Journal of Computer Science 1 {3}: 405-412, 2005
[SSN 1549-3636
© Science Publicaticns, 2005

A Fast Approximate String Searching Algorithm

Mahmoud Mhashi, Adnan Rawashdeh and Awni Hammouri
Department of IT, Faculty of Science, Mu’tah University, Mu’tah, Karak, 61710, Jordan

Abstract: [n both approximate and exact string searching algorithms, the shift distance at the skipping
step plays a major role in the performance of string matching algorithms. A new algorithm called the
Medified Character-Weight Algorithm {(MWA} has been developed te test the effect of the shift

distance on the performance of approximate string matching.

An experiment was performed

comparing the performance of the MWA with that of Mhashi’s Character-Weight Algorithm (WA}
using English text of size 1,005,077 characters. Using the average number of comparisons and the
clock time as evaluation criteria, the MWA algorithin used only about 4% to 15% as many
comparisons as the WA algorithm and about 10% to 35% of the clock time.

Key words: Approximate String Matching, Searching, Shift Distance, Cendition Types, Character

Access

INTRODUCTION

String searching algorithms that are used to refrieve
information based on a search criterion form one of the
most important topics in computer science. One
example of a widely used application for approximate
string matching algorithms nowadavs is the Internet.
People using the Internet usually search for information
by typing keywords {string patterns} into a search
engine and then waiting for information to be returned.
The matching process between the keyword input and
the text to be searched can be accomplished in two
ways: {I) Exact match [1-4], meaning that the passages
refurned will contain an exact match of the keyword
input. (II} Approximate match [5-7], meaning that the
passages returned will contain some part of the
keyword input. More informaticn may be returned and
users must then filter information accordingly to find
what they need. The contribution of this study falls
under the category of approximate string matching
algorithms.

In the present study, we are interested in designing
an algorithm that finds all the occurrences of
Pat = P1...Py, in Text = T1...T,, where m < n with at

most & differences of type (a}, (b} and {(c) below.
Different autheors [8-10] have studied this problem.
Three types of differences are distinguished [11]:

* The i character in Texs does not exist in Pa.

The &P character in Par does not exist in Text.
* A character of the pattern corresponds to a different
character of the text {i.e., a mismatch}.

An intensive search for information is taking place on
the Internet all around the word and one of the most
crucial issues associated with approximate string-
searching algorithms is performance. How efficiently
information can be retrieved becomes an important
issue. Mhashi [12] intreduced an improved algorithm,

405

known as the Character-Weight Algorithm {WA). The
WA algorithm intreduced improvements over a
previcus ccunterpart algorithm in terms of both
relevance and performance. This study focuses on the
performance issue. We have enhanced the performance
of an existing algorithm, in terms of the clock time
required for the search, the number of character
comparisons and the number of positions shifted while
moving on with the comparison process. The new
developed algorithm will work for any character set.
The organization of the study is as follows: Section 2
describes the earlier algorithm WA and shows how it
works through an example. Section 3 describes the new
MWA algorithm and illustrates how it works using the
same example. Section 4 contains a discussion of the
two algorithms and illustrates the performance
improvement of MWA over WA. Tables showing the
performance improvement achieved in this research
support the evaluation process. Finally, Section 5
contains the conclusions of our research work and
ouflines future work in this area.

DESCRIPTION OF THE CHARACTER-WEIGHT
ALGORITHM (WA)

The WA algorithm concentrates on both the relevance
and the performance of retrieving all the cccurrences of
the pattern in the text. In this section, we address the
performance issues (for more details of the full
algorithm see [12]. The WA algorithm has three steps:

1. The preprocessing step: In this step, the patiern is
preprocessed to determine the important and
unimportant parts. For cur experiment, the first
two-thirds of the characters are considered to be
the important part while the rest are considered the
unimportant part. The result of this step is a table
called the weight table. Theweight table expresses

A pseudo code description of the WA algorithm follows:

J. Comp. Sci., I (3): 405-412, 2005

the importance of the different characters in the
pattern Par. In cur case, the weight for each
character in the important part is k_mismatches + 1
(i.e., if there is a mismatch at any positicn in the
important part, then the algorithm decides that
there is no occurrence at that location). The weight
for each character in the rest of the pattern
(unimportant) is one.

