint survival function ST1,T2(t1,t2) can 
also be defined in terms of distribution functions as 
ST1,T2(t1,t2)=1-FT1(t1)-FT2(t2)+FT1,T2(t1,t2), where FT1(t1) 
=P(T1≤t1) and FT2(t2)=P(T2≤t2) are marginal distribution 
functions of T1 and T2, respectively. Clearly that the joint 
survival function ST1,T2(t1,t2) and the joint distribution 
function FT1,T2(t1,t2) is not direct as for the univariate 
case, that is ST1,T2(t1,t2)≠1- FT1,T2(t1,t2). 
    Hence, by differentiating ST1,T2(t1,t2) with respect to t1 

and t2, we have: 
 

1 2 1 2

2 2

T ,T 1 2 T ,T 1 2

1 2 1 2

F (t , t ) S (t , t )

t t t t

∂ ∂
=

∂ ∂ ∂ ∂
 

 
Note that, for the bivariate case, the second order partial 

derivatives of the joint distribution FT1,T2(t1,t2) and the 

joint survival function ST1,T2(t1,t2) are equal.  
 The joint probability density function fT1,T2(t1,t2)  of 
random variable T1,T2 is defined as: 
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 If we view the density as the unconditional failure rate, 
we can define a conditional failure rate as being the same 
quantity after having accounted for the fact that the 

individual has already survived until the time point t1 and t2. 
Then, the bivariate hazard rate function of the random 
variable T1,T2 can be written as a scalar quantity, given by: 
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 The other approach in defining bivariate hazard rate 

is based on a concept of vector-valued bivariate hazard 

rate as was stated in Kundu and Gupta (2010b.), that is: 
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( )
1 2 1 2 1 2

T

T ,T 1 2 T ,T 1 2 1 T ,T 1 2 2
(t , t ) h (t , t ) ,h (t , t )=h  

 

where, hT1,T2(t1,t2)i = - ∂lnST1,T2(t1,t2)/∂ti, i=1,2.  

 Similarly, in the case of trivariate, the cumulative 

distribution function of a continuous nonnegative 

random vector (T1,T2,T3)
T is defined by Eq. 1: 

1 2 3 1

i

T T T 1 2 3 1 2 2 3 3

3

T i T T i j T T T 1 2 3i j 1 2 3

i 1 1 i j 3

F , , (t , t , t ) P(T t ,T t ,T t )

1 S (t ) S , (t , t ) S , , (t , t , t )
= ≤ < ≤

= ≤ ≤ ≤

= − + −∑ ∑
       (1) 

 
 Note from (1) that STi,Tj(ti,tj) =P(Ti>Ti,Tj>tj) is the 

joint survival function of the two failure time random 

variables Ti,Tj with 1≤i<j≤3 and STi(ti)=P(Ti>ti) is the 

marginal survival function of Ti.  

 The relationship between the joint survival function 

ST1,T2,T3(t1,t2,t3) and the joint cumulative distribution 

function FT1,T2,T3(t1,t2,t3) can also be written as: 
 

T T T1 2 3 1 2 3 1 1 2 2 3 3
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T i T T i j T T Ti i j 1 2 3 1 2 3
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= > > >
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 Which implies that if the cumulative distribution 

function (1) is absolutely continuous, then the joint 

probability density function fT1,T2,T3(t1,t2,t3) has the 

following expression Eq. 2:  

 
3

T T T
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T T T 1 2 3
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3
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1 2 3
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           (2) 

 

Unlike in the case of bivariate, the joint probability 

density function in (2) is equal to (-1) times the third 

partial derivative of the survival function with respect to 

t1,t2 and t3.   

 For notational convenience we will drop the triple 

subscript T1,T2,T3 denoting the failure time random 

variables. Henceforth, we will denote ST1,T2,T3 (t1, t2, t3) 

by ST(t), FT1,T2,T3(t1,t2,t3)  by FT(t),  fT1,T2,T3(t1,t2,t3) by 

fT(t) and  hT1,T2,T3(t1,t2,t3) by hT(t) for short.   

 The joint survival function for the trivariate Weibull 

distribution of random variable T1, T2 and T3 proposed 

by Lee and Wen (2009) for 0 < α ≤ 1; 0 ≤ t1, t2, t3 < ∞ is 

given by Eq. 3: 

 

 
3

1

t
S ( ) exp( ), where

γ

α
α

=

 = − =  η 
∑T

t

ℓ

ℓ

ℓℓ

K K  (3) 

where T1, T2,T3 are three failur times with univariate 

survival functions STi(ti)=P(Ti>ti). Each univariate 

survival function has a shape parameter γi and a scale 

parameter ηi. The parameter α represents the degree of 

dependence in the association of T1, T2 and T3. The case 

α = 0 and α = 1 correspond to maximal positive 

dependence and independence, respectively. 

