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Abstract: A multiple testing procedure can be a single-step procedure 

such as Bonferroni’s method or a stepwise procedure such as Hochberg’s 

stepup method and Hommel’s method. It can be an α-exhaustive or α-

conservative approach. We develop a single α-exhaustive procedure that 

can improve power 2-5% over Hochberg’s and Hommel’s methods in 

common situations when the test statistics are mutually independent. The 

method can also be generalized to dependent test statistics. The idea 

behind our method is to construct the rejection rules using the product of 

marginal p-values and by controlling the upper bounds of the kth order 

terms so that α is controlled for any configuration of k null hypotheses. 

Such upper bounds or critical values are determined progressively from k = 

1 towards k = K, the number of null hypotheses in the problem. 
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Introduction 

Multiple testing problems are common in 

pharmaceutical statistics and life-sciences in general. 

The main goal of Multiple Testing Procedures (MTP) is 

to (strongly) control the family wise type-I error rate. A 

MTP can be a single-step data-independent procedure 

such as Bonferroni’s method or a data-dependent 

stepwise procedure such as Hochberg’s stepup method 

and Hommel’s stepup method. It can be anα-exhaustive 

or α-conservative approach. Conceptually, stepwise 

procedures are usually more powerful than single-step 

procedures and α-exhaustive procedures are usually more 

powerful than α-conservative approach. However, 

consider these two aspects together, comparisons of 

testing procedures are not that simple, often depending on 

the configuration of the alternative "hypotheses" or more 

precisely, the truths. For example, the power of a fallback 

procedure is dependent on the weight and "effective sizes" 

in the alternative hypotheses. A fixed sequence testing 

procedure is a special case of the fallback procedure and 

its power is heavily dependent on the order of the test 

sequence of the hypothesis. 

We develop a simple single α-exhaustive procedure 

that can improve power 2-5% over Hochberg’s and 

Hommel’s methods in common situations when the test 

statistics are independent. The method can also be 

generalized to dependent test statistics. The idea behind 

our method is to construct the rejection rules using the 

product of marginal p-values and by controlling the 

upper bounds of the kth order terms so that α is 

exhausted for any configuration of k null hypotheses. 

Such upper bounds or critical values are determined 

progressively from k = 1 towards k = K, the number of 

null hypotheses in the problem. Unlike common 

stepwise test procedures, in which every step in the 

decision rule will only involve one critical value for 

decision-making, the proposed α-exhaustive approach 

is a single-step method with multiple critical values 

involved in the decision rules. 

The paper is organized as follows. In section 2, we 

will review several important stepwise test procedures 

that will be used in our power comparisons. In section 

3, we elaborate our progressive α-exhaustive procedure 

for two-hypothesis testing, outline the idea, derive the 

formulations for critical values and provide examples 

of using this procedure in comparison with other 

methods. We also provide the power formulation for 

the α-exhaustive procedure for two-hypothesis testing. 

In section 4, we provide power comparisons among 

several different methods using simulation. In section 

5, we extend the α-exhaustive procedure to three-

hypothesis testing and compare with Hommel’s 

procedure in power under broad conditions. In section 

6, we further describe the α-exhaustive procedure for 

general K-hypothesis testing and simulation algorithms 

for determining the critical values. In the last section, 

discussion and summary are provided. We place 
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mathematical derivation in the Appendix. To make the 

procedure ready for practical use, we have included the 

SAS code in the Appendix. 

Multiple Testing Procedures 

Stepwise procedures are different from single-step 

procedures, in the sense that a stepwise procedure must 

follow a specific order to test each hypothesis. In 

general, stepwise procedures are more powerful than 

single-step procedures. There are three categories of 

stepwise procedures that are dependent on how the 

stepwise tests proceed: Stepup, stepdown and fallback 

procedure. The commonly used stepwise procedures 

include the Bonferroni-Holm stepdown method (Holm, 

1979), the Holm stepdown method (Dmitrienko et al., 

2009, p.65), Hommel’s stepup procedure (Hommel, 

1988), Hochberg’s stepup method (Hochberg, 1988), the 

fallback procedure (Wiens, 2003) and the sequential test 

with fixed sequences (Westfall et al., 1999). 

Stepdown Procedure 

A stepdown procedure starts with the most significant 

p-value and ends with the least significant p-value. In the 

procedure, the p-values are arranged in an ascending 

order, i.e., from the smallest to the largest: 

 

( ) ( ) ( )1 2
...

K
p p p≤ ≤ ≤  (1) 

 

with the corresponding hypotheses: 

 

( ) ( ) ( )1 2
, ,...,

K
H H H  (2) 

 

The test proceeds from H(1) to H(K). If p(k)>Ckα (k = 

1,..., K), retain all H(i) (i≥k); otherwise, reject H(k) and 

continue to test H(k+1). The constants Ck are different for 

different procedures. 