The checking step: The pattern is checked in the
following order:

int new & mismatches (Text, n, Pat, m, weight, kmis}
char *Text; // Text: Text[C] ... Text[n-1]

intn; // Textlength
char *Pat; // Pat: Pat[0] ... Pat[m-1]
intm; // Patlength

int *weight, // weight: weight [0] ... weight[m-1]

int kmis;

int mis; //the total current number of mismatches

int

Lik

/] Preprocess

(1)

pref inf=m/3 *2-1; suf=m-—pref inf- 1,

/ prepare the weight table

for(i=0; i<=pref_inf; i++} weight[i] = kmis + 1;

for(i=pref inf+1;i<m; i++)} weight[i] = 1;

i=m-1;

/l Searching Process.

While { 1 <=n-1 + kmis) { // Outer-loop, as long there is text >=m-kmis, continue searching

mis =0;j =0;

/ test the last and first characters in the imporrant part first

if { Text[1 + suf] !=pat[pref_inf] lltext[1—m+ 1]!=pat[]])}

(4
&)
(6)

(8)
@)

(10}
(11
(12}
(13}
(14}

(15} if {j == m) report that there is an occurrence ati— m-1to1i

(16}

The following example demonstrates how the W A works:

mis += weight[j];

* Last and first characters in the important part,

* The rest of the characters in the imporiant part
from right to left and

* The rest of the characters in Pat (unimportant)
from left to right.

The skipping step: At this step, the straightforward
algorithm is applied and the pattern is shifted
forward one position in relation te the text when a
match/mismatch is found.

// kmis: The maximum number of k mismatches allowed

else /7 test remaining imporiant pari characters from right to left

(forj=pref inf—1,k=i-suf-1; j>0; k-, j-}

if (text[k] != pat[j]) {

mis += weight[j]; break;, /#a mismaich found, no need to continue

}

il { Ymis) /test unimportani part characters from left ro right.
for{j=prel_inf+ l;k=i—suf + 1;j < m; j++, k++)

if (text[k] !=pat[j]) {
mis += weight[j];

if { mis > kmis) break, /4 There is no occurrence

}

i++; // move to the next location

}

J. Comp. Sci., I (3): 405-412, 2005

Example: Let the number of mismatches kmis = 1. Let
Text and Pat be as follows:

Text: PPEEPPPIIDPPIDPPIISE

Pat: PPEESS

Assume that “PPEE” is the important-part and “SS” is
the wunimportant-part. The comparison starts at
character ‘E’ at Texrs (the last character in the

importanf part), then Texsy (first character) followed by
Texzz’ then Texty respectively {remaining characters

compared right-to-left). Since there is no mismatch for
the important part the algorithm moves to the
unimporiani part, Textq and Texis (the unimporiant part

is compared from left te right). The algorithm detects
two mismatches {(making mis = 2}, which is greater than
the specified criterion (kmis 13, Six character
comparisons are needed. Thus the algorithm moves
forward one position.

Text: PPEEPPPEEDPPEDPPEESE

Pat: PPEESS
The algerithm detects one mismatch at character ‘P at
{exty, in one character comparison. Thus it will move

ahead one position.

Text: PPEEPPPEEDPPEDPPEESE
Pat: PPEESS
Another mismatch is
one-character comparison.
positicns, we get:

detected at
Moving

Texts, in a
ahead two

Text: PPEEPPPEEDPPEDPPEESE

Pat: PPEESS
Another mismatch is detected at Texz,, in four character
comparisons. After moving one location, the result as
follows:

Text: PPEEPPPEEDPPEDPPEESE

Pat: PPEESS
As in the first step above, two mismatches detected at
Textg and Texi|p and six character comparisens are

needed. Thus moving ahead four positions (one
movement at a time), we get:

Text: PPEEPPPEEDPPEDPPEESE

Pat: PPEESS

One mismatch is detected at Texsy and five character
comparisons are needed. There is a mismatch at the

next three positions, thus we can move ahead four
positions. We get:

Text: PPEEPPPEEDPPEDPPEESE
Pat: PPEESS

407

Up to this point, five character comparisons are needed
to detect one mismatch at Textys, thus we can move
ahead one position.