       It follows directly from (2) and (3) we have the joint 

density function of trivariate Weibull distribution and it 

takes the form Eq. 4:  
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where,C(m,k,α) is the generalized factorial coefficient, 

which for all positif integer m, k with k ≤ m and for real 

number α is defined by:  
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1 2 m

i

k
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1 2 m
i 1k k k

2k mk m
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 And ( )1 2 m

m
k ,k , ,k…

is the extended multinomial 

coefficient defined by: 

 

1 2 m 1 2 m

m m!

k ,k , ,k k !k !...k !

 
= 

 …

 

 

 Furthermore, the summation is extended over all 

partitions of m into k parts, that is over all nonnegative 

integer solutions of the equations k1+2k2 +...+mkm = m, 

k1 + k2 +…+ km = k. This implies that expanding 

C(3,k,α) causes the expression (4) may be written, 

equivalently, as Eq. 5:  

 
33

2 2 3 3 3 3

1

( 1)( 2)
f ( ) exp( )

t 3 ( 1)
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α
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t
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KK
K
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 By introducing the relationship of the trivariate 

Weibull survival function and the trivariate Weibull 

density function above we have the trivariate expression 

of the Weibull hazard rate Eq. 6: 
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3 3

k 3 k 3

k 11
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K
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for all (t1,t2,t3) such that ST(t)>0, or in the concept of 

vector-valued trivariate hazard rate, it is defined as Eq. 7: 

 

( )
T

1 2 3
( ) h ( ) ,h ( ) ,h ( )=
T T T T
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where for ℓ = 1,2,3 

 
( / ) 1
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T T
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ℓ
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 Suppose that there are n individuals under 

investigation and for each individual there are L failure 

types. Let Tjℓ  denote the exact failure times for the ℓ-th 

failure type of the j-th individual (j = 1 ,…, n; ℓ = 1 ,…, 

L). If their failure times follow the trivariate Weibull 

distribution and we assume that the observations are n 

independent and identically distributed (i.i.d), the 

likelihood function is Eq. 8: 
 

( )
n 3

j 3 2

3 2 j j

j 1 1

3

j j

( ) ( ) 3 ( )
t

exp( )

α α

= =

α− α
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× −
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K
K K

K K

L

 (8) 

 

where, θ = (γ1, γ2, γ3, η1, η2, η3, α)
T
 denotes a vector of 

unknown parameters of trivariate Weibull distribution, 
3

jj 1(t / )
γ α

=
= η∑ ℓ

ℓ
ℓ ℓ

K  and (α)m is descending factorial of 

α of order m, defined for α a real number and m an 

integer by (α)m def  α (α-1) (α-2)...(α-m+1); m = 1, 

2,…,; (α)0 = 1. The idea of Maximum Likelihood 

Estimation (MLE) is to find estimator θ̂  that 

maximizes (8). Taking natural logarithm on both sides 

of (8) and denote it by L (θ), we have Eq. 9: 
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θ
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K
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 Note that the equation (9) is known as the log 

likelihood function of θ.  

 Maximization of (8) is rarely done by some 

procedure of direct optimization, but usually by some 

methods based on derivatives of (8). The process of 

forming these derivatives is made easier by departing 

from the log likelihood function (9) which is a sum 

instead of a product, as the logarithmic transformation 

is isotonic, the extremal points 
i
θ̂  of L (θ) and L(θ) 

will be the same. The MLE θ̂  of θ is the set of { }ˆ ˆ ˆ, ,αγ η  

that maximizes  L (θ) or, equivalently, maximizes L(θ), 

i.e., 
all  

ˆ( ) max( ( )),
θ

=θ θL L  where γ = (γ1,γ2,γ3)
T and  

η=(η1,η2,η3)
T. 

 It is clear that if vector θ̂  is a solution of the 

following simultaneous equations, which are obtained by 

taking the partial derivative of (9) with respect to each 

elements of vector θ and setting the result to zero Eq. 10: 

 

( )∂
=

∂

θ
0

θ

L
 (10) 

 

 Then θ̂  is a maximizer of (9). Note that the 

equation (10) above is known as the log likelihood 

equation and the 7×1 vector ∂L(θ)/∂θ in the left hand 

side of (10) is called the score vector and denoted by 

g(θ) = ∂L(θ)/∂θ, with ∂L(θ)/∂θ = (∂L(θ)/∂γT, 

∂L(θ)/∂ηT, ∂L(θ)/∂α)T. Where ∂L(θ)/∂γT = (∂L(θ)/∂γ1, 

∂L(θ)/∂γ2, ∂L(θ)/∂γ3) and ∂L(θ)/∂ηT = (∂L(θ)/∂η1, 

∂L(θ)/∂η2, ∂L(θ)/∂η3).     