The adjusted p-values are: 

 

( )

( )( )
1 1 1

1
max , , 2,...,

k k k k

p C p

p p C p k n
−

 =



= =

ɶ

ɶ ɶ

 (3) 

 

Therefore an alternative test procedure is to compare the 

adjusted p-values against the unadjusted α. After adjusting 

p-values, one can test the hypotheses in any order. 

Fallback Procedure (Wiens, 2003) 

The Holm procedure is based on a data-driven 

order of testing, while the fixed-sequence procedure is 

based on a prefixed order of testing. A compromise 

between them is the so-called fallback procedure. The 

fallback procedure was introduced by Wiens (2003) 

and was further studied by Dmitrienko et al. (2006; 

Hommel and Bretz, 2008). The test procedure can be 

outlined as follows. 

In the fallback procedure, we allocate the overall 

error rate α among the hypotheses according to their 

weights wk, where wk ≥ 0 and 1
kk

w =∑ . For fixed 

sequence test, w1 = 1 and w2 = ... = wK = 0: 

 

• Step 1: Test H1 at α1 = αw1. If p1≤α1, reject this 

hypothesis; otherwise retain it. Go to the next step 

• Step i = 2,..., K−1: Test Hk at αk = αk−1 + αwk if Hk−1 

is rejected and at αk = αwk if Hk−1 is retained. If pk≤αk, 

reject Hk; otherwise retainit. Go to the next step 

• Step K: Test HK at αK = αK−1 + αwK if HK−1 is 

rejected and at αK = αwK if HK−1 is retained. If 

pK≤αK, reject HK; otherwise retainit 

 

The formula for the adjusted p-value is complicated 

to be written explicitly. 

Stepup Procedure 

A stepup procedure starts with the least significant p-

value and ends with the most significant p-value. The 

procedure proceeds from H(K) to H(1). If, P(k)≤Ckα (k = 1, 

..., K), reject all H(i) (i≤k); otherwise, retain H(k) and 

continue to test H(k−1). 

The adjusted p-values are: 

 

( )

( )( )1

,

min , , 1,...,1

K K K

k k k k

p C p

p p C p k K
+

 =



= = −

ɶ

ɶ ɶ

 (4) 

 

Progressive α-Exhaustive Testing Procedure 

An α-exhaustive procedure is a closed testing 

procedure based on intersection hypothesis tests the size 

of which is exactly α. In other words, Pr (Reject HI) = α 

for any intersection hypothesis HI, I⊆{1, ...,K}. Put in a 

simple way, in an α-exhaustive procedure, the supremum 

of the probability of false rejection in any null hypothesis 

configuration is equal to α. 

Many stepwise test procedures have been developed, 

which are not necessarily α-exhaustive. Therefore, there 

is a room for improvement. However, an α-exhaustive 

procedure is not necessarily a powerful test. A fixed 

sequence testis an α-exhaustive test, but it is often the 

least powerful test if the sequence of tests was 

inappropriately chosen. 

Let’s discuss the situation of two-hypothesis testing: 

 

1 2 1 2
: :

o
H H H versusH H H

α
∩ ∪  (5) 

 

Here 
k

H is the negation of Hk, k = 1, 2. In this setting, 

if either H1 or H2 is rejected, the null hypothesis Ho is 
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rejected. Let p1 and p2 be the marginalp-values for 

testing H1 and H2, respectively. 

The decision rules of the progressive α-exhaustive 

testing procedure are: 
 

• If p1p2≤α1 and p1≤α, then reject H1 

• If p1p2≤α2 and p2≤α, then reject H2 

 

where critical value α1> 0 and α2> 0. 
The idea behind this procedure is to borrow strength 

among marginal p-values. In plain language, the 
procedure says that we don’t have to make an α 
adjustment, as long as p1≤α and the other p-value p2 is 
small. For example, if p1 = α and p2 = 0.01α, we can 
reject H1. The α1 and α2 are so determined that when both 
H1 and H2 are true, the type-I error will not exceed α. 

The procedure can control the Familywise Error Rate 

(FWER) strongly but at the same time exhaust all α 

under all the null hypothesis configurations: H1, H2 and 

H1∩H2. This is done progressively as described below. 

 

Step 1: To control the familywise error rate at α level, 

when only H1 is true and H2 is not true, then 

p1p2≤α1 can be satisfied with probability of 1 (if, 

for example, the test drug is very effective, p2 

will be virtually always 0). Therefore, to control 

FWER, a necessary condition is sup 

Pr(p1p2≤α1∩p1≤α|H1∩ 2
H ) = sup Pr (p1≤α|H1) = 

α. Therefore, type-I error is strongly controlled 

and exhausted when 
1 2

H H∩ is true. By the 

same token, we can reach the same conclusion 

when 
2 1

H H∩ is true. 

Step 2: Now we need to determine α1 and α2 to exhaust 

α when H1∩H2 is true. In this study, we only 

consider the case when the two test statistics, p1 
and p2, are independent. 