Text: PPEEPPPEEDPPEDPPEESE
Pat: PPEESS
At this point, each character in Texr at the imporiant
part is matched with the corresponding character in Par.
There is only one mismatch at character ‘B’ at Texr,,
{i.e., mis < kmis), thus we have found one cccurrence of
Par in Texr. Six character comparisons are needed.
Moeving forward one position, we get:

Text: PPEEPPPEEDPPEDPPEESE

Pat: PPEESS
One character comparison is needed to detect one
mismatch at Texr{g. Moving forward one position ends

the searching process, because the number of characters
left in Text is less than m — kmis, where m is the number
of characters in the patiern. The total number of
character comparisons needed is 35.

THE MODIFIED CHARACTER-WEIGHT
ALGORITHM (MWA)

Like any approximate string matching algorithm, MWA
finds all the relevant occurrences of a pattern Paxj,...,

Paty,_; in the text Textp... Texry_; with a maximum of

k_mismatches. [t preprocesses the pattern (o divide the
pattern inte two parts {important and unimportant) and
to produce three different arrays skip, pasition and sign.
The length of the first part is called pref_inf. I{is equal
tom /{3 *%2-1. In other words, it equals to two-thirds
of m, where mis equal to the Paf length. The length
of the second part is called suf. [t is equal to
m-pref_inf - 1. In this study, we assumed that the first
part (with length pref_inf) is the importanr part.
Generally speaking, the important part might be any
segment of the pattern.

The skip array records how much the pattern is to be
shifted forward in relation to the text when a
match/mismatch is found and the reference character in
the text exists in the pattern. In this algorithm, there is
only one dynamic reference character.

Let i0 = Tex.tj, where Textj is the character that

corresponds te the last character in the pattern. Let
base = j - suf be the position of the base character in
the text that comresponds te the last character in the
important part in Pat. From the base character, the
position of the dynamic reference character {(ref) of
MWA can be calculated. If the base character cccurs in
Pai, then ref is calculated according to the following
formula:

ref = (base + 1} + (pref inf+ 1) - pT,

J. Comp. Sci., I (3): 405-412, 2005

where base is defined above, pref inf is the length of
the imporian: part in Pat and pT = pos[Texi{base]], the
position of the base character in the Texz.

Example: In order to motivate these formulas, let us
consider this example.

Text: ABCDEFGH

Pat: CDEFGH

In this example, j = 5 at character ‘F’ in Texi. The
value of pref_infis 3 and the value of sufis 2. The base
reference equals 3 at character ‘DD in Texr and it occurs
at position pT' = 2 in Par. The position of the reference
character ref =3 +3 + 1 -2 = 5. So, the character ‘F’
in Text is the reference character. The location of ref
ranges from base to base + pref_inf + 1.
The shift distance depends on the occurrence of refin
Par. If ref does not occur in Paz, then o = 2 * {(pref_inf
+1) — pT'+ 1 (i.e., d ranges from pref_inf +1 to 2 *
pref_inf +1). If ref occurs in Patf, then the shift
distance o = skip|Text[ref]] — pT +1. In other words, d
ranges frem 1 to 2 * pref_inf— 1.
The sign array tells whether the reference character in
Text exists in the given pattern or not. Each location in
this array holds cne value, either zero {(i.e., ref does not
cccur in Par and there is a mismatch} or one {i.e., ref

void MWA (char *Text, int n, char *Pat, int m)
/* where:

n is the Text length

Text: Text[C] ... Text[n-1]

mis the Patlength

Pat: Pat[0] ... Pat[m-1] */

character occurs in Pat, but it is not necessary that there
is a match}. So, the algorithm works as follows:

* Checking step: The existence of base in Pat
is checked first. If it dees not exist, move to
the skipping step. Otherwise, there is a possibility
of an occurrence. In such a case, the last and
first characters of the important part will be
checked first followed by the rest of the
important part from right to left. If there is any
mismatch at the imporfant part, then move to the
skipping step. Otherwise, the unimportant part will
be checked from right to the left. The number of
mismatches will be counted. If the number of
mismatches is less than or equal to k_mismatches,
then an occurrence will be reported. Otherwise,
there is no occurrence and we move to the skipping
step.

