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Abstract: In a constantly advancing world with growing needs, buildings 

play in important role in the daily functioning of the society. Developing 

more and more advanced techniques to optimize the working of these 

buildings is highly important for a constant growth. Modern computational 

techniques have opened doors to create advanced models that can utilize 

efficient techniques to produce highly accurate results. This paper 

introduces a model that utilizes machine learning algorithms to predict 

energy consumption in buildings. Energy data were used from two actual 

and two simulated buildings to fine tune the models. The model is also 

compared to a baseline regression model as well as a model based on 

Artificial Neural Network. The results show that the proposed model 

performs much better than the other two compared models. The proposed 

model can be used for many intelligent applications such as measurement 

and savings verification, optimization, building-energy assessment and 

fault detection and diagnosis. The models were tested to predict the savings 

calculations for a simulated building and the results proved the proposed 

model to be the closest predictor to actual savings.  

 

Keywords: Building Energy Consumption, Bootstrap Aggregation, 

Machine Learning Model, Artificial Neural Networks (ANN) 

 

Introduction 

While most new buildings use power meters to 
record and track their daily energy consumption data, 
they can be supplemented by digital models that can help 
to predict upcoming energy data and use it to calculate 
savings and improve systems in the buildings 
(ASHRAE, 2013; Li et al., 2017). Therefore, utilizing 
modern computational techniques to program models 
that can achieve high levels of accuracy is a necessity 
(ASHRAE, 2015). Generally, there are two wide 
approaches to model the energy use in a building: 
forward and inverse approaches. The model in the 
forward approach predicts the energy use based on 
detailed physical information of the system. The inverse 
or data-driven model is developed based on actual data 
of existing systems. Several types of data driven models 
are used for estimating the energy use in either whole 
building or equipment levels. These models vary from 
very simple regression model with one/two or sometimes 
multiple parameters to advanced machine learning and 

ANN Models. There are no single models that can be 
appropriate for all buildings and applications. 

This paper introduces a Machine Learning model 

based on bootstrap aggregation and uses a regression 

learning technique as a baseline along with an ANN 

baseline model to compare with the proposed model. 

Usually regression models or, more recently models 

based on Artificial Neural Networks (Ferlito et al., 

2015) are used to capture and predict performance of 

equipment like chillers or pumps. Bagging (Bootstrap 

Aggregation) is a Machine Learning algorithm where 

the goal is to reduce the variance of a decision tree 

(Breiman, 1996; Long and Servedio, 2010). The idea 

is to create several subsets of data from random training 

sample with replacement. As a result, we end up with an 

ensemble of different models (Hydeman et al., 2002). 

Average of all the predictions from different trees are 

used which is more robust than a single decision tree 

as shown in Fig. 1. The paper also utilizes the trained 

models to calculate energy savings.  
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Fig. 1: Bootstrap Aggregation: After resampling Input, several models are created out of which the best one is chosen 
 

 
 

Fig. 2: Simulation of building in eQuest 

 

Energy use in offices has risen in recent years because of 

the growth in information technology, air-conditioning, 

density of use, and a competitive market where tenants 

see high value in a comfortable workplace. Two-thirds of 

all energy consumed in an average office building is 

electricity. Lighting, office equipment and HVAC 

account for 90% of this expenditure. Certainly, the trend 

of high energy demand is offset by the considerable 

improvements over time in design, construction, 

insulation, lighting and controls. 

Data Collection 

The electric energy consumption data are collected 

from two actual buildings (Building 1 and Building 2) 

located in Greensboro, North Carolina and from 

simulations of two buildings (Building 3 and Building 4 

shown in Fig. 2). The Actual building data were 

recorded on a quarterhourly basis and the data for the 

simulation were recorded on an hourly basis. Figure 3 

shows the whole building electric energy consumptions 

of those four buildings as a function of outside air or dry 

bulb temperature. The simulations are done using the 

building energy simulation program eQuest version 3.65. 
All buildings are conditioned with chilled water VAV 

systems and all are in the range of 40,000 ft2 (3716.1 
m2) to 60,000 ft2 (5574.2 m2). The Building 1 combines 
of classes and offices and no schedule exists even 
though the building is unoccupied form 10pm to 7am. 
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The Building 2 is similar to Building 1 but with an 
occupancy schedule applied: 100% occupants form 7am 
to 10pm for weekday and 50% of occupants from 8am to 
8pm for weekend. The Buildings 3 and 4 are simulated 
office buildings with an occupancy schedule form 8am 
to 5pm. The mechanical systems start at 7am and stop at 
6pm (in case any occupants stay late). 