 

Under the global null hypothesis H0, p1 and p2 are iid 

U (0, 1), which is equivalent to two standard normal test 

statistics: z1 = 1-Φ(p1) and z2 =1-Φ(p2) under H0 being 

independent. However, working on the p-scale, the 

testing procedure can be used for different endpoints 

(normal, binary, survival), as long as p1 and p2 are 

independent and stochastically equal to or larger than 

uniform p1 and p2. 

Since T = p1p2<α1 implies 
1

2

1

p
p

α

< , we have the 

conditional cdf for T: 
 

( )
1

1

1

1 1|

1 1

1 1

1, 1

|

, 1

T p

p
F T p

p p

α

α

α α


≥


< = 

 <



 (6) 

 
 
Fig. 1. Pr (p1p2≤α1∩p1≤α) 

 

If α1 ≥α, then Pr (p1p2≤α1∩p1≤α|H1,H2) = Pr 

(p1≤α|H1,H2) = α. If α1<α, then (Fig. 1 for a geometric 

interpretation): 

 

( )

( ) ( )
1

1
1

1 2 1 1

1
1 1 1 1 1 1|0 0

1

1 1

1

Pr

|

ln

T p

p p p

F T p f p dp dp dp
p

α α α

α

α α

α

α

α

α α

α

≤ ∩ ≤

= < = +

 
= +  

 

∫ ∫ ∫  (7) 

 

Thus: 

 

( )
1

1 2 1 1

1 1 1

1

,

Pr
ln ,

p p p

α α α

α α α

α α α α

α

 ≥


≤ ∩ ≤ =  
+ ≥ 

 

 (8) 

 

Consequently, the type-I error rate under H1∩H2 is 

given by (for simplicity, we just use FWER (H1∩H2)): 

 

( )

( )

( ) ( )

( )( )

( )

1 2

1 2 1 1 1 2 2 2

1 2 1 1 1 2 2 2

1 2 1 2 1 2

1 1 2 2

1 2

2 2

1 2

Pr

Pr Pr

Pr min ,

ln ln

, min ,

FWER H H

p p p p p p

p p p p p p

p p a p p

for

α α α α

α α α α

α α α

α α

α α α α

α α

α α α α

∩

= ≤ ∩ ≤ ∪ ≤ ∩ ≤

= ≤ ∩ ≤ + ≤ ∩ ≤

− ≤ ∩ ≤ ∩ ≤

   
= + + +   

   

− ≤

 (9) 

 

In (9), we have used the following result: if 

α
2
≤min(α1, α2), then: 
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( )( )
( )

1 2 1 2 1 2

2

1 2

Pr min ,

Pr

p p p p

p p

α α α α

α α α

≤ ∩ ≤ ∩ ≤

= ≤ ∩ ≤ =

 (10) 

 

However, if α
2
> min(a1, α2), then the probability 

becomes (Fig. 2): 

 

( )

( )

( )

( ) ( )
( )

1 2

1 2

1 2 1 1 2

min , /
1

1 1
0 min , /

1

2

1 2 1 2
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min , min , ln
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p p p p
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p

α α α α

α α α

α α α

α

α

α

α α α α

α α
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 
= + 
 

  
  = +

  
  
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To summarize the type-I error rates under various 

null configurations, we have: 

 

( )

( )
1

2
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α

α
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
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where, αmin = min (α1, α2): 

 

 
 

Fig. 2. Pr (p1p2≤α1∩p1≤α∩p2≤α) 

The α1 and α2 are determined so that FWER(H1∩H2) = 
α. We are not interested in α1≥α, because p1p2≤α1 in the 
rejection criteria has no effect. In fact, FWER(H1∩H2) = 
2α-α

2
 = αwill have no solution for anyα between 0 and 1. 

We are not interested in α1<α
2
 either, because it makes the 

conditions, p1<α and p2<α, have no effect in determining 
the rejection boundary. In fact: 
 

( )1 2 1 1

1
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2 2 min
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ln 1 ln
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α
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has no solution for α1<α
2
 and α2<α

2
. Therefore, the only 

scenario that we are interested in is: 
 

( )1 2 1 1

1

2 2

2 2 1

2

ln
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α

α
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α
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 (14) 

 
With (14), we can determine the rejection boundaries 

α1,α2 for given α. Here are the steps: 
 

• Choose α1 so that α
2
≤α1<α 

• Let FWER (H1∩H2) = α to solve for α2 
 

That is, α2 is the solution of: 
 

1 1 2 2

1 2

2 2

min

ln ln

,

α α

α α α α

α α

α α α α α

   
+ + +   

   

− = ≤ ≤

 (15) 

 
Examples of critical values from (15) are presented in 

Table 1 and 2. 

When α1 = α2, (15) can be simplified as: 
 

2

1

1

2 ln
α

α α α α

α

  
+ − =  

   
 (16) 

 

The critical values for various α with α1 = α2 are 

presented in Table 3. 

The rejection boundaries in Table 1-3 have been 

verified each by 10,000,000 simulations. 