* After the checking step, the reference character is
determined according to the character that is next
to the base character. Next, the shift distance is
determined according to the occurrence of ref in
Patr. Alignment is carried out and followed by the
checking step. The pseude cede for the MWA
algorithm that reflects the above ideas follows:

int sign[ALPHABET SIZE]; /*sign:sign[0] ... sign[ALPHABET SIZE - 1] *
int skipl ALPHABET SIZE]; /*skip: skip[0] ... skip[ALPHABET SIZE - 1] %/

int pos[ALPHABET SIZE];
{
pref_inf=m/3*2-1,
suf =m - pref inf- 1,
/f initialize the arrays pos, skip and sign
for(j=0; j<ALPH_SIZE; j++} {
pos[jl=0; skip[j] = 2 * {pref inf + 1};
!
/ Update the arrays according to Pat
for(j=0; j<=pref_inf; j++) {
poslpat[j]]=j+1;
!
/1 Start Searching Here
it =m-1; base =i0 — suf;
while(i0 <=n - 1 + kmis) {
mis =0

sign[j1=0;

skip[pat[j]] = 2 * (pref_inf + 1} -j - 1;

pos: pos[0] ... pos[ALPHABET SIZE - 1] %

sign[pat[j]] = 1;

if {!sign[text[base]]} { // skip il base character doesn’t occur in Pat

pT = pos[text[base]];
ref = base + {pref_inf + 1) - pT;
if (Isign[text[ref]]}
i0 += 2 * (pref_inf + 1} - pT;
else
i0 += skip[text[ref]] - pT’,
)

J. Comp. Sci., I (3): 405-412, 2005

else { /* Test the possibility of occurrence */
// test the last and the first characters

if{ text[base] != pat[pref inf] [l text[i0 - m_minus 1] !=pat[0]) goto MOVE;

else {
/1 test the rest of important part
for {j = pref inf -1,k =base -1;j>0; k-, j--)
if { text[k] !=pat[j]) gote MOVE;
/I Test the unimportant part

for (j = pref inf+ 1,k =base + 1;j <m; j++, k++} {

if { text[k] != paf[j] } mis += wight[j];
if { mis > kmis } goto MOVE;
)
/* Report a match ati —m...1i0-1 */

}
MOVE:

pT = pos[text|[base + 1]];
ref = (base + 1) + (pref_inf + 1) - pT;
if (Isign[text[ref]]}
i0 += 2 * (pref_inf + 1} - pT'+ 1;
else
i0 += skip[text[ref]] - pT + 1;
} // End while

}// Function end

Worst Case and Average Case Analysis: Let W(n) be

the number of comparisons required in the worst case to

find all the occurrences of Parin Texr. Such worst case

can be found when:

* The character at {base + 1} occurs at the last position
in the pref infx part (i.e., important part) and

* The K mismatches are found at the last K positions in
the unimportant part {suffix part).

This causes one skip pesition and m comparisons in

each iteration. So, Win) = m*(n—m+1 + K_mismatches)

cemparisons. Thus, the number of shifts with the worst

case is equal {n —m + K_mismatches +1).

Regarding the average case, let A(n) be the number of

shifts performed in the average case. The shift distance

in each iteration will be equal to either 1, 2, 3, ...,

202m/3+1 = 4m/3 + 1. Assume the shift distance is

equally likely to be in any particular iteration that

equals to 1/({4m/3}+1}. Then,

A) =1/m/3)+1* 3 = (2m/3+2)/2
=(4m+6)/3

Example: The same text and pattern used in the
previous example are used here.

Text: PPEEPPPIIDPPIDPPIISE

Pat: PPEESS
As in the previcus example, “PPEE” in Par is the
imparfant part and “S8” is the wnimportant part
According to the given pattern, the values of the sign
array are:

409

sign[*P’] = sign[*E’] = sign[*S’] = 1.

Otherwise, the initial value of the sign array is zero. At
the beginning and in iteration number 1, MWA starts
the comparison at the important part at the last
character and then the first, followed by the rest from
right to left (i.e., Text;, Text), Text, and, Text;
respectively). Since there is no mismatch for the
important part, the algorithm moves to the unimportant
part, Texiq and Textg (unimportant part compared frem

left to right}. The algorithm detects two mismatches
{making mis = 2) and that is greater than the specified
criterion (kmis = 1}. This is the end of the checking
step. Six character comparisons and cne character
access are needed. In order fo complete the skipping
step, ref must be calculated. pT = pos[‘P’] = 2, where
‘P’ at Textq. The value of ref = (base + 1) + {pref_inf+

1})-pT=4+4 -2 =06. Thus the algorithm moves
forward five positions te align Texig with Pasy. The

resultis as follows:

Text: PPEEPPPEEDPPEDPPEESE

Pat: PPEESS
The checking step starts again. The existence of the
base character at Texrg in Par is tested. According to

the sign array, it occurs in Pat. There is a match
between each character in Texr with the corresponding
characters in the important part of Par. Moving to the
unimportant part, the algorithm detects two
mismatches, which is greater than kmis 1. Six
character comparisens and one character access are

J. Comp. Sci., I (3): 405-412, 2005

needed. The ref must be calculated. The character ‘D’
at Textg will be used as reference for calculating ref.

pT = pos['D’] = 0. The value of ref = (base + 1) +
(pref_inf+ 13 — pT'=9 + 4 — 0 = 13. Since Texr;
doesn’t occur in Pat, the algorithm moves forward nine
positions. The result is as follows:

Text: PPEEPPPEEDPPEDPPEESE
Pat: PPEESS

The existence of the base character at Texty; in Par is
tested. According to the sign array, it occurs in Par.
There is a match between each character in Texr with
the comrespending characters in the imporrant part of
Par. Moving to the unimportant part, the algorithm
detects one mismatch, but that number is less than or
equal to kmis = 1, thus, there is an occurrence of Par in
Text. Six character comparisons and one character
access are needed. Moving to the next position ends
the search process since the number of characters left in
the text is less than the Par length. So, the number of
shifts is three and the total number of character
comparisons is 18 in addition to 3 character accesses
and 4 number comparisons.

RESULTS AND DISCUSSION

In this experiment, the two algorithms WA and MWA
were implemented and compared on English text with
size exactly 1,005,077 characters. A program was
designed and implemented in C++ to select randomly
3000 patterns divided into 10 groups. FEach group
consists of 300 patterns. All the information about the
different groups can be seen in Table 1 {A). The cost of
the search process is measured by finding the average
number of shifts, the clock fime and the average
number of conditions with the different types including
character access, character-comparisens and number
comparisons to find all the occurrences of the patterns
in each group in Texs. The clock time measure includes
the preprocessing of the patterns in the two algorithms.
The results of the experiment can be seen in Table 1.

In Table 1(A}, the number of groups, the pattern
lengths, the number of k-mismatches and the average
number of occurrences are presented. The pattern
length ranges from 11 to 92 characters. The number of
k-mismatches ranges from 5 to 23. The average
number of cccurrences ranges from 1.63 {group 8} to
105.84 (group 1).

The clock time required to find each group of patterns
is recorded in Table 1 (B). By using WA, the clock
time required ranges from 2.487 seconds (group 4) to
2.625 seconds {group 2). By using MWA, it ranges
from 0.235 seconds {group 9} to 0.906 seconds {group
1). By using MWA, the clock time required by the
algorithm WA is reduced by 65.29% {(group 1) to
90.83% {group 9}.

The average number of comparisons required te find
the occurrences of patterns in Text is recorded in Table

410

1 {C). From the table, it is clear that MW A uses three
types of conditions, including character accesses,
number comparisons and character comparisons. On
the other hand, WA uses only two types of conditicns,
including number comparisons and character
comparisons. The character accesses are of the
following form:

if {Isign[Textref]]}; // see MWA algorithm.
The second type of condition is number-comparisons of
the following form:

if(i0 <= n - 1 + kmis); / see both algorithms.
The third type of condition is character comparisons of
the following form:

if { Text[k] == Pai[j]); // see both algorithms.

In order to test if there is any difference among these
three types of conditions, in ferms of clock time
execution, each type was repeated 107 times. It was
found that the clock time needed to execute a condition
of type character comparisen is reduced to 2% of that
used by number comparison and 41% of that used to de
a character access.

Locking at Table 1 {C}, one can see that WA uses only
number comparisons and character comparisens. The
total number of comparisons for both conditions ranges
from 3,025,097 (group 10} to 3,029,718 {group 1}.
While using MWA, it ranges from 118,433 {group 10}
to 434,553 (group 1). The new algorithm MWA
reduces the total average number of comparisons
required by WA by 85.66% (group 1} to 96.09%
{group 10).

The performance improvement of MWA comes from
different factors, including:

* Shift distance: using MWA, the shift distance
ranges from one position te 2 * important length.
On the other hand, the shift distance in WA is cne
position only. Of course, increasing the shift
distance reduces the number of shifts and in turn
decreases the number of comparisons.

