
 

 

 © 2020 Saugat Aryal, Dheynoshan Nadarajah, Prabath Lakmal Rupasinghe, Chandimal Jayawardena and Dharshana 

Kasthurirathna. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license. 

Journal of Computer Science 

 

 

Original Research Paper 

Comparative Analysis of Deep Learning Models for Multi-

Step Prediction of Financial Time Series 
 

1Saugat Aryal, 2Dheynoshan Nadarajah, 3Prabath Lakmal Rupasinghe, 
3Chandimal Jayawardena and 1Dharshana Kasthurirathna 

 
1Department of Software Engineering, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka 
2Independent Researcher, Colombo, Sri Lanka 
3Department of Computer Systems Engineering, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka 

 
Article history 

Received: 10-08-2020 

Revised: 16-10-2020 

Accepted: 21-10-2020 

 

Corresponding Author: 

Saugat Aryal 

Department of Software 

Engineering, Sri Lanka Institute 

of Information Technology, 

Malabe, Sri Lanka 

Email: saugat.aryl@gmail.com 

Abstract: Financial time series prediction has been a key topic of 

interest among researchers considering the complexity of the domain 

and also due to its significant impact on a wide range of applications. In 

contrast to one-step ahead prediction, multi-step forecasting is more 

desirable in the industry but the task is more challenging. In recent 

days, advancement in deep learning has shown impressive 

accomplishments across various tasks including sequence learning and 

time series forecasting. Although most previous studies are focused on 

applications of deep learning models for single-step ahead prediction, 

multi-step financial time series forecasting has not been explored 

exhaustively. This paper aims at extensively evaluating the performance 

of various state-of-the-art deep learning models for multiple multi-steps 

ahead prediction horizons on real-world stock and forex markets dataset. 

Specifically, we focus on Long-Short Term Memory (LSTM) network 

and its variations, Encoder-Decoder based sequence to sequence models, 

Temporal Convolution Network (TCN), hybrid Exponential Smoothing- 

Recurrent Neural Networks (ES-RNN) and Neural Basis Expansion 

Analysis for interpretable Time Series forecasting (N-BEATS). 

Experimental results show that the latest deep learning models such as N-

BEATS, ES-LSTM and TCN produced better results for all stock 

market related datasets by obtaining around 50% less Root Mean 

Squared Error (RMSE) and Mean Absolute Error (MAE) scores for each 

prediction horizon as compared to other models. However, the 

conventional LSTM-based models still prove to be dominant in the 

forex domain by comparatively achieving around 2% less error values. 

 

Keywords: Financial Time Series, Forecasting, Multi-Step Prediction, 

Deep Learning 

 

Introduction 

Financial time series forecasting has drawn 

significant attention among the researchers from both 

academia and financial industry. It is a complex domain 

which requires modelling of nonlinear behaviour and 

stochastic pattern while learning the temporal 

dependencies between the data. The signal to noise ratio is 

considerably low which contributes to the intricacy while 

forecasting. Researchers and stakeholders are consistently 

working on implementing new methodologies for 

improving the accuracy of predictive models due to the 

higher demand from the financial market. Numerous 

studies have been carried out in regards to both statistical 

and machine learning based forecasting techniques. Deep 

learning based models have achieved commendable 

results across various fields of natural language 

processing (Devlin et al., 2018; Brown et al., 2020), 

speech processing (Ogunfunmi et al., 2019), neural 

machine translation (Bahdanau et al., 2014; Wu et al., 

2016), image classification (Krizhevsky et al., 2012) and 

reinforcement learning (Silver et al., 2017). Moreover, 

recent deep architectures have also demonstrated 

significant improvements in accuracy for time series 
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forecasting (Rangapuram et al., 2018; Salinas et al., 

2020) and specifically in the financial setting (Yan and 

Ouyang, 2018; Chen et al., 2019) over traditional time 

series models. One of the key reasons for effectively 

handling the non-stationary nature and complications of 

the changing financial environment is due to its ability 

to learn representations through hierarchical hidden 

layer structure. The multi-layer architecture allows the 

deep models to process and analyze the complex non-

linear temporal dependencies and establish proper 

latent representations. 

In most real world applications, multi-step or multi-

horizon forecasting are more valued as opposed to single 

or one-step ahead prediction. Long-term prediction 

mechanisms can help provide key insights for optimizing 

resource allocation and assisting the decision making 

process. Investors and financial firms can re-evaluate 

and efficiently plan their investment strategy to gain 

maximum profits by observing the longer predicted 

trajectory. Two major multi-horizon forecasting 

approaches have been explored lately, based on the 

foundation of deep learning architecture, Iterative and 

Direct (Sequence-to-Sequence). Iterative method deals 

with recursively applying one-step ahead prediction 

where the predicted output is fed as input for the next 

forecast while direct approach overcomes the 

shortcoming of recursive technique by forecasting the 

prediction vector directly at once. 

While there have been numerous investigations of 

multi-step forecasting across diverse fields, such as, 

electricity load consumption (Zheng et al., 2017;   

Masum et al., 2018), traffic flow (Li et al., 2017; Lv et al., 

2014), renewable energy production (Ghaderi et al., 

2017), Electrocardiogram (ECG) analysis (Chauhan and 

Vig, 2015), very few research have focused on financial 

applications (Ouyang and Yin, 2018). A comprehensive 

analysis of the performance of sophisticated deep 

learning techniques for multi-step financial time series 

forecasting is lacking in the literature. 