 Let L(θ) be a scalar-valued function of a vector θ 
as in Eq. 9. The second derivative of L(θ) with respect 
to vector θ is a matrix of the partial derivatives of L(θ) 
with respect to the elements of the vector θ. This matrix 
is called the Hessian and is denoted by H(θ):    
 

2

T

( )
( )

 ∂
=  

∂ ∂ 

θ
H θ

θ θ

L
 (11) 

 

where the elements of H(θ) in (11) are ∂
2
L(θ)/∂θu∂θv, 

u,v = 1,...,7.   

 The Hessian matrix (11) plays a crucial role in 

solving estimating Eq. 10 with a Newton Raphson 

algorithm. The MLEs of the trivariate Weibull 

parameters cannot be given in closed form since Eq. 10 

is a system of interdependent non linear equation. 

Hence, we have to apply iterative methods, carried 

through to convergence or terminated after reaching 

some given stopping criterion, to calculate or 

approximate the MLE resulting in a so called iterated 

MLE. The MLE θ̂ is the root to the estimating (10), 

which can be solved by newton raphson algoritm. 
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Maximization of (9) directly is consuming time. For 

simplicity in computation equation (10), without loss of 

generality, we have to split (9) into four parts: 
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1
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 The results of analytical calculation for the four 
functions Li (θ) ( i = 1,…, 4) above can be described 
as follows. 

2.1. For the First Part 

 First of all, by recalling that θ is a seven-
dimensional vector of unknown parameters consisting of 
three shape parameters, three scale parameters and one 
power parameter, we see that each of Eq.12a-12d is a 
function of the seven unknown parameters. Moreover, 
notice that throughout this study, the subscript k or 
ℓ indicates the k or ℓ -th failure type and therefore the 
range of k and ℓ are always {1, 2, 3}. Now, let g1(θ) be 
defined as in the left hand side of (10). The first partial 
derivative of log likelihood L1(θ) in (12a) with respect 
to θ, termed score vector g1(θ), is: 
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∂
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∂

θ
g θ

θ

L
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where, g1(θ) in (13) is 7×1 score vector for θ, which 

elements of the score vector may be obtained as 

∂L1(θ)/∂θ = (∂L1(θ)/∂γ
T, ∂L1(θ)/∂η

T, ∂L1(θ)/∂α)
T. By 

applying the chain rule in deriving (12a) with respect to 

θ, we have the following explicit expression:     
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 Let H1 (θ) be the 7×7 Hessian matrix as given in 

(11), the second partial derivative of the log likelihood 

function L1(θ) in (12a) with respect to θ is a matrix of 

the form: 
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where the elements of H1(θ) in (14) are ∂
2
L1(θ) /∂θu∂θv, 

u,v = 1,...,7. 

  The k ℓ
th
 entries of Hessian matrix (14) , for k, ℓ  = 

1, 2, 3 with k ≠ ℓ , can be derived easily as: 

 
2 2

1 1

k k

( ) ( )
0

∂ ∂
= =

∂γ ∂γ ∂γ ∂γ

θ θ

ℓ ℓ

L L
 

 

2 2

1 1

k k

( ) ( )
0

∂ ∂
= =

∂η ∂η ∂η ∂η

θ θ

ℓ ℓ

L L
 

 
2 2

1 1

k k

( ) ( )
0

∂ ∂
= =

∂η ∂γ ∂γ ∂η

θ θ

ℓ ℓ

L L
 

 
 Furthermore, for k = ℓ , the diagonal entries of 

Hessian matrix (14) can be displayed as: 

 
2

1

2 2

( ) n
, for 1,2,3

∂
= − =

∂γ γ

θ

ℓ ℓ

ℓ
L

 

 

2

1

2 2

( ) n
, for 1,2,3

∂ γ
= =

∂η αη

θ
ℓ

ℓ ℓ

ℓ
L

 

 

2 n 3
j1

2 2 2
j 1 1

( ) 3n 2 t
ln

γ

α

= =

 ∂
= +  

∂α α α η 
∑∑

θ
ℓ

ℓ

ℓ ℓ

L
 

 
 In addition, some other off-diagonal entries of 

Hessian matrix (14) can also be obtained, i.e., for k, ℓ  

= 1, 2 and 3: 

 
2 2

1 1
( ) ( ) n∂ ∂

= = −
∂η ∂γ ∂γ ∂η αη

θ θ

ℓ ℓ ℓ ℓ ℓ

L L
 

 

2 2 n
j1 1

2
j 1

( ) ( ) 1 t
ln

=

 ∂ ∂
= = −  

∂α∂γ ∂γ ∂α α η 
∑

θ θ ℓ

ℓ ℓ ℓ

L L
 

 

2 2

1 1

2

( ) ( ) n∂ ∂ γ
= =

∂α∂η ∂η ∂α α η

θ θ
ℓ

ℓ ℓ ℓ

L L
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2.2. For the Second Part 