Number of conditions: the average total number
of conditions using WA is much larger than
the average number of conditions using
MWA (3,029,718 conditions vs. 4345,53
conditions). This result comes directly from the
shift distance.

Condition type: using MWA, about half of the
average totals conditions of type character access,
while all the conditions are of type character
comparisen and number comparison using WA
(See Table 1 C). From the previous discussion,
one can notice that the condition of type character
access needs less clock time by 40% than the clock
time required by either the condificn of type
character comparison or number comparison. This
has a major effect on the performance of the twoe
algorithms.

J. Comp. Sci., I (3): 405-412, 2005

Table 1: A Comparison between MWA and WA for Each Group in Terms of 1} the Clock Time Required to Find
Each Group 2) the Average Number of Comparisons 3) and 4} the Percentage of Improvements

(A) Pattern Information

(B) Average Clock Time {in Seconds)

Pattern Number Average clock fime in seconds by using the two algorithms

Group Length of K- Ave. Num. of --- -

No. in characters mismatches Occurrences Using WA Using MWA Improvements of MWA vs. WA
1 11 5 105.84 2.610 0.906 65.29%

2 20 7 2.53 2.625 0.362 78.59%

3 29 9 3.29 2.622 0.438 §3.30%

4 38 11 2.73 2.487 0.375 8§4.92%

5 47 13 2.07 2.609 (.328 8§7.43%

6 56 15 1.69 2.594 0.281 89.17%

7 65 17 1.90 2.594 0.282 §9.13%

8 74 19 1.63 2.562 0.265 §9.66%

9 83 21 1.68 2.563 (.235 90.83%

10 92 23 1.75 2.531 (.230 90.12%

(C) Average Number of Cemparisens Including Character Accesses, Number Coemparisens and Character
Comparisons. Note that WA Requires No Character Accesses

Ave. of Comparisons using WA Ave. of Comparisons using MWA Total
- e [mprovement
Group Number- Character- Char. Number Character of MWA
No. Comp. Comp. Total Access Comp Comp. Total Versus WA
1 1018109 2011609 3029718 249582 102091 82880 434553 85.66%
2 1016034 2010830 3026864 136270 38628 66836 261734 91.35%
3 1015969 2011000 3026969 99948 44843 59585 204376 93.25%
4 1015307 2010802 3026109 82590 37988 55089 175667 94.19%
5 1016192 2010863 3027055 71089 33361 50824 155274 94.87%
6 1017226 2010912 3028138 65240 31206 49751 146197 95.17%
7 1017504 2011000 3028504 60107 29107 47311 136525 95.49%
8 1015662 2010871 3026533 53932 26023 42707 122662 95.95%
9 1014461 2010786 3025247 52187 25423 42968 120578 96.01%
10 1014292 2010805 3025097 50581 24876 42976 118433 96.09%
Table 2: A Comparison between WA and MWA with Text Size 1,907,938 Characters
{A) Pattern Information (B) Average Clock Time (in Seconds)
Pattern Number Average clock time in seconds by using the two algorithms
Group Length of K- Ave. Num.of - -
No. in characters mismatches Occurrences Using WA Using MWA Tmprovements of MWA vs. WA
1 11 5 142.64 4.703 1.703 63.79%
2 20 7 2.90 4.609 1.063 76.94%
3 29 9 3.83 4.609 0.828 §82.04%
4 38 11 335 4,394 0.687 85.05%
5 47 13 233 4.656 0.610 86.90%
6 56 15 1.94 4.657 (.562 87.93%
7 635 17 1.97 4.672 ¢.516 88.96%
8 74 19 1.71 4.578 (.469 89.76%
9 83 21 1.72 4.578 0.453 90.11%
10 92 23 1.89 4,362 0.453 90.07%

In order to test the effect of text size on the
performance of the twe algorithms, the text size has
been increased from 1,005,077 characters into
1,907,938 characters. The experiment is repeated with
the same specifications except the text size. Table 2
reflects the results.