This work considers the most novel and relevant deep 

architectures and compare them in terms of performance 

accuracy on financial benchmarks. Specifically, we 

focus on LSTM and it’s two variations, Bi-directional 

LSTM, Stacked LSTMs, Encoder-Decoder architecture, 

TCN, ESRNN and N-BEATS. The experiment is carried 

out on stock market datasets including S&P500, DJIA 

and NASDAQ 100 and forex markets such as EURUSD, 

EURGBP and EURJPY for multiple multi-steps ahead 

forecast horizons (2, 3, 5, 7 and 10 steps). To the best of 

our knowledge, such comparison of multi-step 

forecasting using deep learning models for financial 

markets has not been done yet. 
The remainder of the paper is structured into four 

sections. Works related to multi-step forecasting and 

financial multi-horizon forecasting using deep learning is 

described in section 2. Section 3 describes the deep 

learning models considered for this research. In section 4 

we present the details of experiments conducted and 

discuss the results. The conclusion, limitations and 

future work is provided in section 5. 

Related Work 

In the field of multi-horizon time series prediction, 

deep learning models have been employed increasingly 

due to their performance dominance over statistical and 

traditional time series models. Direct strategy used for 

forecasting generally consists of sequence-to-sequence 

(Sutskever et al., 2014; Cho et al., 2014) architecture 

where the encoder encodes the historical inputs to 

provide a compressed representation and the decoder 

architecture is used to generate future predictions based 

on the vector. The overall model is jointly trained to 

generate the vector of forecast for pre-defined horizon. 

The Multi-horizon Quantile Recurrent forecaster 

(MQRNN) technique (Wen et al., 2017) generates the 

hidden latent representation of historical time series using 

LSTM which is then fed to Multi-Layer Perceptrons 

(MLPs) to produce multiple quantile forecasts for multiple 

horizons. The authors in (Fox et al., 2018) propose a 

novel deep multi-output forecasting framework called 

DeepMo for predicting blood glucose trajectories. They 

introduce the concept of function forecasting which 

predicts the representation of the data in contrast to 

learning the distribution of future values based on the 

past. To complement this model, the authors also 

develop new architecture to model temporal 

dependencies and allow information propagation across 

the prediction window. 

A new LSTM based architecture (Laptev et al., 2017) 

for extreme event forecasting at Uber is proposed which 

uses an autoencoder for feature extraction which is then 

combined using an ensembling technique and fed to 

LSTM based forecaster. The novel architecture provides 

a framework which is trained using heterogeneous time 

series and achieves significant improvement over 

traditional stacked LSTMs. Similarly, a novel Diffusion 

Convolutional Recurrent Neural Network (DCRNN) for 

traffic forecasting is introduced in (Li et al., 2017). The 

framework integrates both spatial dependency using 

bidirectional random walks on the directed graph and the 

temporal dependency using the encoder-decoder 

architecture. Higher-Order Tensor RNN (HOT-RNN) is 

presented in (Yu et al., 2017) to address the long-term 

forecasting challenges. The proposed architecture 

captures the higher-order nonlinear dynamics using 

higher-order state interactions of previous hidden states. 

The authors show that the proposed architecture is more 

expressive and accurate than standard Recurrent Neural 

Network (RNN) and LSTM. With recent advancements, 

attention-based model like in (Fan et al., 2019) is also 
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used which allows to focus on relevant and important 

time steps and patterns in the historical data. In addition, 

Transformer-based architecture like in (Li et al., 2019; 

Lim et al., 2019) has also been explored. 

Iterative strategy in contrast operates by recursively 

feeding the single-step ahead forecast as future inputs 

to obtain multiple forecasts. Inspired by WaveNet 

(Oord et al., 2016) architecture, authors in (Borovykh et al., 

2017) extended it for predicting financial time series 

achieving better results than autoregressive and LSTM 

based recurrent networks. The proposed model employs 

dilated convolutions followed by residual skip 

connections and uses ReLU activation function for 

optimizing the training time. To account for correlation 

between financial time series, the model takes 

multivariate time series as input which allows 

conditioning the forecast of a time series based on its 

own past data as well as that of other time series. 

Authors in (Hussein et al., 2016) utilized coevolutionary 

RNN for multi-step time series prediction using 

recursive technique where cooperative coevolution and 

Back-Propagation Through Time (BPTT) is employed 

for training the neural network model. 

There have been studies in regard to multi-steps 

ahead probabilistic forecasts as well. DeepAR 

(Salinas et al., 2020) uses autoregressive recurrent 

neural networks to obtain a global model by training the 

historical data of all related time series which 

generates the Gaussian distribution for the forecast. 

Similarly, Deep State-Space Models (DSSM) 

(Rangapuram et al., 2018) follows a similar approach 

by exploiting recurrent neural networks to 

parameterize the pre-defined linear state-space model 

with Kalman filtering based predictive distribution. 

In regards to multi-step financial time series 

prediction, authors in (Ouyang and Yin, 2018) extended 

the concept of self-organizing Autoregressive (AR) 

models to Varied Length Mixture models (VLM) to 

forecast the financial time series over multiple steps. One 

significant advantage of modelling such varied length 

models is that it allows to preserve the relationships 

among the input points within the forecast horizon. A 

comprehensive review of deep learning based financial 

time series prediction across various domains is presented 

in (Sezer et al., 2020). The authors observed that deep 

learning models performed better than machine learning 

models in most of the studies. Also, most researches are 

based on movement prediction of financial assets for 

short-term forecasting and the literature on multi-step 

price prediction is still scarce. Specifically, a detailed 

overview of applicability of deep models in the stock 

market domain is carried out in (Jiang, 2020). 