Illustrative Example 

Suppose in the Statistical Analysis Plan for a 

cardiovascular trial with two primary endpoints (not co-

primary endpoints that have to be met simultaneously), the 

two test statistics for the two hypotheses (H1 and H2) of 

the two endpoints are assumed to be independent and the 

α-exhaustive procedure (with one-sided α1 = α2 = 

0.004855 and α = 0.025) was specified in the analysis for 
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the multiplicity adjustment to control FWER. At the end 

of trial, the p-values for the two endpoints are: Scenario 

(1) one-sided p1 = 0.024 and p2 = 0.025, scenario (2) p1 = 

0.024 and p2 = 0.2, (3) p1 = 0.05 and p2 = 0.02, (4) p1 = 

0.01 and p2 = 0.26 and (5) p1 = 0.012 and p2 = 0.5. Using 

the α-exhaustive procedure for scenario (1), we reject both 

H1 and H2 because p1×p2 = 0.0006 ≤α1∩p1 = 0.024 ≤α to 

reject H1 and p1×p2 = 0.0006 ≤α1∩p2 = 0.025 ≤α to reject 

H2. For scenario (2), we reject H1 but not H2 because 

p1×p2 = 0.0048 ≤α1∩p1 = 0.024 ≤α and p1×p2 = 0.0048 

≤α2∩p2 = 0.2 >α. For scenario (3), we reject H2, but not 

H1. For scenario (4), we reject H1 but not H2. For scenario 

(5), we can reject neither H1 nor H2. 

Using the test procedures described in the previous 

section, we summarize the rejection status in Table 4. The 

α-exhaustive procedure can reject at least one hypothesis 

except for scenario 5. The reason that α-Ex method (with 

α1 = α2) cannot reject any hypothesis for scenario (5) is 

that the method emphasizes the consistency of the 

evidence against all the hypotheses and such consistency 

is obviously not presented in scenario (5). 

The power of α-Ex procedure (α1 = α2) for the two-

hypothesis at one-side α-level can be written as: 

 

( ) ( )

( ) ( )( )(
1 2 1

1 2 1 2

Pr
min , | ,

z z

Power

z z H H

α

α

 Φ − Φ − ≤
 

=  
∩ Φ − Φ − <  

 

 

As a comparison, the power of Hommel’s procedure 

for the two-hypothesis at one-sided α-level can be 

written as: 

 

( ) ( )( )

( ) ( )( )

1 2

1 2 1 2

min
Pr

min , / 2 | ,

z z

Power

z z H H

α

α

 Φ − Φ − ≤ 
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∪ Φ − Φ − <  

 

 
Table 1. Critical values for one-sided α = 0.025 

α1 0.000095 0.000650 0.001000 0.002000 0.003000 0.004000 0.004855 0.005000 
α2 0.025000 0.014884 0.012856 0.009378 0.007282 0.005814 0.004855 0.004714 

 
Table 2. Critical values for one-sided α = 0.05 

α1 0.000435 0.002500 0.004000 0.005000 0.006000 0.007000 0.008000 0.010097 
α2 0.050000 0.025265 0.020078 0.017610 0.015607 0.013934 0.012508 0.010097 

 
Table 3. Critical values for one-sided test when α1 = α2 

α 0.005000 0.010000 0.025000 0.050000 0.075000 0.100000 
α1, α2 0.000941 0.001897 0.004855 0.010097 0.015739 0.021798 

 
Table 4. Rejection with different test procedures 

 Scenario 
 ---------------------------------------------------------------------------------------------------------------------- 
Method 1 2 3 4 5 

Fixed Sequence H1, H2 H1  H1 H1 
Bonferroni    H1 H1 
Fallback (w1 = 0.5)    H1 H1 
Holm-Stepdown    H1 H1 
Hochberg H1, H2    H1 
Hommel H1, H2   H1 H1 
α-exhaustive H1, H2 H1 H2 H1 

Note: One-sided α = 0.025, α1 = α2 = 0.004855 for α-exhaustive 
 
Table 5. Power comparisons for two-hypothesis testing (δ2 = 0.3, σ = 1) 

 δ1 = 0.3  δ1 = 0.15  δ1 = 0 

 ---------------------------------- ---------------------------------- ----------------------------- 

Method Power1 Power Power1 Power Power1 Power 

Fixed Seq (H1,H2) 0.640 0.800 0.224 0.280 0.020 0.025 
Fixed Seq (H2,H1) 0.640 0.800 0.224 0.800 0.020 0.800 
Bonferroni 0.529 0.926 0.150 0.727 0.009 0.731 
Fallback (H1,H2) 0.590 0.926 0.168 0.784 0.010 0.730 
Fallback (H2,H1) 0.590 0.926 0.214 0.783 0.018 0.731 

Holm 0.652 0.926 0.233 0.784 0.019 0.730 

Hochberg 0.660 0.933 0.241 0.791 0.020 0.732 

Hommel 0.660 0.933 0.241 0.791 0.020 0.732 

Progressive α-Ex 0.660 0.962 0.240 0.843 0.020 0.712 

Note: Sample size = 90, one-sided α = 0.025, α1 = α2 = 0.004855 for Progressive α-Ex 
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Power Comparison of Two Hypotheses 

There seems a general impression that whatever the 

test procedure to use the power of rejection cannot be 

improved significantly for two-hypothesis testing. 