 In the same way, a vector g2(θ) of the first order 

partial derivative and a Hessian matrix H2(θ) of mixed 

second order partial derivatives of (12b), respectively, 

defined as follows: 

 

2

2

( )
( )

∂
=

∂

θ
g θ

θ

L
 (15) 

 

where, g2(θ) in (15) is 7×1 score vector for θ, which 

elements of the score vector may be obtained as 

∂L2(θ)/∂θ = (∂L2(θ)/∂γ
T, ∂L2(θ)/∂η

T, ∂L2(θ)/∂α)
T. By 

applying the chain rule in deriving (12b) with respect to 

θ, we have:  

 
n

j j2
j

j 1 j

Q( )
, where

Q=

∂ ∂
= =  

∂ ∂ 
∑

Qθ
Q

θ θ

L
 (16) 

 

 Notice here that the vector Qj in (16) is the 

derivative of the scalar-valued function Qj as in (12b) 

with respect to vector θ. Hence Qj = (∂Qj/∂γ
T, ∂Qj/∂η

T, 

∂Qj/∂α)
T, where ∂Qj/∂γ

T = (∂Qj/∂γ1,∂Qj/∂γ2,∂Qj/∂γ3) and 

∂Qj/∂η
T = (∂Qj/∂η1, ∂Qj/∂η2, ∂Qj/∂η3). 

And: 

 
2

2

2 T

( )
( )

 ∂
=  

∂ ∂ 

θ
H θ

θ θ

L
 (17) 

 

 Which elements of symmetric Hessian matrix (17) 

may be formulated as ∂
2
L2(θ)/∂θu∂θv, u,v = 1,...,7. Then 

by applying the derivative quotient rule on Eq. 16 with 

respect to θ, we have: 
 

2 n
j 22

j jT 2 T
j 1 j

( ) 1
Q

Q

⊗

=

 ∂   ∂
= −    

∂ ∂ ∂    
∑

Qθ
Q

θ θ θ

L
 (18) 

 
 Note that for r = 0, 1, 2, where, for a column vector 

a, a
⊗2
 denotes the outer product aa

T
, a

⊗1
 denotes the 

Vector a and a
⊗0
 denotes the scalar 1 (Cai et al., 2007).   

 Hence, by exploiting (16) the elements of vector Qj  

could be found, i.e., for ℓ  = 1, 2, 3  
 

j j j
j j1j 1j j

Q Q Q
A ,  B ,  

∂ ∂ ∂
= −α ψ = α ψ = ϑ

∂γ ∂η ∂α
ℓ ℓ

ℓ ℓ

 (19) 

 

Where: 

( ) ( )

( )( )

( )

( )( )

( ) k

/
j j j

/
j j

2 2 2

j j j j 1j

2 1

1j j j2

3
/

jk jkj k k j

k 1

A t / ln t /

B / t /

3 1 (3 2) 1

3 2 , and

A t / ln

γ α

γ α

α α

α α−

γ α α

=

= η η

= γ η η

 ϑ = α − − α α − + α − + ψ 

ψ = α − α

 = γ − η ∑

ℓ

ℓ

ℓ ℓ ℓ
ℓ ℓ

ℓ ℓ
ℓ ℓ ℓ

K K W

K K

W K

 

 

 Obviously, Qj
⊗2
 in (18) is a 7×7 symmetric matrix 

outer product with Qj
⊗2
 = (∂Qj/∂θ)(∂Qj/∂θ)

T, where 

(∂Qj/∂θ is a vector with elements of the vector are as in 

(19). Moreover, a square matrix (∂Qj/∂θ
T) in (18) is a 

7×7 symmetric matrix with elements of the matrix 

formulated as ∂(∂Qj/∂θ)/∂θ
T, where ∂Qj/∂θ as in (19). 

       By combining the derivative quotient rule and 

repeated use of the chain rule on (12b) with respect to θ, 

we have all elements of the mixed second order partial 

derivatives symmetric matrix (∂
2
Qj/∂θ∂θ

T) or (∂Qj/∂θ
T) 

in (18) and setting the results to diagonal elements, we 

have:  

 

( )( )

2

j
j j

2

2

j
j j

2

2

j 2

j j j2

Q
A , for 1,2,3

Q
B , for 1,2,3

Q
6 3 1

α α

∂
= − φ = 

∂γ 
∂ 

= − ζ = 
∂η 

∂ = ϕ − α − − α
∂α 

ℓ ℓ

ℓ

ℓ ℓ

ℓ

ℓ

ℓ

K K

 (20) 

 

Where: 

 

( ) ( ) 1

j j 2 j j

2 2 2

j j j

2 1 2 2 2 2

j j j j j j

6 1 3 2 3 2 ( )

3( 1)

2 6 2 2

α−

α−

α− α−

 ϕ = α − + α − − α 

 + α − α − 

  + α α − − α α −   

W V K

U W K

V W K U W K

 