In a recent study (Chatigny et al., 2020) related to 

multivariate multi-step setting, a novel variable-length 

attention mechanism is proposed for improving the 

performance of RNN based on the Dynamic Factor 

Graph (DFG) framework using which a new class of 

self-supervised generative neural architecture is also 

introduced. The overall model has the capacity to 

effectively capture temporal dependencies for 

multivariate time series and performs better even with 

limited data. Hwang (2020) used LSTM model with 

trainable initial hidden states which allows the model to 

reconstruct the abstract representation of the time series 

along with its parameters and forecast the future values 

based on the latent representation. A comparative 

analysis of Autoregressive Integrated Moving Average 

(ARIMA), LSTM and Bidirectional LSTM (BiLSTM) 

for various stock indices prediction is performed in 

(Siami-Namini et al., 2019) which showed that BiLSTM 

performs better as compared to others. 

Methodology 

In this section, we provide an overview of different 

deep learning models used in this study. We also briefly 

describe the multi-step prediction technique utilized for 

the comparative analysis purpose. 

Long-Short Term Memory 

LSTM networks (Hochreiter and Schmidhuber, 1997) 

belong to the special category of RNN family that 

overcomes the exploding and vanishing gradients 

limitation of simple RNNs (Hochreiter, 1998). By 

introducing an internal cell state or memory state and 

gating mechanisms, it can capture long-range 

dependencies in the data while retaining the short term 

memory. They have achieved state-of-the-art 

performance in sequence learning domain such as 

machine translation (Sutskever et al., 2014), language 

modeling (Sundermeyer et al., 2015), signal processing 

(Yildirim, 2018) and audio and video processing (Eck 

and Schmidhuber, 2002; Liu et al., 2019). Application of 

LSTM models in the financial domain (Fischer and 

Krauss, 2018; Heaton et al., 2017; Bao et al., 2017) have 

also shown promising results outperforming other 

traditional statistical models. 

The inner working structure of an LSTM cell is 

shown in Fig. 1. There are three main gates in each cell 

that contribute to the cell state ct: Input gate (it), output 

gate (ot) and forget gate (ft). The first component is the 

forget gate which is responsible for controlling how 

much of the information should be forgotten or removed 

from the previous cell state. It takes two inputs, output of 

the previous hidden state (ht-1) and input of the current 

state (xt) and passes them through the sigmoid activation 

function which outputs a vector between 0 and 1 for each 

value in the cell state. The 0 output for a particular value 

in the cell state indicates that the information is 

completely removed whereas 1 represents that the 

information is remembered. 
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Fig. 1: LSTM cell 

 

The input gate deals with updating the cell state with 

new information. It performs similar sigmoid calculation 

to the same set of inputs like in the forget gate and acts 

as a filter for the information from the previous hidden 

state (ht-1) and current input (xt). A candidate memory 

cell  tC  is also created to modulate the network which 

applies tanh activation function on the same inputs while 

squeezing the result in between -1 and 1. It generates a 

vector of all possible information that can be added to 

the cell state as perceived from its inputs. The negative 

value from tanh function indicates dropping information 

from the cell state while positive result infers adding 

new information. The output from the tanh and input 

gate sigmoid activation is multiplied to obtain a result 

which defines how much each cell state value should be 

updated by based on the new information: 

 

 1,t i t t ii W h x b 
       (1) 

 

 1,t f t t ff W h x b 
       (2) 

 

 1tanh ,t C t t CC W h x b
       (3) 

 

Finally to obtain a new cell state, the forget vector (ft) 

is multiplied with the previous cell state (ct-1) and the 

result is combined with the multiplication between input 

gate and tanh vector via additive operation: 

 

1t t t t tC f C i C     (4) 

 

The output gate contributes in updating the hidden 

state (ht) of the cell and evaluates which information 

from the cell state is to be used as output for the next 

step. The cell state vector is passed through a tanh 

transformation function to scale the values between -1 

and +1 and then multiplied with the output vector 

sigmoid activation which decides whether or not the cell 

state value will be sent as an output for the next step and 

also as hidden state for the next cell: 

 

 1,t o t t oo W h x b 
      (5) 

 

 tanht t th o C    (6) 

 

Stacked LSTM 

Deep LSTM or Stacked LSTM (Pascanu et al., 2013; 

Graves et al., 2013b) is an extension of the simple LSTM 

cell, which contains multiple LSTM cells stacked on top 

of each other. Adding several layers brings more depth to 

the architecture and increases the level of abstraction of 

the input sequence over time (Pascanu et al., 2013). 

Figure 2 shows the structure of three layered stacked 

LSTM cells. The output from the lower hidden layer cell 

 1

1th  is passed as input to successive layers while each 

layer maintains their own hidden state and cell state. 

Bidirectional LSTM 

Another variation of LSTM network is Bidirectional 

LSTM (Graves and Schmidhuber, 2005) which 

processes the sequential data in both forward and 

backward direction using two separate hidden LSTM 

layers. BiLSTM connects both the layers to the same 

output layer. The forward layer processes the 

information following the same direction of the given 

sequence while the backward layer computes its 

operations using inputs from the reverse direction. Given 

an input sequence (x) with time steps from t-n to t-1, the 

hidden state of the forward layer ( h ) traverse through 

the inputs from t-n to t-1, while for the backward layer 

the hidden state ( h ) propagates from t-1 to t-n. Both the 

ht 

Ct Ct-1 

ht-1 ht 

xt 

ft it ot 

tanh 

tanh    

tC  
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layers constitute LSTM cell performing standard 

operations. The final output of the BiLSTM layer is 

given by Equation (7) where the function () used to 

combine the two hidden states can be a concatenating, 

summation, average or a multiplication function: 

 

 ,t f by h h  (7) 

 

The architecture of an unfolded BiLSTM layer is 

shown in Fig. 3. BiLSTMs have achieved great success 

in time series forecasting domain, such as speech 

recognition (Graves et al., 2013a) and traffic speed 

prediction (Cui et al., 2018). 