However, this is not necessarily true. We have 

compared power of seven different testing methods 

described in section 2 and presented results in Table 5, 

where Power 1 is probability of simultaneously 

rejecting H1:δ1≤ 0 and H2: δ2≤ 0 and Power is the 

probability of rejecting either H1 or H2. For the fallback 

procedure the weights w1 = w2 = 0.5 are used. The fixed 

sequence method is equivalent to the fallback 

procedure with w1 = 1 and w2 = 0. 

The progressive α-exhaustive procedure performs 

overall the best, while the Hommel method performs 

the second best. In general, Holm procedure is 

uniformly more powerful than the Bonferroni 

procedure. Hochberg’s procedure is uniformly more 

powerful than Holm’s procedure and Hommel’s 

procedure is uniformly more powerful than Hochberg’s 

procedure. Holm, fixed-sequence and fallback are 

nonparametric and control FWER for any joint 

distribution of test statistics. Hommel and Hochberg 

procedures are semi parametric and control FWER only 

for some joint distributions, including positively 

dependent test statistics such as multivariate normal 

test statistics. Nonparametric procedures make no 

assumptions about the joint distribution of test statistics 

which results in power loss (Dmitrienko, 2013). For 

two-hypothesis testing, Hochberg’s method is 

equivalent to Hommel’s method. The power of the 

fallback method depends on the weights 
i

w  and the 

order of the hypotheses. 

Comparisons of Hommel’s method to use of the α-Ex 

method with different α1 and α2 are presented in Table 6. 

For α-Ex
1
, α1 =α2 = 0.004855; α-Ex

2
, α1 = α0.003355; 

α2 = 2α1; α-Ex
3
, α1 = 0.003798, α2 = 1.6α1; α-Ex

4
, α1 = 

0.004332, α2 =1.25α1; α-Ex
5
, α2 = 0.004332, α1 = 

1.25α2. From the table, we can see that all α-Ex 

procedures perform very well except α-Ex
5
, in which the 

treatment effect δ1 is smaller than δ2, but alphas were set 

up in a wrong direction (α1 = 1.25α2>α2). In general, α1 

should be chosen larger than α2 if δ1 is expected larger 

than δ2; otherwise choose α1≤α2. 
 
Table 6. Power comparison for two-hypothesis testing 

 δ1 = δ2(σ = 1) 
 ------------------------------------------------------------------------ 

Method 0.0/0.3 0.03/0.3 0.05/0.3 0.1/0.3 0.15/0.3 0.2/0.3 0.3/0.3 

Hommel 0.732 0.736 0.741 0.759 0.792 0.836 0.933 

α-Ex1 0.712 0.736 0.752 0.796 0.843 0.890 0.962 

α-Ex2 0.745 0.764 0.777 0.812 0.852 0.893 0.962 

α-Ex3 0.735 0.755 0.770 0.808 0.850 0.892 0.962 

α-Ex4 0.723 0.746 0.761 0.803 0.846 0.891 0.962 

α-Ex5 0.700 0.725 0.742 0.790 0.839 0.887 0.962 

The reason that α-Ex method (with α1 = α2) has 

lower power than Hommel’s method at the extreme case 

when δ1 = 0 and δ2 = 0.3 is that the former emphasizes 

the consistency of the evidence against all the 

hypotheses, while δ1 = 0 and δ2 = 0.3 are clearly 

inconsistent. If we believe δ1 is smaller than δ2, we 

should use different α1 and α2 (e.g., α2 = 1.6α1 in α-

Ex
3
). However, if the directional guess is wrong, it could 

reduce the power as seen in α-Ex
5
. 

Formulation for Three Hypotheses 

We now discuss the progressive α-Exhaustive 

procedure for three-hypothesis testing: 

 

0 1 2 3 1 2 3
: :

a
H H H H vsH H H H∩ ∩ ∪ ∪  (17) 

 

Similar to two-hypothesis testing, the rejection-

acceptance rules of the α-exhaustive procedure for three-

hypothesis testing are: 

 

• If p1p2p3≤α4∩p1p2≤α1∩p1p3≤α1∩p1≤α, reject H1; 

otherwise accept H1 

• If p1p2p3≤α4∩p2p1≤α2∩p2p3≤α2∩p2≤α, reject H2, 

otherwise accept H2 

• If p1p2p3<α4∩p3p1≤α3∩p3p2≤α3∩p3≤α, reject H3, 

otherwise accept H3 

 

Here α1≤α2≤α3. 

