
American Journal of Biostatistics 4 (1): 11-20, 2014 
ISSN: 1948-9889 
©2014 Science Publication 
doi:10.3844/ajbssp.2014.11.20 Published Online 4(1) 2014 (http://www.thescipub.com/ajbs.toc) 

Corresponding Author: Iori Sakakibara, Department of Business Solution, Takumi Information Technology, Tokyo, Japan 
 

11 Science Publications

 
AJBS 

COMPARISON OF FIVE EXACT CONFIDENCE INTERVALS 
FOR THE BINOMIAL PROPORTION 

1Iori Sakakibara, 2Emiko Haramo, 
2Akimasa Muto, 1Ikuya Miyajima and 3Yohei Kawasaki 

 
1Department of Business Solution, Takumi Information Technology, Tokyo, Japan 

2Department of System Development, Takumi Information Technology, Tokyo, Japan 
3Department of Mathematics, Tokyo University of Science, Tokyo, Japan 

 
Received 2014-06-24; Revised 2014-06-28; Accepted 2014-07-18 

ABSTRACT 

The Wald interval is easy to calculate; it is often used as the confidence interval for binomial proportions. 
However, when using this confidence interval, the actual coverage probability often falls under the 
nominal coverage probability in small cases. On the other hand, several confidence intervals where the 
actual cover age probability does not fall under the nominal coverage probability are suggested. In this 
study, we intro-duce five exact confidence intervals where the actual coverage probability does not fall 
under the nominal coverage probability and we calculate the expected length of the confidence intervals 
and compare/verify the accuracy of the coverage probabilities. Further, we examined the characteristics 
of these five exact confidence intervals at length. Coverage probability of Sterne was significantly closer 
to 0.95 than the other confidence intervals and stable. Its expected Length are not scattered in the width 
compared with the other methods. As a result, we found that the quality of the confidence interval based 
on the Sterne test is its availability for small samples. 
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1. INTRODUCTION 

Studies on confidence intervals for binomial 
proportions have been performed since a long time 
ago and continue to be performed. Because the Wald 
interval is easy to calculate, it is often used as the 
confidence interval for binomial proportions. In 
addition, new confidence intervals have been 
introduced by (Agresti and Coull, 1998; Newcombe, 
1998). However, when using these new confidence 
intervals, the actual coverage probability often falls 
under the nominal coverage probability. 

On the other hand, several confidence intervals 
where the actual coverage probability does not fall 
under the nominal coverage probability are suggested. 
Clopper and Pearson (1934) suggest a construction 
method for a confidence interval based on an exact 

test using binominal proportions. The confidence 
interval is a method for the actual coverage 
probability not to fall under the nominal coverage 
probability at all times, but it has been indicated that 
this method is extremely conservative (Agresti and 
Coull, 1998). 

In addition, several other exact methods have been 
suggested. Reiczigel (2003) suggested a method for 
using the Sterne test to resolve the problems of the 
method of Clopper and Pearson (1934). This method 
is easy to understand and program. Fleiss et al. (2003) 
constructed a confidence interval based on an exact test 
that uses the likelihood ratio test statistic on the 
binomial distribution test. Hirji (2006) constructed a 
confidence interval with a method based on an exact 
test using score test statistics. However, no papers have 
compared these exact confidence intervals in detail. 
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This study introduces five exact confidence 
intervals where the actual coverage probability does 
not fall under the nominal coverage probability; 
moreover, we calculate the expected length of the 
confidence interval and compare/verify the accuracy 
of the coverage probabilities. 

This study is organized as follows. In section 2, we 
present the construction method for the five exact 
confidence intervals. In section 3, we detect the behavior 
of the confidence intervals by conducting a simulation. A 
conclusion is provided in section 4. 

2. NOTATION AND METHODS 

In this section, we introduce the methodology for 
the five exact confidence intervals that we discuss in 
this study. 

Let X be independent random variables. Suppose that 
X follows a binominal distribution with parameters n, π.  

2.1. Clopper-Pearson Confidence Interval  

The Clopper-Pearson confidence interval is an 
early and considerably common method for 
calculating binomial confidence intervals. The 
Clopper-Pearson confidence interval is commonly 
called an exact confidence interval because it is based 
on the cumulative probabilities of the binomial 
distribution; however, the intervals are not exact in the 
manner one might assume: The discontinuous nature 
of the binomial distribution precludes any interval 
with exact coverage for all population proportions. 
The Clopper-Pearson confidence interval can be 
written as Equation 1: 
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where, Fa,b(α) is the upper 100(α/2)% quartile from an 
F-distribution with a and b degrees of freedom.  