Encoder-Decoder Model 

Encoder-decoder architecture (Cho et al., 2014) or 

sequence-to-sequence models (Sutskever et al., 2014) 

were first introduced to overcome the limitation of 

RNNs to produce output sequences of arbitrary length. 

Since then, they have been widely used in neural 

machine translation (Cho et al., 2014; Bahdanau et al., 

2014; Wu et al., 2016), speech recognition (Graves et al., 

2013b; Chorowski et al., 2015; Bahdanau et al., 2016) 

and also time series forecasting tasks (Qin et al., 2017; 

Liang et al., 2018). In the heart of this framework lies 

two different networks, namely encoder and decoder 

where both are sequential based networks. 

 

 
 

Fig. 2: Unfolded stacked LSTM 

 

 
 

Fig. 3: Unrolled bidirectional LSTM architecture for three steps (Cui et al., 2018) 
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Fig. 4: Encoder-decoder model 
 

The encoder network processes the input 

sequence X of length t one time step at a time and 

produces a fixed dimensional compressed vector 

representation c , which is also commonly termed as 

context vector or latent vector and this processing of 

obtaining the context vector is called encoding. The 

context vector is usually the last hidden state ( e

th ) produced 

from the encoder network. Then, the decoder network 

produces the output sequence ( ŷ ) given the context vector. 

While the decoder maintains its own hidden state, the final 

hidden state of the encoder network (or context vector) is 

replicated across each time step as inputs in a basic 

encoder-decoder setting. Both the encoder and decoder 

network can be a simple LSTM cell or stacked LSTM 

layers conducting its standard gating operations and are 

jointly trained to minimize the cost function. A general 

overview of the architecture is depicted in Fig. 4: 
 

 1,e e

t encoder t th LSTM x h    (8) 

 
e

tc h   (9) 

 

 ˆ d

decoder ty LSTM c h    (10) 

Temporal Convolution Network 

Belonging to the family of Convolutional Neural 

Networks (CNNs) that were initially dedicated for image 

dataset and computer vision tasks (Krizhevsky et al., 

2012; Gu et al., 2018), TCN (Bai et al., 2018) is an 

extension to adapt with sequential dataset and problems. 

After a series of thorough experiments, the authors 

claimed that TCN outperformed regular RNNs such as 

LSTMs on various benchmark datasets and tasks while 

demonstrating longer effective memory. 

The basics of TCN consists of two propositions, first 

being that given an input sequence of arbitrary length, 

the network maps it to an output sequence of the same 

length. This principle is achieved by using 1D fully-

convolutional network architecture, where the length of 

each hidden layer is the same as the input layer and zero 

padding of length (kernelsize -1) is employed such that 

the subsequent layers has the same length as the previous 

one. The second concept associated with TCN specifies 

that there is no information leakage from future to the 

past. To address this point, it replaces standard 

convolution operator by causal convolution such that 

information only from the past is used for forecasting 

and has no access to the future samples. 
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In order to achieve long-term dependencies in the 

sequential data and build a long effective history size, 

TCN makes use of dilated convolutions (Oord et al., 

2016). It can skip outputs from the previous layer that 

allows to cover information from farther distance values 

in the sequence (increase the receptive field). Dilated 

convolution F on an element s of the 1-D sequence 
nx  can be expressed as: 

 

      
1

0

k

d s d i

i

F s x f s f i x


 



     (11) 

 

where, d is the dilation factor and k is the filter size. Thus, 

the receptive field can be increased by choosing larger 

filter sizes k and increasing the dilation factor d. Figure 5 

shows an example of a dilated causal convolution with a 

kernel size of 2 and a dilation factor of [1,2,4]. In addition 

to dilated causal convolution, TCN also implements 

residual blocks (He et al., 2016) in place of a 

convolutional layer to account for stabilization of deeper 

and larger networks. A TCN residual block consists of 

two layers of dilated causal convolution, weight 

normalization, rectified linear unit and spatial dropout. A 

11 convolution operation is also added in each residual 

block to account for inconsistent input and output size. 

Exponential Smoothing-Long Short Term Memory 

This hybrid model (Smyl, 2020) which is an 

effective combination of statistical based Exponential 

Smoothing (ES) model and modern neural network 

based LSTM model is the winner of M4 competition 

(Makridakis et al., 2020) with significant margin. It is a 

hierarchical model which can be used to forecast 

multiple series, where the ES component captures the 

local parameters for each series such as seasonality and 

level whereas the weights of connections inside the 

LSTM model accounts for global parameters shared by 

all series. A high-level architecture of ES-LSTM is 

shown in Fig. 6. Initially, Holts-Winter exponential 

smoothing (Hyndman et al., 2008) with multiplicative 

seasonality is computed, however, the trend component 

is not accounted for as the model does not consider 

linear trend in the series: 

 

    1/ 1t t t tl y s l      (12) 

 

   / 1t m t t ts y l s      (13) 

 

where, yt is the time series, lt is the smoothing or level 

component, s is the multiplicative seasonality 

coefficient, m is the number of observations per 

seasonal period and ,  are smoothing coefficients 

between zero and one. 