411

In Table 2{A), the average number of occurrences
ranges from 1.71 (group 8} to 142.64 {group 1}. The
clock time required to find each group of patterns is
recorded in Table 1 (B). By using WA, the clock time
required ranges from 4.362 seconds (group 10} to 4.703
seconds (group 2). By using MWA, it ranges from

J. Comp. Sci., I (3): 405-412, 2005

0.453 seconds {group 9 and greup 10} to 1.703 seconds
{group 1}. By using MWA, the clock time required by
the algorithm WA is reduced by 63.79% (group 1) to
90.11% (group 9). This percentage of reduction is very
close to the percentage of reduction (65.29% to
90+.83%) for the text size 1,005,077 characters. This led
us not to include the other associated information for
the size 1907,938 in this study to aveid redundancy.

CONCLUSION

A new approximate string searching algorithm, the
Modified Weight Algorithm (MWA) has been
developed and compared with a recent approximate
string-searching algorithm called the Weight Algerithm
(WA}, The two algorithms preprocess the pattern only.
An experiment was performed to evaluate the new
algorithm MWA. The number of compariscns, the
running time and the shift distance are the different
criteria used to compare the different algorithms.

In comparison between WA and the new algorithm
MWA, the results of the experiment suggest that: (I} the
average number of comparisens required by WA
(3,025,097 to 3,029,718} has been improved by MWA
(118,433 to 434,553). So, the improvement ranges
from 85.66% to 96.09%, so the new algorithm requires
only 4% to 15% as many comparisons. (I[} The clock
time range required by WA (2.61 to 2.653 sec) has been
improved by MWA fc become (0.906 to 0.235 sec).
Thus, the percentage of improvement ranges from
65.29% to 90.83% and the new algorithm clock times
range from 10% to 35% of the old ones. Furthermore,
using the MW A, the shift distance ranges from 1 to 2*
important_part_length + 1 positions. On the other
hand, using WA, the shift distance is cne position only.
The MWA algorithm gains its performance from two
main changes. One change is the use of character
access conditions. All the conditions used by WA,
whether number comparisons or character comparisons
require high execution clock time. On the other hand,
using MWA about half the conditions are of type
character access, which need less clock time than the
other tvpes of conditions. This increases the
performance of MWA in comparison with WA. In
general, increasing the percentage of the required
conditions of type character-access increases the
performance of string searching algorithms.

The other direction is the shift distance {1 to 2%
imparfant_part_length + 1}. This decreases the number
of required cenditions, which, in turn, decreases the
clock time required to finish the task. However, in our
experiments using MWA we considered the first
two-thirds of the pattern as the important part. In

412

practice, the important part might be any part of the
pattern. The question arises, is it possible to determine
the important part automatically. How does that affect
the relevance of the occurrences? How does that affect
the system performance? Such questions need to be
investigated next.

ACKNOWLEDGMENTS

The authors would like fo thank Professor Martha
Evens from [Mlincis [nstitute of
Technelegy for her helpful comments and suggestions
that reflected many improvements in the presentation of
this study.

REFERENCES

Fredriksson, K., 2003. Shift or string matching
with super-alphabets, Information Processing
Letters, §7: 201-204.

Apostolico, A. and 7. Galil, 1997. Pattern
Matching Algorithms, Oxford University Press.
Mhashi, M., 2003. A Fast String Matching
Algorithm using Double-Length Skip Distances.
Dirasat I., University of Jordan, Jordan, 30: 84-92.
Fenwick, M., 2001. Fast string matching for
multiple searches. Software-Practice and
Experience, 31: §15-833.

Lecreg, T., 1998. Experiments on string matching
in memory structures, Software-Practice and
Experience, 28: 561-568.

Dermouche, A., 1995. A fast algorithm for string
matching with mismatches, Information Processing
Letters, 55: 105-110.

Park, K. and 7. Galil, 1990. An improved
algorithm for approximate string matching, SIAM
I. Comput., 19: 989-996.

Wu, S. and U. Manber, 1995. Fast text searching
with errors, Comm. ACM, 35: 83-91.

Galil, Z. and K. Park, 1998. An improved
algorithm for approximate string matching, in
[CALP, pp: 394-404.

Cole, R. and R. HariHaran, Approximate String
Matching: A faster simpler algorithm, In Proc. 9"
ACM-SIAM Symposium eon Discrete Algorithms
(SODA), pp: 463-472.

Grossi, R. and F. Luccio, 1989. Simple and
efficient string matching with k mismatches.
Information Processing Letters, 33: 113-120.
Mhashi, M., 2001. Character-Weight based

k-mismatches and Relevancy. Al-Manarah, 7:
95-114.

10.

11.

12.