Determination of Critical Values 

The derivations of the critical values are placed in 

the Appendix. Here we described the key steps and 

summarized the results. The critical values α1, α2 and 

α3 are determined by all the paired null hypotheses: 

H1∩H2, H2∩H3 and H1∩H3. To exhaust familywise 

error rate, it necessarily requires that FWER(H1∩H2) 

= α, FWER(H2∩H3) = α and FWER(H3∩H1) = α, 

which are equivalent to (Appendix), respectively: 
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 (18) 

 

Each equation in (18) is in the same expression as 

(15). Therefore, the critical values in Table 1-3 are also 

valid for (18). 
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Table 7. Critical values for one-sided test (α1 = α2 = α3) 

α 0.010000 0.025000 0.050000 0.075000 0.100000 

α1, α2,α3 0.001897 0.004855 0.010097 0.015739 0.021798 

α4 0.001105 0.002677 0.005157 0.007566 0.009966 

 

Table 8. Power comparison 

 δ1 = δ2 (δ3 = 0.3, σ = 1) 

 ------------------------------------------------------------------------------------------------------------------------------- 

Method 0.0/0.0 0.0/0.3 0.03/0.3 0.2/0.3 0.1/0.2 0.1/0.1 0.3/0.3 

Hommel 0.482 0.735 0.737 0.794 0.612 0.533 0.869 

Dunnet Step-up 0.478 0.725 0.728 0.781 0.602 0.528 0.862 

Graphic Approach 0.478 0.721 0.724 0.773 0.508 0.525 0.854 

α-Ex 0.470 0.756 0.775 0.885 0.698 0.599 0.941 

Note: α = 0.025, α1 = α2 = α3 = 0.004855, α4 = 0.002677, sample size = 60 

 

To exhaust α under H1∩H2∩H3, it requires that 

FWER(H1∩H2∩H3) = α, that is (assume α1 = α2 = α3, 

Appendix): 
 

( )
2

2

3 11

4 1 1

4

3 1 ln 1 3 2 3
α α

α α α α α α

α α

  
 + + − − + − = 
   

 (19) 

 

Now we can use (18) to determine α1,α2 and α3 

and use (19) to determine α4 for the case when α1 = 

α2 = α3. Examples of critical values for various αare 

presented in Table 7. 

The critical values can also be determined through 

simulations. Especially when dimension is high, 

simulation is a convenient way to obtain the results: 

For given (α1, α2,α3), we can use simulation by trying 

different α4 until FWER(H1∩H2∩H3) = α. We have 

verified the critical values through simulations: For α = 

0.025 and α1 = α2 = α3 = 0.004855, α4 = 0.002677; 

the type-I error rate is 0.025003 under H1∩H2∩H3 

through 10,000,000 simulations. This progressive 

method to determine the critical values can be 

generalized to K-hypothesis testing. 

Power Comparison 

Let Hi: δi≤ 0, i = 1, 2, 3. Using the rejection 

boundaries in Table 7, we can easily obtain the power of 

the α-Ex method through simulations. To compare the 

performance of α-Ex, we compared the best method, 

Hommel’s method as the standard. 

Since there are three hypotheses, it is meaningful 

to compare our approach to other more recently 

developed approaches. However, the gate keeping 

procedure is difficult to communicate with the non-

statisticians and requires large set of tests when the 

number of individual hypotheses increases. An 

iterative graphical approach by Bretz et al. (2009) 

deals with those weakness and constructs the 

Bonferroni-type tests with a simple updating 

algorithm that fully describes a sequentially rejective 

test procedure. The graphic approach was then 

extended by dissociating the underlying weighting 

strategy and applied using weighted Bonferroni tests, 

weighted parametric tests and weighted Simes tests 

(Bretz et al., 2011). The existing methods controls the 

FWER; However, the power is addressed or compared 

with other methods. From Table 8, we can see that the 

α-Ex procedure provides more power in all cases 

except the case when δ1 = δ2 = 0 and δ = 0.3. 

Again, like in the case of two-hypothesis testing, 

when the parameters in the alternative hypotheses 

(e.g., effects of the different endpoints) are very 

different, we should use different α1, α2 and α3 such 

that their trend is in opposite to the trend of 

parameters in the alternative hypotheses. 

K-Hypothesis Testing Procedure 

We now discuss the progressive α-exhaustive 

procedure for K-hypothesis testing. To avoid the 

rejection boundary being too small, causing 

inconvenience, we use term 
1

k
k

ii
p

=
∏ instead of 

1

k

ii
p

=
∏ in the decision rules for a general K-hypothesis 

testing. It is obvious that these two test statistics are 

equivalent in terms of power. 

For K-hypothesis testing, the K rejection rules are 

specified as: We will reject Hi if and only if: 

 

( ) ( )
1/3 1/ 2

, ,

,   ,   .

i k l kl i k k i

k l k i l i k i

p p p p p pα α α

> ≠ ≠ ≠

≤ ≤ ≤∑ ∑  

 

We didn’t include higher order term of p-product 

because through simulations, we find that even we set 

pipjpkpm≤ 1, the FWER is controlled. This means that 

for a multiple testing problem with more than four 

hypothese, the proposed procedure may not be an 

alpha-exhaustive one. 