 

( )j j j1j 2 j

j j1j 2 j

2

2 j 2 2 j j

ln t / A

( ) / B

(3( ) ( 1) (2 ) )
α α−

φ = ψ η + ψ

ζ = α + γ ψ η + ψ

ψ = α α − − α α

ℓ ℓ ℓ
ℓ

ℓ ℓ
ℓ ℓ

K K

 

 

3
1

jk
j k

k 1

A−

=

= α γ∑U  

 

k

3
/1

jk jk
j k k

k 1

A ln (t / )γ α−

=

= α γ η∑V  
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 The diagonal elements of a square matrix (∂Qj /∂θ
T) 

in (18) which have been formulated more explicitly as in 

Eq. 20 consist of ∂
2
Qj/∂α

2
 itself and the diagonal 

elements of the following matrices: (∂
2
 Qj/∂γ∂γ

T)  and 

(∂
2
Qj/∂η∂η

T).    

 The k ℓ
th
 elements of matrix (∂Qj/∂θ

T) of Qj as given 

in (12b), for k, ℓ  = 1, 2, 3 with k ≠ ℓ , can be written in a 

simple form: 

 
2 2

j j
jk j 2 j

k k

2 2

j j
jk j 2 j

k k

2 2

j j
j jk 2 j

k k

Q Q
A A

Q Q
B B

Q Q
A B

∂ ∂
= = − ψ 

∂γ ∂γ ∂γ ∂γ 
∂ ∂ 

= = − ψ 
∂η ∂η ∂η ∂η 

∂ ∂ = = ψ
∂η ∂γ ∂γ ∂η 

ℓ

ℓ ℓ

ℓ

ℓ ℓ

ℓ

ℓ ℓ

 (21) 

 

 Notice that the elements (21) are off-diagonal 

elements of the following matrices: (∂
2
Qj/∂γ∂γ

T), 

(∂
2
Qj/∂γ∂η

T), (∂
2
Qj/∂η∂γ

T) and (∂
2
Qj/∂η∂η

T). Moreover, 

Eq.(21) is not including the elements of the following 

vectors:  ∂
2
Qj/∂θ∂α and ∂

2
Qj/∂α ∂θ. 

 Using the same argument as given early, the 

remaining elements of matrix (∂Qj/∂θ
T) for ℓ = 1, 2, 3 

can be express as follow: 

 
2 2

j j
j j

2 2

j j
j j

2 2

j j
j j

Q Q
B

Q Q
A

Q Q
B

∂ ∂
= = Φ 

∂η ∂γ ∂γ ∂η 
∂ ∂ 

= = Ψ 
∂α∂γ ∂γ ∂α 

∂ ∂ = = − Ψ
∂α∂η ∂η ∂α 

ℓ ℓ

ℓ ℓ ℓ ℓ

ℓ ℓ

ℓ ℓ

ℓ ℓ

ℓ ℓ

 (22) 

 
Where: 
 

( )

j j
1j

/
j j1j j 2 j j

1 2 2 1

j j j

/

ln (t / ) /

3 (3 2) 2 (3 ln )

γ α α

α− α α−

Φ = αψ γ + φ

Ψ = ψ η + ψ

− α α − + α +

ℓ

ℓ ℓ
ℓ

ℓ ℓ
ℓ

K U

K K K

 

 

 Obviously that the elements (22) consisting the 

diagonal elements of matrix (∂
2
Qj/∂γ∂η

T) and 

(∂
2
Qj/∂η∂γ

T). In addition, those elements are also 

covering elements of the following vectors: ∂
2
Qj/∂γ∂α, 

∂
2
Qj/∂η∂α, ∂

2
Qj/∂α∂γ and ∂

2
Qj/∂α∂η. 

 Hence, by plugging the elements of vector Qj in (19) 

into the corresponding elements of score vector 

∂L2(θ)/∂θ in (16), we can easily verify that: 

n
2

j 1j

j 1 j

( ) 1
A , for 1,2,3

Q
=

∂ −
= α ψ =

∂γ ∑
θ

ℓ

ℓ

ℓ
L

 

 

n
2

j 1j

j 1 j

( ) 1
B , for 1,2,3

Q
=

∂
= α ψ =

∂η
∑

θ
ℓ

ℓ

ℓ
L

 

 

n
2

j

j 1 j

( ) 1

Q
=

∂
= ϑ

∂α
∑

θL
 

 

 Consequently, upon substituting (19), (20), (21) and 

(22) into (18) and simplifying the resulting expression, 

we obtain the entries of Hessian matrix H2(θ) as defined 

in Eq.(17), namely: 

  

• For ℓ = 1, 2, 3, we have: 

 
2 n

j 2 22
j jj 1j2 2

j 1 j

( ) A
Q A

Q
=

∂
 = − φ + α ψ ∂γ ∑

θ ℓ

ℓ ℓ

ℓ

L
 

 