Comparison of Estimation Models 

Regression Models are most commonly implemented 

in predictive analysis. The main idea is to examine 

whether a set of predictor variables do a good job in 

producing an outcome (dependent variable) and which 

one of those variables do a good job in predicting those 

outcomes. While the accuracy of a simple linear model 

in predicting energy consumption in buildings is really 

low, it can be improved by adding classifiers and 

equations of fit. On the other hand, machine learning 

provides algorithms (MathWorks, 2018) that utilize 

more advanced and reliable techniques to produce more 

accurate results (Woo et al., 2018). One of these 

techniques is known as bootstrapping, which simply put 

is the method of random sampling with replacement 

(Schapire, 1990). Such a sample is referred to as a 

resample. This allows the model or algorithm to get a 

better understanding of the various biases, variances 

and features that exist in the resample. Since energy 

demand data from buildings is usually measured on hourly 

or sub-hourly intervals, training sets are usually large. 

When this occurs, the regression coefficients represent the 

noise rather than the genuine relationships in the 

population making predictions inaccurate. To prevent 

overfitting, bagging is used. Bagging stands for bootstrap 

aggregation; it helps in reducing variance from overfitted 

models. Bagging gets around overfitting by creating its 

own variance amongst the data by sampling and replacing 

data while it tests multiple hypothesis Table (1). 

 
Table 1: Models discussed in paper 

Model Number Note 

Linear Regression Model 1 Existing 

Artificial Neural Network Model 2 Existing 

Ensemble of Bagged Trees Model 3 Proposed 
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Fig. 3: Energy Consumption Data as a function of dry bulb temperature 
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Fig. 4: Comparison of actual data from building 1 and 2 along with actual data from simulations for building 3 and 4. Compared with 

Model 3 predictions 
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In turn, this reduces the noise by utilizing multiple 
samples that would most likely be made up of data with 
various attributes. Once each model has developed a 
hypothesis. The models use voting for classification or 
averaging for regression. This is where the 
“Aggregating” in “Bootstrap Aggregating” comes into 
play. Each hypothesis has the same weight as all the 
others. Figure 1 show the working of a Bootstrap 
Aggregation Model The models were trained and tested 
based on the following inputs: Month, Day, Hour and 
Dry Bulb Temperature. The data from the actual 
buildings was trained for a duration for one year and 
tested for an upcoming year while data from simulation. 
The models are compared in terms of classification 
accuracies Accuracy is one metric for evaluating 
classification models. Informally, accuracy is the fraction 
of predictions that the model got right. Formally, accuracy 
has the definition as shown in Equation 1. For binary 
classification, accuracy can also be calculated in terms of 
positives and negatives as follows where TP = True 
Positives, TN = True Negatives, FP = False Positives, and 
FN = False Negatives as shown in Equation 2:  
 

Number of corect predictions
Accuracy

Total predictions
=  (1) 

TP TN
Accuracy

TP TN FP FN

+

=

+ + +

 (2) 

 

Data from actual buildings was measured at sub-

hourly intervals and it does have several missing entries 

while simulation data which was measured on hourly 

intervals and has a smaller training set. Regardless of 

these missing points, the accuracy, when compared to 

the linear regression model remains significantly high. 

Model 3 can be easily retrained to fit newer sets of data 

without affecting their performance. 

Even after the model is trained, it can be 

supplemented by further data points without disturbing 

the pre-existing training samples. This allows the model 

to continuously improve its accuracy over time. There 

are various other factors at play in the measured data 

Vs simulated data, such as occupant behavior, 

measurement errors etc. Moreover, the simulation is an 

idealization and hence fitting a model is expected to be 

easier. Figure 5 shows a randomly selected sample 

from the four buildings selected for the final model with 

only one visible error point. 

 

 
 

Fig. 5: Parallel Coordinates plot for Building 3 model training. Depicting high training accuracy for selected sample 
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Results for Model Training and Testing 

The Aggregated Bootstrapping model was trained 

using a selected data set comprised of diverse data points 

that allow the algorithm to construct more testable 

hypothesis. In addition to the Aggregated Bootstrapping 

model a baseline linear model and another artificial 

neural network model is also investigated.  

The inputs for training were formatted into an input 

matrix. An infinite variety of network architectures can 

be used for this purpose, but after testing several models 

with different hidden layers and neurons, the interest of 

conserving computer time the simplest structure was 

needed to be considered that could still keep a high 

accuracy. The chosen model has two hidden layers, 6 

neurons and the output layer with one neuron and an 

activation function based on the sum of the weighted 

hidden layer neurons. The ANN model is trained and 

tested using the actual and simulated data shown in Fig. 2. 

The accuracy for training and testing were measured and 

presented in Figure 6. It can be seen that the accuracy 

ranges for the predictions by model 3 lie in the range of 93-

99% while Model 1 is in the 10-20% range and Model 2 in 

53-60% range making Model 3 the most accurate of them 

all. It is also noticeable for Figure 4, building 1 has a visible 

blue region. This is because of missing data entries in the 

training matrix for building 1. This could be a possible 

result of miscommunication between the measuring 

equipment and the Building Automation System. The 

training time for the simple linear regression model is 

lowest at 6.4s which despite of its low training time would 

not help in solving real life problems due to its low 

accuracy thus making the Aggregated Bootstrapping model 

the better one despite of the high training time.  