The rejection boundaries α1, α2,...αK are 

progressively determined: Determine α1 = α based on 
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one-hypothesis testing, then given α1, determine α2based 

on two-hypothesis testing; and given α1 and α2, 

determine α3 based on three-hypothesis testing. The 

process continues until αK is determined. For high 

dimensional hypothesis testing problems, Partition 

Principle for multiple testing (Hsu, 1996) can be used to 

reduce the number of null configurations to be tested. 

Simulation is usually more convenient than numerical 

integration when the dimension is high. 

Summary and Discussion 

To construct a MTP, we need to consider at least 

three things to ensure the power: (1) α-exhaustive, (2) 

synergize strengths among data for local hypothesis or 

marginal p-values and (3) be able to use correlations 

between local test statistics or local p-values. In 

principle, the proposed α-exhaustive procedure has 

considered all three aspects. To achieve α-exhaustive, 

we use the marginal p-value product corresponding to 

each null hypothesis configuration and enforce it with an 

upper bound in the rejection rules. Such p-value product 

terms in the rejection rules also ensure the synergy 

between the marginal p-values. The K-hypothesis testing 

algorithm can be applied to the test statistics with 

correlations with modifications of critical regions for 

rejection (the critical values in Table 1-3 are applicable 

for independent test statistics), but due to its complexity 

and larger applications in clinical trials (dose-finding, 

subgroup analysis, adaptive design), we are developing 

separate manuscripts to address that. 

Unlike traditional stepwise procedures, the decision 

rule in the progressive α-exhaustive procedure explicitly 

uses a set of statistics (p1,p1p2,p1p3,p1p2p3,etc.) with a set 

of critical values in the decision rule for rejecting a 

single Hk(k = 1, 2,..., K). In this sense, the decision rules 

in the α-exhaustive procedure are expressed in the form 

of "adjusted p-values" and hence the order of the tests 

is irrelevant. Many stepwise testing procedures also 

have the feature of borrowing strengths among data for 

local hypotheses, but such dependencies are realized 

through a discrete function. Theα-exhaustive procedure 

uses a continuous dependency function of marginal p-

values, i.e., product of p-values, which is more 

effective. We have also tried other functions such as 

average p-values or linear combination of normal-

inverse p-values, the results are similar. 

In summary, the proposed progressive α-exhaustive 

procedure is not only statistically powerful, but it also 

stresses the importance of clinical/practical 

meaningfulness since the method emphasizes the 

consistency among the evidences coming from different 

endpoints, different doses and different populations, that 

is, the totality of the evidence. The test procedure is 

simple and performs well in broad situations. When the 

true "standardized" effect size (value of the parameter) is 

very different for different hypothesis, the critical values 

don’t have to the same for rejecting all the hypotheses. 

Instead, the critical values can be different and optimized 

based on the prior information on effect size or 

considering the importance of different endpoints. 

Appendices 

Derivations of Formulations of Critical Values for 

Three-Hypothesis Testing 
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where, FWER(H1∩H2) is the type-I error rate under 

FWER(H1∩H2) and 
3

sup

H

is the supreme under all 

possible H3. 

To control type-I error under H1∩H2, H2∩H3 and 

H3∩H1, it is required that, respectively: 
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From (A1), we can see that among α1,α2 and α3, at least 

two should be the same, eitherα1 = α2 orα2 =α3 (α1≤α2). 

The type-I error rate under H1∩H2∩H3 can be 

expressed as: 
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For the purpose of critical value derivation, we 

rewrite FWER(H1∩H2∩H3)as: 
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( )1 2 3 1 2

3 13 23 33 123

FWER H H H π π

π π π π π
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+ − − − +

 (A2) 

 

where, under H1∩H2∩H3: 
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and: 
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We will use Fig. 3 to assist in our integration of π1, π2 

andπ3. That is: 
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Similarly, we use Fig. 4 to assist in our integration of 

π12, π23 and π31. That is: 
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For π123, we just give the result for the case when α1 

= α2 = α3. Assume 
3

4 1
α α≥ , otherwise only p1p2p3≤α4 

has an effect in the joint probabilities, while p1p2≤α1 and 

other will have no effect. 

 

 
 

Fig. 3.π1 = π2 = π3 
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Fig. 4.π12 

 

 
 

Fig. 5. π123 
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In fact, the α1 is so small that the three curves pipj=α1 cut 

the cube into a smaller cube α1×α1×α1, as shown in Fig. 

5. Therefore, we have: 
 

1

3

123 1 1 1
dp dpπ α
Ω

= =∫  (A8) 

 
To Summarize, we have: 
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To control, FWER(H1∩H2∩H3) at α level, it is 

required that (assume we have chosen α1 = α2 = α3): 
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After α1 = α2 =α3 is determined using (A1), we can 

solve α4 from (A10). For a general case, after α1 is chosen 

between α2 and α,α2 and α3 can be determined using (A1) 

andα4 can be easily obtained from simulations. The power 

simulations are presented in Table 8. 