To produce non-linear trend forecasting with 

multiple steps ahead, a neural network model (RNN) 

is used instead, the output of which is subsequently 

seasonalized and denormalized again to produce the 

forecast. Finally, the Holt-Winters model is combined 

with a RNN model to get the forecast from the final 

hybrid model: 

 

 1.. 1..
ˆ

t t h t t t t hy RNN X l s        (14) 

 

where, h is the forecasting horizon and Xt is a vector of 

deseasonalized and normalized time-series derived 

features of which a scalar component xt is calculated as: 

 

t
t

t t

y
x

l s
   (15) 

 

The neural network model employs a stack of dilated 

LSTM networks (Chang et al., 2017) interlinked with 

residual connections (He et al., 2016). Each block 

contains a sequence of one to four layers with each layer 

belonging to one of the dilated LSTM categories: 

Standard dilated LSTM (Chang et al., 2017), dual-stage 

attention based LSTM (Qin et al., 2017) and residual 

LSTM (Kim et al., 2017). 

Neural Basis Expansion Analysis for Interpretable 

Time Series Forecasting 

N-BEATS model (Oreshkin et al., 2019) is a pure 

deep neural based architecture with no time-series 

specific components which has achieved better 

forecasting accuracy than hybrid ES-RNN model on 

M4 competition. 

At the fundamental level, the model consists of a 

block which is a multi-layered fully connected 

network with Rectified Linear Unit (ReLU) activation 

function that produces two outputs, the block’s 

standard output of given horizon (forecast) and the 

best estimate of it’s input given the functional 

limitations that it can operate on (backcast). The layer 

of blocks are combined together using a novel 

hierarchical doubly residual stacking topology. 

Different from the common residual architecture 

which either involves concatenating the input of a layer 

to its output before passing to the subsequent layer or 

adding new connection from the output of each layer to 

the input of every other layer that follows it, the new 

architecture introduces two residual branches. The 

backcast residual branch makes it easier for subsequent 

blocks to forecast by removing the backcast signal from 

the block’s input while the forecast output from each 

block is first integrated at the stack level and finally at 

the overall network level to produce the final global 
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forecast. The high level architecture of the model is 

depicted in Fig. 7. 

The model is also designed to have interpretable 

outputs for each stack by decomposing the trend and 

seasonality of the series. In addition, the model is also 

associated with the concept of meta-learning, where the 

inner training loop is enclosed inside the basic building 

blocks while outer training procedure is contained with 

the parameters of the overall network, learned through 

gradient descent. 

 

 
 
Fig. 5: TCN Architecture. The left part is the dilated causal convolution with kernel size = 2 and dilation factors d = [1,2,4]. The 

right part is the residual block (Qin, 2019) 

 

 
 

Fig. 6: ES-LSTM Architecture 
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Fig. 7: N-BEATS Architecture comprising of basic block to stack to multiple stacks combined together to get final forecast 

(Oreshkin et al., 2019) 

 

Multi-Step Prediction Strategy 

While there are several methods defined in the 

literature for multi-step forecasting (Taieb et al., 2012), 

we focus only on Multiple-Input Multiple-Output 

(MIMO) (Bontempi, 2008) which has outperformed other 

techniques and achieved the best results for the task 

(Taieb et al., 2012). This strategy employs a single model 

to output the vector of future values (forecast) at one shot: 
 

 ˆ
t ty F x   (16) 

 

where, xt is the input series vector at time t, F is the 

trained model and ŷt is the vector of predicted output for 

the input sequence. 

Experiments and Results 

We first describe the datasets used in this study. Then, 

the experimental settings of different models are introduced 

followed by the test strategy and evaluation metrics used. 

Finally, we compare and analyze the performance results of 

various models in our benchmark datasets. 

Dataset and Pre-Processing 

In order to have a thorough comparison and analyze 

the ability of models for long-term forecast, we use six 

different financial benchmark datasets from the stock 

market and exchange rate domain. These data have been 

widely used in financial time series forecasting domain 

(Sezer et al., 2020). Description of the datasets is shown 

in Table 1. All the datasets are publicly available online 

and can be downloaded from the Yahoo finance 

website1. In our experiments, all the dataset has been 

split into training set (80%), validation set (10%) and test 

set (10%) in a chronological order. We perform a 

univariate analysis by considering only the closing price 

of all assets. The historical closing price values are used 

to predict the future values. A sliding window approach 

is implemented to create the supervised dataset from the 

training set as shown in Fig. 8. We also preprocess the 

data considering the large unscaled values which affects 

the training of the model and slows down the 

convergence. For each dataset, we normalize the values 

by subtracting the mean () and dividing by the standard 

deviation () to have 0 mean and a standard deviation of 

1 as shown in Equation (17). The normalization is fit and 

transformed in the training set while the validation and 

test set is only transformed to prevent look-ahead bias: 

 

x
x






   (17) 

 

Evaluation Metrics 

We use two widely adopted evaluation metrics in 

financial time-series forecasting domain (Guo et al., 

2014; Sezer et al., 2020), Root Mean Squared Error 

(RMSE) and Mean Absolute Error (MAE) to test the 

predictive performance and efficiency of the models: 

                                                           
1https://finance.yahoo.com 
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1

1
ˆ

N

t t

t

MAE y y
N 

    (19) 

 

where, N is the number of samples, yt and ŷt are the 

actual and model predicted value respectively. Both the 

metrics are scale-dependent measures and they represent 

how closer are the actual and predicted values. Hence, 

there is no definitive maximum value as threshold and 

higher values indicate less accuracy. However, values 

closer to zero indicate higher accuracy and better 

performance. While we relatively compare the error 

scores across different models in the same setting, the 

model which achieves the least scores can be defined as 

best performing and optimal. 

Walk-Forward Validation 

The test dataset is evaluated using the Walk-Forward 

validation sliding window approach. In this method, we 

take the first n values from the test set, where n is the 

input time lag, for which the model predicts the next h 

future values at once. The window shifts one step 

towards the right taking the actual values to predict 

again. This process continues until the end of the test set. 