 

 

Fig. 6: Comparison of accuracies of both models for all 

buildings in testing and training 
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Fig. 7: Comparison of actual and simulated data with predictions from all discussed models 
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Fig. 8: Predictions comparison for a week of data. (Sunday-Saturday) 

 
Table 2: Training/Testing time comparison for all models in 

seconds 

Model number Type Simulation Actual 

1 Training 6.4s 8.2s 
 Testing 2.1s 2.6s 
2 Training 383.4s 410.9s 
 Testing 12.7s 13s 
3 Training 119.5s 2619.6s 
 Testing 8.7s 15.7s 

 

The simulated building locations have a better ratio of 

training to testing accuracies because the model was 

trained using controlled simulations of energy 

predictions compared to the random conditions for actual 

buildings. The Aggregated Bootstrapping model proved 

to be a more reliable model that could be implemented in 

making building systems better (Woo et al., 2018). 

However, as a result of randomness and noisy 

disturbance, it is not an easy task to realize accurate 

prediction of the building energy consumption. The 

machine learning model was significantly better in both 

training and testing as well as its real-life application of 

predicting savings. After the models were trained, they 

were tested to predict energy data for a period of an 

entire year as depicted in Fig. 7 as well as for a period of 

a week as depicted in Fig. 8. Model 3 was able to predict 

the consumption data with highest accuracy as shown in 

Table 2. The only drawback of the bootstrap aggregation 

model is the really considerable amount of time it takes 

as training sets keep on getting bigger. It can be seen in 

Table 2 that the Bootstrap aggregation model has a 

training time of 2619.6 sec which when compared to a 

Model 1 (8.2 sec) and Model 2 (410.9 sec) training times 

is significantly larger for the similar criteria. Despite of 

the training time, Model 3 was still closest to the actual 

savings as shown in Table 4. On closer inspection of 

Fig. 8, it can be seen that quite a lot of data points 

predicted by Model 3 overlap the actual data while 

Model 1 and Model 2 only come close a several times. 

This proves how Model 3 is accurate in prediction of 

both long term as well as data over short periods of time. 

While this paper only presented the energy savings 

application of an ensemble of bagged trees model, it can 

also be used for many other energy efficiency 

applications required to estimate building energy 

consumptions, particularly for hourly or sub-hourly time 

interval predictions. Savings prediction allows us to 

optimize building systems to make them more efficient. 

Results for Savings Calculation 

After training the models with the required data sets, 

savings were calculated on both the actual and simulated 

data, and then compared to the actual savings to evaluate 

effectiveness of the model in its real-life applications. 

Actual savings were calculated through the energy 

simulation program eQuest with optimization settings as 

the following: Light change from 1.2 W/ft
2
 to 0.8 W/ft

2
, 

Chiller efficiency from 0.82 kW/tons to 0.6 kW/ton and 

Optimal Supply Air Temperature was change from 

constant 55 to respective optimal value as shown in 

Table 3. Actual building savings were recorded from 

collected data over a period of four years. The collected 

data is represented in Table 4 Actual savings were 

calculated to be 27.3% for Simulated building 3 and 

35.51% for Actual building 1 and the aggregated 

bootstrapping model proved to come closest to actual 

savings with a prediction of 29.8% and 32.6% respectively.
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Table 3: eQuest optimization settings 

Optimization  Original setting Optimal setting 

Light change 1.2 W/ft2 0.8 W/ft2 
Chiller efficiency 0.82 kW/ton 0.6 kW/ton 
Supply air temperature 55 F Optimal 

 
Table 4: Comparison of savings data 

 Simulated Actual 
Savings Building (No.3) Building (No.1) 

Actual Savings 27.3% 35.51% 
Model 1 58.3% 61.4% 
Model 2 43.0% 57.6% 
Model 3 29.8% 32.6% 

 

Conclusion 

Three different models: Linear Regression, Artificial 

Neural Network and Aggregated Bootstrapping model 

were trained and tested based on similar training sets and 

then used to predict building energy consumption data. 

The Aggregated Bootstrapping model based on the 

aggregated bootstrapping algorithm proved to be the 

most accurate solution to the problem. The proposed 

model had the highest accuracy in all the compared cases 

for both simulated and actual data with accuracy as high 

as 99.8%. The trained models were then used to calculate 

energy savings in which the Machine learning model 

proved to be the closest predictor to actual savings. 

While energy savings is only one of the many 

applications of such techniques other possible 

applications could be energy measurement and saving 

verification, optimization, building energy assessment, 

and fault detection and diagnosis. 
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