SAS Code for Progressive Test Procedure 

/* Progressive Alpha-exhaustive Test Procedure for 

Two-Hypothesis */ 

 %Macro aExTest2H(nSims, u1, u2, sigma, N, alpha1, 

alpha2, alpha); 

 * nSims = the number of simulation runs; 

 * u1, u2 = parameters for H1 and H2. sigma = 

common standard deviation; 

 * N = sample size; 

 * alpha1, alpha2, alpha = critical values on p-scale; 

 * Power = prob of rejecting H1 or H2, 

 * PowerBoth = prob of rejecting H1 and H2.; 

 Data aEx2H; 

 keep u1 u2 N PowerBoth Power; 

 N=&N; u1=&u1; u2=&u2; sigma=&sigma; 

alpha=&alpha; 

 Power=0; PowerBoth=0; 

 Do iSim=1 To &nSims; 

 z1=Rand("normal", &u1, 

sigma/sqrt(N))/sigma*sqrt(N); 

 p1=1-CDF("normal", z1); 

 z2=Rand("normal", &u2, 

sigma/sqrt(N))/sigma*sqrt(N); 

 p2=1-CDF("normal", z2); 

 sig1=0; sig2=0; 

 If p1*p2<=&alpha1 And p1<=alpha Then sig1=1; 

 If p1*p2<=&alpha2 And p2<=alpha Then sig2=1; 

 If sig1=1 OR sig2=1 Then Power=Power+1/&nSims; 

 If sig1=1 And sig2=1 Then 

PowerBoth=PowerBoth+1/&nSims; 

 End; 

 Output; 

 Run; 

 %Mend; 

 Title "Checking Type-I Error under H1 and H2"; 

 %aExTest2H(10000000, 0, 0.0, 1, 90, 0.004855, 

0.004855, 0.025); 

 Proc print data=aEx2H; 

 Run; 

 Title "Power under H1: u1=0.3 and H2: u2= 0.3"; 

 %aExTest2H(1000000, 0.3, 0.3, 1, 90, 0.004855, 

0.004855, 0.025); 

 Proc print data=aEx2H; 

 Run; 

 /* Progressive Alpha-exhaustive Test Procedure for 

Three-Hypothesis */ 

 %Macro aExTest3H(nSims, u1, u2, u3, sigma, N, 

alpha1, alpha4, alpha); 

 * nSims = the number of simulation runs; 

 * N = sample size; 

 * u1, u2, u3 = parmeters for H1, H2 and H3; 

 * alpha1, alpha2, alpha = cretical values on p-scale; 

 * Power = prob of rejecting H1 or H2 or H3; 

 * PowerAll = prob of rejecting H1, H2 and H3 

simutanneuosly; 

 Data aEx3H; 

 keep u1 u2 u3 sigma N alpha PowerAll Power; 

 u1=&u1; u2=&u2; u3=&u3; sigma=&sigma; N=&N; 

 alpha=&alpha; alpha1=&alpha1; alpha4=&alpha4; 

 Power=0; PowerAll=0; 

 Do iSim=1 To &nSims; 

 z1=Rand("Normal", u1, 

sigma/sqrt(N))/sigma*sqrt(N); 

 p1=1-CDF("Normal", z1); 

 z2=Rand("Normal", u2, 

sigma/sqrt(N))/sigma*sqrt(N); 

 p2=1-CDF("Normal", z2); 

 z3=Rand("Normal", u3, 

sigma/sqrt(N))/sigma*sqrt(N); 

 p3=1-CDF("Normal", z3); 

 sig1=0; sig2=0; sig3=0; 

 p4=p1*p2*p3; 

 If p4<=alpha4 & p1*p2<=alpha1 & p1*p3<=alpha1 

& p1<=alpha Then sig1=1; 

 If p4<=alpha4 & p2*p1<=alpha1 & p2*p3<=alpha1 

& p2<=alpha Then sig2=1; 

 If p4<=alpha4 & p3*p1<=alpha1 & p3*p2<=alpha1 

& p3<=alpha Then sig3=1; 

 If sig1=1 OR sig2=1 Or sig3=1 Then 

Power=Power+1/&nSims; 
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 If sig1=1 And sig2=1 And sig3=1 Then 

PowerAll=PowerAll+1/&nSims; 

 End; 

 Output; 

 Run; 

 %Mend; 

 Title "Checking Type-I Error under H1, H2 and H3"; 

 %aExTest3H(10000000, 0, 0, 0, 1, 60, 

0.004855, 0.002677, 0.025); 

 proc print data=aEx3H; 

 Run; 

 Title "Power when u1=0, u2=0.3 and u3= 0.3"; 

 %aExTest3H(1000000, 0, 0.3, 0.3, 1, 60, 0.004855, 

0.002677, 0.025); 

 Proc print data=aEx3H; 

 Run; 
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