2 n
j 2 22

jj j 1j2 2
j 1 j

( ) B
Q B

Q
=

∂
 = − ζ + α ψ ∂η ∑

θ ℓ

ℓ
ℓ

ℓ

L
 

 

( )( )
22 n n
j22

j j j2 2
j 1 j 1j j

( ) 1
6 3 1 6

Q Q

α α

= =

ϑ∂
= ϕ − α − + α −

∂α
∑ ∑

θL
K K  

 

2 2 n
j 2 22 2

j jj 1j2
j 1 j

( ) ( ) B
Q A

Q
=

∂ ∂
 = = Φ + α ψ ∂η ∂γ ∂γ ∂η ∑

θ θ ℓ

ℓ ℓ

ℓ ℓ ℓ ℓ

L L
 

 

2 2 n
j2 2

j j j 1j2
j 1 j

( ) ( ) A
Q

Q
=

∂ ∂
 = = Ψ + αϑ ψ ∂α∂γ ∂γ ∂α ∑

θ θ ℓ

ℓ

ℓ ℓ

L L
 

 

2 2 n
j2 2

j j j 1j2
j 1 j

( ) ( ) B
Q

Q
=

∂ ∂
 = = − Ψ + αϑ ψ ∂α∂η ∂η ∂α ∑

θ θ ℓ

ℓ

ℓ ℓ

L L
 

 

• For k, ℓ  = 1, 2, 3 with k ≠ ℓ , we have: 
 

2 2 n
jk j 2 22 2

2 j j 1j2
j 1k k j

( ) ( ) A A
Q

Q
=

∂ ∂
 = = − ψ + α ψ ∂γ ∂γ ∂γ ∂γ ∑

θ θ ℓ

ℓ ℓ

L L
 

 
2 2 n

jk j 2 22 2
2 j j 1j2

j 1k k j

( ) ( ) B B
Q

Q
=

∂ ∂
 = = − ψ + α ψ ∂η ∂η ∂η ∂η ∑

θ θ ℓ

ℓ ℓ

L L
 

 

2 2 n
j jk 2 22 2

2 j j 1j2
j 1k k j

( ) ( ) A B
Q

Q
=

∂ ∂
 = = ψ + α ψ ∂η ∂γ ∂η ∂γ ∑

θ θ ℓ

ℓ ℓ

L L
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2.3. For the Third Part 

 Considering Eq. 12c that the first order partial 

derivatives of L3(θ) with respect to θ can be expressed as: 
 

 3

3

( )
( )

∂
=

∂

θ
g θ

θ

L
  (23)  

 

 Note that g3 (θ)  in (23) is the 7×1 score vector for θ, 

which elements of the score vector may be obtained as 

∂L3(θ)/∂θ = (∂L3(θ)/∂γ
T, ∂L3(θ)/∂η

T, ∂L3(θ)/∂α)
T
. 

Therefore by applying the chain rule in deriving (12c) 

with respect to θ, the elements of the score vector g3(θ) 

above can be done easily: 
  

n
3

j

j 1 j

( ) ( 3) 1
A , for 1,2,3

=

∂ α −
= =

∂γ α
∑

θ
ℓ

ℓ

ℓ
L

K
 

 

n
3

j

j 1 j

( ) ( 3) 1
B , for 1,2,3

=

∂ α −
= − =

∂η α
∑

θ
ℓ

ℓ

ℓ
L

K
 

 

n
*3
j j

j 1 j

( ) 1 1
3

=

∂
 = − α − ∂α α

∑
θL

V U
K

 

 

where, Vj
*  = Uj −Kj ln (Kj). Using similar arguments to 

(14) and (17), symmetric Hesian matrix H3(θ) of second 

order partial derivatives of L3(θ) can be represented as: 
 

2

3
3 T

( )
( )

 ∂
=  

∂ ∂ 

θ
H θ

θ θ

L
 (24) 

 
 The diagonal entries of Hessian matrix (24) are 

found by deriving the right-hand side of Eq. 24 and 

take the form: 
 

2 n
*3

j j2 2 2
j 1 j

( ) ( 3) 1
A A , for 1,2,3

=

∂ α −
= =

∂γ α ∑
θ

ℓ ℓ

ℓ

ℓ
L

K
 

 

2 n
*3

j j2 2 2
j 1 j

( ) ( 3) 1
B B , for 1,2,3

=

∂ α −
= =

∂η α
∑

θ

ℓ ℓ

ℓ

ℓ
L

K
 

 

{ }
2

*3
j j j2 2 2

j

( ) 1 1
( 3) 6

∂
= − α − +

∂α α

θL
U K U

K
 

 

Where: 

 
* *

jj j j j j j

* 2

j j j j

A ln (t / ) A ,B (( ) / ) B

and

= η − = α + γ η −

= −

ℓ
ℓ ℓ ℓ ℓ ℓ ℓ ℓ

K K

U U K V
. 