In this manner, the model always predicts using the 

available true data. In our case where we forecast for 

multiple steps ahead, h = [2,3,5,7,10]. This process is 

similar to the sliding window approach in Fig. 8. 

The RMSE and MAE is calculated at each sliding 

instance and finally, the average is calculated for the 

overall test set. Finally, we compare the average RMSE 

and MAE for each model and each horizon. 

Experimental Details 

While training the model, we have several 

parameters to be defined for each model. As a general 

setting to all the models, the batch size is set to 32 and 

mean squared error is selected as the loss function. We 

adopt Adam (Kingma and Ba, 2014) as the 

optimization algorithm with the learning rate set to 

0.001. All the models are trained for 1000 epochs with 

early stopping implemented as a callback function to 

prevent overfitting. Specifically, we monitor the 

validation loss after the end of each epoch and the 

training process is stopped if the loss does not improve 

for 50 iterations. Based on the experiments conducted, 

we selected the input sliding window size (t) to be 16 

days which depicts the best trade-off between 

performance accuracy and system requirements. 

 
Table 1: Description of dataset 

Domain  Dataset  Period  No. of instances 

Stock market S&P 500 index  1999-01-04 to 2019-12-30  5,282 

 DJIA index  1999-01-04 to 2019-12-30  5,282 

 NASDAQ  100 Index 2000-03-20 to 2019-12-30  4,983 

Forex market EURUSD  2003-12-01 to 2019-12-31  4168 

 EURGBP  2003-01-01 to 2019-12-31 4,406 

 EURJPY  2003-01-23 to 2019-12-31  4,373 

 

 
 

Fig. 8: Sliding window approach 
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All the LSTM based models adopt 100 hidden units. 

The simple LSTM and BiLSTM model adopts a single 

hidden layer while the deep LSTM model implements 

three layers, stacked on top of each other. Both the 

encoder and decoder network consist of a single layer 

of LSTM model with the same hidden units to obtain a 

compressed representation and generate the output 

vector. In the ESLSTM network, the seasonality was 

empirically selected to 30 for all the financial assets 

and follows the same LSTM configuration with one 

layer and 100 neurons. 

For the TCN model, the dilations is specified to 

[1,2,4,8] with kernel size of 2 and the amount of filters 

used is set to 100 to have common grounds with the 

LSTM models. The model also employs a single stack of 

residual blocks and allows for skip connections from 

input to each block. With the configured parameters, the 

receptive field of the TCN network is the same as the 

selected input window size of 16. 

In the N-BEATS architecture, the backcast length is 

set to 16 for each forecast lengths. For each stack, two 

blocks are considered whereas the hidden layer units in 

each block is set to 100. Moreover, generic architecture 

based stack types are used which do not depend on 

specific knowledge related to time-series. 

All the models were implemented based on Keras 

library with Tensor flow backend and the experiments 

were conducted on a machine with Intel (R) Core (TM) 

i7-9700F CPU and Nvidia GeForce RTX 2080 Ti GPU. 

The models were trained multiple times to address the 

random initialization of weights and the average 

performance on the test set was recorded for comparison. 

Results and Discussion 

Our experimental results for six different financial 

datasets on the test dataset are shown in Table 2 to 7. 

Each table summarizes the average RMSE and MAE 

scores for multi-step continuous forecasts across several 

deep learning models used in this study. The error values 

are computed after post-processing where the model 

predictions are re-scaled to the original range of actual 

value. The stock index values are in much higher range 

and suffer from significant price movements as 

compared to the forex values. Hence, we can observe 

substantial difference in RMSE and MAE scores for 

stock and forex datasets. The best metrics scores for each 

forecast horizon are highlighted in bold. 

The results show that the deep neural models depict 

inconsistent performances depending on the domain and 

behaviour of the financial markets. For S&P 500 index, the 

temporal convolutional based model drastically reduces the 

RMSE score by more than 50% for all forecast horizons. 

The ES-LSTM and pure deep neural based N-BEATS 

models also show significant improvements. The deep 

LSTM model exhibited poor results followed by simple 

LSTM. BiLSTM based architecture beats encoder-decoder 

on short-term forecasts but fails when the prediction 

horizon is longer (7 and 10 days). 

The LSTM based models along with Encoder-Decoder 

architecture also performed poorly when applied to DJIA 

index with 57% higher error rate. Although the best 

performing model in this case was ES-LSTM, the RMSE 

and MAE scores for TCN and N-BEATS were also 

relatively lower. However, it can be noted that the range of 

errors in case of DJIA stock index is much higher in case of 

classical LSTM models as compared to S&P 500. Based 

on the results, it is also worth commenting that simple 

LSTM and BiLSTM outperform sequence to sequence 

architecture that are designed to capture the complex 

temporal relationship in an effective way. 

Similar to the other two stock markets, deep LSTM 

recorded the highest error scores compared to other models 

for NASDAQ 100. Also, TCN architecture outperformed 

other models for all prediction horizons except for 7 days 

ahead for which ES-LSTM obtained better result. N-

BEATS also exhibited considerable accuracy compared to 

the other models. With regards to memory based models, 

the error metrics for BiLSTM is relatively lower as 

compared to LSTM and Encoder-Decoder. 

Overall, we can observe that the state-of-the-art TCN, 

ES-LSTM and N-BEATS architectures heavily 

outperformed other traditional models in the stock 

market domain for almost all forecast horizons. We can 

also note that the RMSE and MAE scores do not 

always gradually increase along with the forecast 

horizons. This is consistent with previous research 

findings (Bao et al., 2014) while forecasting chaotic 

time series for multiple horizons. 