2.2. Exact Likelihood Ratio Confidence Interval  

The exact Likelihood Ratio (LR) confidence interval 
is based on inverting the acceptance regions for the exact 
binomial tests of H0: π = π0. Following Fleiss et al. 
(2003) and given α and true π = π0, we define the 
Generalized Log LR (GLLR) statistic as Equation 2:  
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For π0 = 0, GLLR is only defined for x = 0; for π0 = 

1, GLLR is only defined for x = n. We define the 
attained LR p-value as Equation 3: 
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where, the sum is taken over the set t of xi values for 
which GLLR (π0|xi) ≥GLLR(π0|x), excluding those values 
where GLLR is not defined. Then, the exact LR 
confidence set is the set of all π0 such that the p-value ≥α. 

2.3. Exact Score Confidence Interval  

The exact Score Confidence (SC) interval is based on 
inverting the acceptance regions for the exact score tests 
of H0: π = π0. Following Hirji (2006) and given α and 
true π = π0, we define the score statistic as Equation 4:  
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For π0 = 0, SC is only defined for x = 0 and SC = 0. 

For π0 = 1, SC is only defined for x = n and SC = 0. We 
define the attained score p-value as Equation 5: 
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where, the sum is taken over the set t of xi values for 
which SC(π0|xi)≥SC(π0|x), excluding those values where 
SC is not defined. Then, the exact score confidence set is 
the set of all π0 such that the p-value ≥α. 

2.4. Sterne Confidence Interval  

The interval proposed by Reiczigel (2003) is defined 
by inverting the exact binomial test with acceptance 
regions, including the most probable values of the 
binomial variable and then taking the most probable, 
followed by the next most probable, until their total 
probability reaches the required level, for example, 95%. 

Assume that we want to invert a test of H0: π1 = π0 
for the binomial parameter π to obtain a 95% 
confidence interval for π based on n = 5 observations. 
Denote X1 to be the observed number of successes. The 
basic idea is that a 95% confidence set should consist 
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of all such values π0 of the parameter for which H0: π1 
= π0 is not rejected by the test at the 95% level. For 
simplicity, assume that a one-digit precision is 
sufficient for the interval endpoints, because in such a 
case, the procedure can be demonstrated using a small 
table of binomial probabilities (Table 1). 

For π = 0.4 and acceptance region X1 to sum the 
probability of each exceeds 0.95 the first time up to 0-
4. To determine the acceptance region for each of π, we 
apply the value of π ranging from 0.0 to 1.0. Thus, we 
observe X1 by the determined acceptance region. In the 
case of X1 = 3, the region 0.2 to 0.9 has become the 
acceptance region (see the underlined portion in Table 
1); the minimum π is the lower confidence bound and 
the maximum π is the upper confidence bound. 

2.5. Blaker Confidence Interval 

Blaker (2000) has proposed a new exact interval that 
is an excellent alternative to the Sterne interval and that 
has many commonalities with the Sterne interval. 
Because the Blaker confidence interval is such an 
excellent alternative, please refer to Blaker (2000) for the 
calculation method of this confidence interval. 

3. RESULTS AND DISCUSSION 

In this study, the coverage probability and the 
expected length were used as the basis for our evaluation 
and 95% of each confidence interval was compared.  

The coverage probabilities were computed using the 
proportion with which the confidence interval includes 
the binominal proportion. A simulation of 100,000 
rounds of under defined values of π1 was conducted. 
Similarly, the expected lengths were computed using the 
mean of the difference in the confidence intervals. 

3.1. Comparison of Coverage Probability 

Figure 1 and 2 show the coverage probabilities of 
the five exact confidence intervals for n = 5 (Fig. 1), n 

= 10 (Fig. 2), a significance level of 0.05 (Fig. 1 and 
2) and 0.001 ≤π≤ 0.999 (Fig. 1 and 2). Overall, all 
methods described a high coverage probability for π = 
0 and 1; in addition, the values were slightly higher 
near π = 0.5. Figure 1 and 2 indicate that Clopper-
Pearson is clearly a conservative method compared 
with the other methods. The results of the exact GLLR 
and the exact Score showed higher values depending 
on the value of π. In addition, the coverage probability 
of Sterne and Blaker were significantly closer to 0.95 
than the other confidence intervals. 

Figure 3 and 4 show the coverage probability of the 
five exact confidence intervals for n = 5 to 95 (Fig. 3 
and 4), a significance level of 0.05 (Fig. 3 and 4) and π 
= 0.25 (Fig. 3) and 0.50 (Fig. 4). Consequently, Fig. 3 
and 4 describe the coverage probability that appears 
close to 95% as n increases. The results of these figures 
indicate that the coverage probability varies for Clopper-
Pearson, the exact Score and Blaker by the value of n. 
Moreover, the Blaker interval was considerably close to 
95%. For exact GLLR and Sterne intervals, the value 
variation is small and it is closer to 95% as n increases. 