Similarly, the k ℓ
th
 entries of Hessian matrix (24), for k, 

ℓ  = 1, 2, 3 with k ≠ ℓ , can be derived to be: 
 

2 n
3

jk j
2 2

j 1k j

( ) ( 3) 1
A A

=

∂ α −
= −

∂γ ∂γ α
∑

θ
ℓ

ℓ
K

L
 

 

2 n
3

jk j
2 2

j 1k j

( ) ( 3) 1
B B

=

∂ α −
= −

∂η ∂η α
∑

θ
ℓ

ℓ

L

K
 

 

2 2 n
3 3

jk j
2 2

j 1k k j

( ) ( ) ( 3) 1
B A

=

∂ ∂ α −
= =

∂η ∂γ ∂γ ∂η α
∑

θ θ
ℓ

ℓ ℓ
K

L L
 

 
 After some straightforward calculation, the other 

entries of Hessian matrix (24) are accomplished, i.e., 

for ℓ  = 1, 2, 3 satisfy: 
 

2 2 n
*3 3

j j j2 2
j 1 j

( ) ( ) ( 3) 1
B A

=

 ∂ ∂ α − α
= = − + ∂η ∂γ ∂γ ∂η α γ 

∑
θ θ

ℓ
ℓ

ℓ ℓ ℓ ℓ ℓ

L L
K

K
 

 

2 2 n
3 3

j j
2 2

j 1 j

( ) ( ) 1 1
A

=

∂ ∂
= = ξ

∂α∂γ ∂γ ∂α α
∑

θ θ
ℓ ℓ

ℓ ℓ

L L

K
 

 
2 2 n

3 3
j j

2 2
j 1 j

( ) ( ) 1 1
B

=

∂ ∂
= = − ξ

∂α∂η ∂η ∂α α
∑

θ θ
ℓ ℓ

ℓ ℓ

L L

K
 

 

Where: 
 

/
jj j j j( 3)  ln (t / ) 3

γ α ξ = α − − η + 
ℓ

ℓ
ℓ ℓ

U K K  

 

2.4. For the Fourth Part 

 Let g4(θ) be defined in accordance with (13), (15) 

and (23). Then, for the L4(θ) as given in (12d), we get 

the score vector, which is written as: 
 

4

4

( )
( )

∂
=

∂

θ
g θ

θ

L
 (25) 

 
 By employing the right-hand side of (25), the elements 

of score vector g4(θ) above can be easily calculated: 
 

n
14

j j

j 1

( )
A , for 1,2,3α−

=

∂
= − =

∂γ
∑

θ
ℓ

ℓ

ℓ
L

K  

 

n
14

j j

j 1

( )
B , for 1,2,3α−

=

∂
= =

∂η
∑

θ
ℓ

ℓ

ℓ
L

K  

 
n

14
j j j j

j 1

( )
 ln ( ) α−

=

∂
 =  ∂α ∑

θL
U - K K K  
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 As before, we let H4 (θ) be defined similar to (14), 

(17) and (24). Then, for the L4 (θ) as already mentioned 

in (12d), we have: 

 
2

4

4 T

( )
( )

 ∂
=  

∂ ∂ 

θ
H θ

θ θ

L
 (26) 

 

 By differentiating L4(θ) in Eq. 12d two times with 

respect to the same elements of vector θ, the diagonal 

entries of Hessian matrix (26) can be found immediately 

and we have the following results: 

 
2 n

* 24
j j j j2

j 1

( ) 1
A A A , for 1,2,3α−

=

∂
 = − α + = ∂γ α∑

θ
ℓ

ℓ ℓ

ℓ

ℓ
L

K  

 

2 n
* 24

j j j j2
j 1

( ) 1
B B B , for 1,2,3α−

=

∂
 = − α + = ∂η α∑

θ

ℓ ℓ ℓ

ℓ

ℓ
L

K  

 

2 n
*2 * 24
j j j2

j 1

( ) 1
.α−

=

∂
 = − α − ∂α α

∑
θL

V U K  

 
 In a similar manner to those above, we can treat the 

off-diagonal entries of Hessian matrix (26), for k, ℓ  = 1, 

2, 3 with k ≠ ℓ , to that off-diagonal entries and write 

them in the form of: 
 

2 n
24

jk j j

j 1k

( ) ( 1)
A A  α−

=

∂ α −
= −

∂γ ∂γ α ∑
θ

ℓ

ℓ

L
K  

 
2 n

24
jk j j

j 1k

( ) ( 1)
B B  α−

=

∂ α −
= −

∂η ∂η α ∑
θ

ℓ

ℓ

L
K  

 