The forex datasets behave differently as compared to 
the stock indexes. LSTM based models prove to be more 
dominant and display better results in most cases. N-
BEATS recorded the least error for short-term and long-
range forecast horizons (2,3 and 10 days) for EURUSD. 

However, deep LSTM outperformed others in case of 
mid-range (5 and 7 days) forecasts. Similarly, LSTM, 
stacked LSTM, BiLSTM and Encoder-decoder 
architectures performed better for most forecast horizons 
for the Euro to Pounds market (EURGBP). In some 
scenarios, we can report that multiple models achieve 

similar accuracy for same forecast horizons such as, 
stacked LSTM and BiLSTM achieved the same score for 
2 days ahead forecast. Also, both encoder-decoder and 
TCN model recorded least RMSE and MAE scores while 
forecasting 5 days ahead. The stacked-LSTM exhibits 
the least error score for 3, 5 and 7 days ahead forecast of 

EURJPY exchange rate, while BiLSTM and simple 
LSTM outperforms other models while forecasting 2 and 
10 days ahead respectively. Unlike other two forex 
dataset, RMSE and MAE scores are relatively higher for 
all models in case of long-range forecast (10 days) of 
Euro to Yen. It is interesting to mention that ES-LSTM 
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was the least accurate model for all three forex markets. 
Similarly, unlike stock market datasets, almost all 

models follow gradual linear trend as the forecast 
horizon increases. 

 
Table 2: S&P 500 Comparison Results 

  Forecast horizon 

  --------------------------------------------------------------------------------------------------------- 

Models Metrics 2 Days  3 Days  5 Days  7 Days  10 Days 

LSTM  RMSE  114.840  125.333  178.050  224.790  325.602 

 MAE  113.113  110.433  174.615 220.959  321.152 

Stacked-LSTM  RMSE  151.301  200.239  529.958  414.273  555.635 

 MAE  147.466  191.411  528.542  411.932  553.821 

BiLSTM  RMSE  63.316  58.478  96.854  149.500  246.797 

 MAE  56.318  46.648  81.689  133.670  238.542 

Encoder-Decoder  RMSE  103.707  120.679  88.291  125.773  199.286 

 MAE  93.327  111.369  80.764  114.835  187.693 

ES-LSTM  RMSE  43.887  44.267  86.6217  65.301  81.287 

 MAE  41.489  40.138  76.738  58.628  70.002 

TCN  RMSE  24.617  29.955  36.251  42.306  48.876 

 MAE  22.869  26.574  31.748 36.709  41.985 

N-BEATS  RMSE  30.236  35.069  54.695 56.054  59.727 

 MAE  28.320  32.229  47.619  47.963  51.946 

 
Table 3: DJIA comparison results 

  Forecast horizon 

  --------------------------------------------------------------------------------------------------------------- 

Models Metrics 2 Days  3 Days  5 Days  7 Days  10 Days 

LSTM  RMSE  1698.271  1511.102  2399.312  2420.768  2363.74 

 MAE  1691.548  1497.159  2380.754  2395.543  2333.575 

Stacked-LSTM  RMSE  4513.165  5869.620  7365.875  5957.295  6347.864 

 MAE  4506.461  5850.385  7361.250  5951.215  6336.358 

BiLSTM  RMSE 2767.882  3130.423  3058.695  3802.990  3201.650 

 MAE  2729.544  3117.111  2896.899  3694.886  3177.442 

Encoder-Decoder  RMSE  3655.777  3742.156  3805.998  3130.119  4059.851 

 MAE  3647.535  3737.042  3794.176  3092.931  4038.078 

ES-LSTM  RMSE  43.887  44.267  86.621  65.301  81.287 

 MAE  41.489  40.138  76.738  58.628  70.002 

TCN  RMSE  236.790  295.575  355.070  425.817  471.371 

 MAE  217.392  265.053  310.963  371.231  406.477 

N-BEATS  RMSE  364.098 463.798  832.432  611.659  1506.272 

 MAE  314.700  405.783  665.600  501.405  1286.235 

 
Table 4: NASDAQ 100 comparison results 

  Forecast horizon 

  -------------------------------------------------------------------------------------------------------------- 

Models Metrics 2 Days  3 Days  5 Days  7 Days  10 Days 

LSTM  RMSE  423.847  780.648  1992.599  682.167  705.546 

 MAE  382.708  777.880  1988.240  675.050  694.545 

Stacked-LSTM  RMSE  973.453  1548.454  2095.927  2306.527 2534.892 

 MAE  970.076  1504.349  2059.833  2257.059  2515.681 

BiLSTM  RMSE  377.478  552.569  416.247  460.123  719.576 

 MAE  364.704  548.040 406.244  450.262  709.804 

Encoder-Decoder  RMSE  467.282  446.732 1025.974  1144.887  889.599 

 MAE  409.260  386.498  1018.017  1128.694  844.893 

ES-LSTM  RMSE  104.654  307.713  213.457  159.068  401.948 

 MAE  96.044  282.699  195.484  140.833  377.301 

TCN  RMSE  88.682  163.101  115.347  227.868  155.766 

 MAE  80.513  153.098  101.124  192.354  135.187 

N-BEATS  RMSE  222.861  238.118  259.671  344.024  247.899 

 MAE  218.531  231.058  233.568  333.954  229.427 
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Table 5: EURUSD comparison results 

  Forecast horizon 
  ----------------------------------------------------------------------------------------------------------- 
Models Metrics 2 Days  3 Days  5 Days  7 Days  10 Days 