3.2. Comparison of Expected Length 

Figure 5 shows the expected length of the five 
exact confidence intervals for n = 5 and 10, a 
significance level of 0.05 and 0.001 ≤π≤0.500. 
Clopper-Pearson is clearly conservative compared 
with the other methods. For π = 0, the expected length 
values are smaller for GLLR; however, for π = 0.5, the 
values are larger. For the Score method, the values are 
smaller compared with the other methods when π = 
0.5; however, for π = 0, the values are larger and 
varied. In addition, Sterne and Blaker are not scattered 
in the width compared with the other methods and 
their values are similar.

 
Table 1. Binomial probabilities 

 π  
 ------------------------------------------------------------------------------------------------------------------------------------------------------ 
X1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

5 0.000 0.000 0.000 0.002 0.010 0.031 0.078 0.168 0.328 0.590 1.000 
4 0.000 0.000 0.006 0.028 0.077 0.156 0.259 0.360 0.410 0.328 0.000 
3 0.000 0.008 0.051 0.132 0.230 0.313 0.346 0.309 0.205 0.073 0.000 
2 0.000 0.073 0.205 0.309 0.346 0.313 0.230 0.132 0.051 0.008 0.000 
1 0.000 0.328 0.410 0.360 0.259 0.156 0.077 0.028 0.006 0.000 0.000 
0 1.000 0.590 0.328 0.168 0.078 0.031 0.010 0.002 0.000 0.000 0.000 
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Fig. 1. Coverage probability (n = 5) 
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Fig. 2. Coverage probability (n = 10) 
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Fig. 3. Coverage probability (π = 0.25) 
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Fig. 4. Coverage probability (π = 0.50) 
 

 
 

 
 

Fig. 5. Expected length (n = 5, 10) 
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4. CONCLUSION 

We examined five exact confidence intervals that do 
not fall under the nominal coverage probability in order 
to determine the most useful method for small sample 
sizes. In this study, we calculated the expected length of 
the confidence intervals and compared/verified the 
accuracy of the coverage probabilities.  

The results indicated that for all five exact confidence 
intervals, when π = 0 and close to 1, the values of the 
coverage probability are higher and the expected lengths 
are larger. For the Clopper-Pearson method, we found 
that the expected length and coverage probability of the 
Clopper-Pearson method is even more conservative than 
the other methods. For the exact GLLR method, the 
evaluated values were near the edge of the expected 
length; however, for π = 0.5, the values were 
conservative, similar to the Clopper-Pearson method. 
However, the values were stable and varied less with 
respect to n. For the exact Score method, the values in 
the coverage probability for n = 5 and 10 tended to 
appear high depending on π and the variation was 
significantly related to variations of n. Moreover, the 
calculated expected length appeared scattered; for 
example, the values near the end were larger and the 
values were smaller for π = 0.5. For the Sterne and 
Blaker methods, the values were comparatively close to 
95% for the coverage probabilities of n = 5 and 10 and 
for the expected lengths; however, the Blaker method 
showed scattering values of the coverage probabilities 
related to the variance of n, whereas the Sterne method 
was stable. In summary, we considered the Sterne 
confidence interval method to be more useful than the 
other methods in small sample sizes.  

5. ACKNOWLEDGEMENT 

The researchers are grateful to the editor, anonymous 
referees and Matthew C. Somerville and Rebekkah S. 
Brown whose suggestions improved this study.  

 

 

 

 

 

6. REFERENCES 

Agresti, A and B.A. Coull, 1998. Approximate is 
better than “exact” for interval estimation of 
binomial pro-portions. Am. Stat., 52: 119-126. 
DOI: 10.2307/2685469  

Blaker, H., 2000. Confidence curves and improved 
exact confidence intervals for discrete 
distributions. Canadian J. Stat., 28: 783-798. DOI: 
10.2307/3315916  

Clopper, C.J. and E.S. Pearson, 1934. The use of 
confidence or fiducial limits illustrated in the case 
of the binomial. Biometrika, 26: 404-413. DOI: 
10.1093/biomet/26.4.404  

Fleiss, J.L., B. Levin and M.C. Paik, 2003. Statistical 
Methods for Rates and Proportions. 3rd Edn. John 
Wiley and Sons, New York, ISBN-10: 0-471-
52629- 0, pp: 41.  

Hirji, K., 2006. Exact Analysis of Discrete Data. 1st 
Edn., CRC Press, ISBN-10: 142003619X, pp: 
552. 

Newcombe, R.G., 1998. Two-sided confidence 
intervals for the single proportion: Comparison of 
seven methods. Stat. Med., 17: 857-872. DOI: 
10.1002/sim.2164 

Reiczigel, J., 2003. Confidence intervals for the 
binomial parameter: Some new considerations. 
Stat. Med., 22: 611-621. DOI: 10.1002/sim.1320 