2 2 n
24 4

jk j j

j 1k k

( ) ( ) ( 1)
B A  α−

=

∂ ∂ α −
= =

∂η ∂γ ∂γ ∂η α
∑

θ θ
ℓ

ℓ ℓ

L L
K  

 
  Analogously, for k = ℓ = 1, 2, 3, it follows that with 

a simple algebraic manipulation yields the rest entries of 

the Hessian matrix (26): 
 

2 2 n
* 24 4

j j j j j

j 1

( ) ( ) 1
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ℓ
ℓ ℓ
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L L
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2 2 n
24 4
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j 1

( ) ( ) 1
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∂ ∂
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∂α∂η ∂η ∂α α
∑

θ θ
ℓ ℓ

ℓ ℓ
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where, ( )( )/
j j

j j j
( 1) ln t /

γ α α
ϒ = α − + η

ℓ

ℓ ℓ
ℓ

U K / K . Finally, 

all calculations are performed by means of analytical 

expressions.  

 From (13), (15), (23) and (25) we get the score 

vector of log likelihood function (9) as below Eq. 27: 
 

4
i

i 1

( ) ( )
( )

=

∂ ∂
= =

∂ ∂
∑

θ θ
g θ

θ θ

L L
 (27) 

 
 Similarly, from (14), (17), (24) and (26) we have the 

Hessian matrix of the log likelihood function (9), namely 

Eq. 28: 
 

2 24

i

T T

i 1

( ) ( )
( )

=

   ∂ ∂
= =   

∂ ∂ ∂ ∂   
∑

θ θ
H θ

θ θ θ θ

L L
 (28) 

  
 Since the score vector and the Hessian matrx of the 

log likelihood are now known, the Newton Raphson or 

other gradient-based methods can be applied to calculate 

θ̂  that optimizes L(θ) in Eq. 9. 

3. RESULTS 

 Let θ̂  be the maximizer of (9).  When we insert the 

MLE θ̂  into the survival function jŜ ( )
T
t  = exp( ˆ

j
ˆ α

-K )  

with 
3 ˆ ˆ/

jj 1
ˆ(t / )

γ α

=
= η∑ ℓ

ℓ
ℓℓ

⌢

K  as in (3), then we will get the 

MLE of ST(tj) and an estimator of Kj of the j-th 

individual, because the MLEs are functional invariant: 

i.e., when θ̂   is the MLE of  θ, h( θ̂ )will also be the MLE 

of h(θ) if h(θ) is a finite function and need not be one to 

one. When we substitute θ̂  to the Hessian matrix (11) we 

will get the estimated covariance matrix of the MLE θ̂ , 

that is given by ˆˆ ( )V θ  = ˆˆCov( )θ = 
1

ˆ( ) .
−

 − H θ  

 Putting the estimators θ̂  and j

⌢

K  into (6), we obtain 

the scalar quantity trivariate Weibull hazard rate 

estimator, that is: 
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3
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× − α

∏
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T
t

ℓ

ℓ
ℓ

ℓ ℓ ℓ

⌢

C K

 

 
 This hazard rate estimator is useful for 

characterizing trivariate exponential distributions as the 

special cases of trivariate Weibull distributions. 
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 In the vector-valued trivariate hazard rete function, 

the trivariate Weibull hazard  rate estimator (7) can be 

written as: 

 

( )
T

j j j j1 2 3h ( ) h ( ) ,h ( ) ,h ( )=
T T T T
t t t t

⌢ ⌢ ⌢ ⌢

 

 

where, j jh ( )  lnS ( ) / t= − ∂ ∂
T T
t t ℓ

ℓ
 for ℓ = 1,2,3 or it is 

given explicitly by: 
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γ α −
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 γ

=  
η η 

T
t

ℓ

ℓ
ℓ

ℓ

ℓ ℓ

⌢
⌢

K  

 

 This hazard rate estimator plays an important role in 

parametric baseline hazards function with the trivariate 

Weibull baseline distribution as the baseline hazard, in 

particular to parametrize the baseline hazard function of 

the trivariate Cox regression model.  

4. DISCUSSION 

 The Weibull distributed failure times are often used 

in practice because they seem to be able to describe the 

actual evolution of the hazard function in an appropriate 

way in many circumstances. 

5. CONCLUSION 

 In this study we considered a continuous trivariate 

Weibull distribution which has seven parameters. It is 

observed that the maximum likelihood estimator of 

the unknown parameters can be obtained by solving 

the interdependent non linear system of the first order 

partial derivatives of log likelihood after setting to 

zero. Since the optimization algorithms in general are 

iterative procedures which start with an initial 

estimate of the solution and converge to a single 

solution, one or more local maxima may be missed. 

This problem can be overcome by performing the 

optimization several times using a different initial 

estimate for the solution in each case until the desired 

accuracy has been reached. Once unknown parameters 

estimated, trivariate hazard rate of trivariate Weibull 

distributions are also estimated. 
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