LSTM  RMSE  0.00427  0.00497  0.00607  0.00674  0.00753 
 MAE  0.00395  0.00448 0.00536  0.00592  0.00654 
Stacked-LSTM  RMSE  0.00433  0.00532 0.00587  0.00668  0.00836 
 MAE  0.00402  0.00486  0.00520  0.00589  0.00744 
BiLSTM  RMSE  0.00423  0.00492  0.00593  0.00702  0.00744 
 MAE  0.00390  0.00443  0.00523  0.00623  0.00646 
Encoder-Decoder  RMSE  0.00415  0.00487  0.00593  0.00722  0.00791 
 MAE  0.00385  0.00440  0.00525  0.00637  0.00691 
ES-LSTM  RMSE  0.00504  0.00823  0.00780  0.00791  0.00854 
 MAE  0.00454  0.00747  0.00692  0.00693  0.00739 
TCN  RMSE  0.00418  0.00497  0.00618  0.00693  0.00772 
 MAE  0.00384  0.00447  0.00541  0.00605  0.00668 
N-BEATS  RMSE  0.00412  0.00480  0.00631  0.00735  0.00738 
 MAE  0.00378  0.00430  0.00539  0.00643  0.00641 

 
Table 6: EURGBP comparison results 

  Forecast horizon 
  ---------------------------------------------------------------------------------------------------------- 
Models Metrics 2 Days  3 Days  5 Days  7 Days  10 Days 

LSTM  RMSE  0.00377  0.00443  0.00558  0.00664  0.00779 
 MAE  0.00347  0.00397  0.00489  0.00573  0.00670 
Stacked-LSTM  RMSE  0.00372  0.00444  0.00546  0.00640 0.00774 
 MAE  0.00344  0.00400  0.00482  0.00558  0.00668 
BiLSTM  RMSE  0.00372 0.00452  0.00553  0.00673  0.00817 
 MAE  0.00344  0.00400  0.00483  0.00585  0.00705 
Encoder-Decoder  RMSE  0.00407  0.00454  0.00537  0.00609  0.00714 
 MAE  0.00377  0.00408 0.00471  0.00528  0.00618 

ES-LSTM  RMSE  0.00386  0.00733  0.00970  0.01452  0.00849 
 MAE  0.00355  0.00694  0.00893  0.01363  0.00756 
TCN  RMSE  0.00379  0.00445  0.00537  0.00620  0.00773 
 MAE  0.00351  0.00400  0.00471  0.00542  0.00676 
N-BEATS  RMSE  0.00395  0.00463  0.00572  0.00691  0.00997 
 MAE  0.00367  0.00416  0.00503  0.00600 0.00844 

 
Table 7: EURJPY comparison results 

  Forecast horizon 

  ----------------------------------------------------------------------------------------------------------- 

Models Metrics 2 Days  3 Days  5 Days  7 Days  10 Days 

LSTM  RMSE  0.56835  0.69033  0.85884  0.99597  1.15732 

 MAE  0.52265  0.61943  0.76053  0.86914 1.00114 

Stacked-LSTM  RMSE  0.57771  0.66684  0.85445  0.98912 1.26894 

 MAE  0.53376  0.59929  0.75537  0.86162  1.11844 

BiLSTM  RMSE  0.56197  0.67186  0.88569  1.01427  1.17914 

 MAE  0.51602  0.60178  0.78782  0.88905  1.02423 

Encoder-Decoder  RMSE  0.56418  0.68552  0.88250  1.04270 1.19979 

 MAE  0.52066  0.61837  0.77768  0.91007  1.04313 

ES-LSTM  RMSE  0.58944  0.72175  0.97596  1.07270  1.22054 

 MAE  0.54230  0.65220  0.87310  0.94332  1.05797 

TCN  RMSE  0.59088  0.69200  0.90328  1.11289  1.27454 

 MAE  0.54047  0.61870  0.79469  0.96318  1.10717 

N-BEATS  RMSE  0.59328  0.71860  0.88381  1.07301  1.22428 

 MAE  0.54714  0.65091  0.78455  0.93912  1.06629 

 

Analysis of results show that sophisticated deep 

models provides promising avenue in effectively 

capturing the underlying dynamics and patterns of the 

stock market. Specifically, the inherent hierarchical 

learning ability of N-BEATS and TCN architecture as 

well as the pre-processed exponential smoothing 

combined with LSTM model allows for remarkable 

results. However, the gated mechanism based pure 
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LSTM, Bidirectional LSTM and the sequential 

architecture outperforms the state-of-the-art models in 

forex market with small margin. 

Conclusion 

In this study, we investigated the performance of the 

most relevant deep learning models for multi-step-ahead 

forecasts in the financial domain. The experiments have 

been carried out on three real world datasets of the stock 

market and forex domain. After a sound comprehensive 

assessment, we can observe that the recent benchmark 

models for time-series prediction such as ES-LSTM, TCN 

and N-BEATS, showcased exceptional results for the 

stock market domain, while the classical LSTM, BiLSTM 

and Encoder-Decoder models still have an upperhand in 

predicting the forex markets. The results obtained also 

conclude that the relationship between forecast horizon 

and error values is non-linear for most of the models in 

the stock domain, while the forex market manifests 

linear correlation for almost all neural networks. 

This research is however limited to univariate 

analysis where only historical data is considered as the 

source of input. The stochastic and dynamically driven 

financial field is significantly impacted by several other 

external factors such as news (Du and Tanaka-Ishii, 

2020) and interrelationship between multiple time series 

(Borovykh et al., 2017) which could be incorporated and 

examined in the future work. Also, hyper parameter 

tuning for each model can be automated using an 

optimization algorithm (Bergstra et al., 2011). 
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