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Abstract: The root cause of the seizure is a sudden abnormal excessive 

electrical discharge in the brain and it is an Epileptic Seizure (ES) when such 

abnormal electrical activity arises particularly for epilepsy. Recognizing ES 

is crucial for effective treatment as it often repeats and can lead to serious 

outcomes. Since epilepsy is a neurological issue, detecting ES by analyzing 

brain signals is the preferred method, with Electroencephalogram (EEG) 

being the most reliable approach for this purpose. Different Machine 

Learning (ML) and Deep Learning (DL) methods are extensively used in ES 

detection from EEG signals. Existing methods first extract features from 

EEG signals using different methods and then classify ES using appropriate 

ML/DL methods. This study investigates ML-based ES detection where 

feature extraction from decomposed EEG signals using various methods and 

integrating the extracted features to classify ES are the main attractions. 

Empirical Mode Decomposition (EMD) is employed to systematically break 

down EEG signals into Intrinsic Mode Functions (IMFs), with the earlier 

IMFs containing more information than the later ones. From the initial six 

IMFs, three distinct features named Fluctuation index (F), Variance (V) and 

Ellipse Area (EA) of the second-order difference plot are extracted. Neural 

Network (NN), the well-known ML method, is employed in this study for ES 

classification from extracted F, V and EA features individually and 

integrating these (i.e., F + V + EA). The experimental analysis is conducted 

on the benchmark CHB-MIT dataset and the integrated feature set shows 

promising performance over individual feature sets. The proposed NN-based 

ES detection with integrated decomposed features outperforms prominent 

existing methods, showing an accuracy of 99.80%. 

 

Keywords: Electroencephalogram, Epilepsy, Seizure, Empirical Mode 

Decomposition, Neural Network 

 

Introduction 

A seizure refers to a sudden and brief episode where 

there is involuntary movement, potentially impacting the 

body. At times, this might also involve a quick change in 

behavior, sensations, or consciousness. These changes 

occur due to unusual electrical impulses in the brain. 

Epileptic Seizure (ES) is a common type of seizure 

characterized by abnormal electrical activity originating 

from the underlying condition of epilepsy. ES is one of 

the most common neurological diseases among 50 million 

people around the world (Epilepsy, 2022); therefore, it is 

a major health concern. Epilepsy diagnosis typically relies 

on analyzing an individual's seizure patterns, medical 

background and outcomes of neurological assessments 

and imaging procedures. Detecting Epileptic Seizures (ES) 

is crucial due to their likelihood of recurrence, necessitating 

appropriate treatment and management. The serious 

potential consequences of Epileptic Seizures (ES) 

underscore the urgency of developing an effective detection 

method. Es detection with Electroencephalogram (EEG) is 

the most promising due to its affordability and simplicity in 

measuring brain activity. 

Over the past few decades, epilepsy has garnered 

considerable attention in computational intelligence 

research (OK and Rajesh, 2020; Pattnaik et al., 2022; 

Sameer and Gupta, 2022; Nogay and Adeli, 2020; He et al., 

2022), particularly for automating the detection of ES. In 

recent years, Machine Learning (ML) and Deep Learning 

(DL) techniques have become significant in EEG analysis 
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for diagnosing various neurological disorders, including 

seizures. EEG stands out as a preferred modality for 

identifying abnormal brain signals due to its non-invasive 

and cost-effective nature (Hassan et al., 2022; Das et al., 

2023). Despite its nature, the analysis of EEG signals 

presents challenges related to their non-stationary and 

non-linear behavior (Aayesha et al., 2022). However, 

EEG signals have become a highly promising avenue for 

recognizing and analyzing ES. During seizures, EEG 

signals typically manifest abnormal and synchronized 

spikes and sharp wave discharges.  

Previous studies on EEG-based Epileptic Seizure (ES) 

detection have investigated a range of methods for EEG 

signal processing, transformation, feature extraction and 

the application of diverse ML/DL approaches. For 

instance, Empirical Mode Decomposition (EMD) is used in 

OK and Rajesh (2020); Das et al. (2024) to decompose EEG 

signals. Tunable Q-Wavelet Transform (TQWT) and Wavelet 

transformation are utilized by Pattnaik et al. (2022); 

Hassan et al. (2019) to divide into frequency sub-bands. Some 

studies have used raw EEG signals (Sameer and Gupta, 

2022; He et al., 2022; Kaziha and Bonny, 2020; 

Gómez et al., 2020). As an example, a Convolutional Neural 

Network (CNN) is applied to the raw signals to create 

convolved features in Sameer and Gupta (2022) and Graph 

Attention Networks (GAT) are used to extract spatial 

features in He et al. (2022). Moreover, recent research has 

investigated diverse techniques for extracting features that 

can effectively capture distinctive information from raw 

EEG signals (Pattnaik et al., 2022; Hassan et al., 2019; 

Mahmoodian et al., 2019; Tapani et al., 2019; Nandini et al., 

2022). Recent studies in EEG-based Epileptic Seizure 

(ES) detection have prioritized signal decomposition and 

feature extraction methods for enhancing ES detection 

through ML/DL approaches. 

The study aims to develop an effective ES detection 

method by integrating features extracted from 

decomposed EEG signals using various techniques. The 

main steps include EEG signal decomposition, feature 

extraction, integration and ML-based classification. EMD 

is employed to iteratively decompose the EEG signal into 

Intrinsic Mode Functions (IMFs), with the initial IMFs 

containing the most information. Three key features-

Fluctuation Index (F), Variance (V) and Ellipse Area (EA) 

of the second-order difference plot-are extracted from the 

first six IMFs. The feature values for all EEG channels are 

arranged, placing the features of the channels one after 

another for the feature set for methods F, V, or EA. 

Features using the three individual methods are 

concatenated (i.e., F + V + EA) for an integrated feature 

set. For ES recognition, a Neural Network (NN) is 

employed. The experimental analysis is conducted on the 

CHB-MIT benchmark dataset. In the context of ES 

detection, the key contributions are: 

1. The CHB-MIT benchmark dataset is analyzed in 

depth. EMD is applied to decompose into IMFs 

2. F, V and EA features are extracted from the first six 

IMFs. An integrated feature set is constructed by 

concatenating individual features (i.e., F + V + EA) 

3. ES classification is performed by NN using 

individual and integrated features and subsequent 

analysis is presented on outcomes 

 

The remainder of the paper provides a concise 

overview of prior studies applying ML/DL techniques to 

ES detection, introduces the proposed method with its 

framework and components, reports experimental 

findings and compares the method to state-of-the-art 

approaches. Finally, the paper offers a summary of the 

study's contributions and achievements, followed by a 

discussion of emerging future research directions 

stemming from this study. 

Literature Review 

Several EEG-based ES studies have been investigated 

in recent years, employing a variety of techniques. Several 

prominent ES studies are reviewed below. 

EMD was utilized for EEG signal decomposition, 
followed by extracting fractal dimension, entropy, 

exponential energy, statistical energy and classification 
using a Support Vector Machine (SVM) to distinguish 

seizure signals from the Bern-Barcelona dataset in OK and 
Rajesh (2020). Cross-bi-spectrum analysis of EEG signals, 

accompanied by linear and nonlinear features, was employed 

for ES classification using SVM in Mahmoodian et al. 
(2019), on the Freiburg iEEG (Ihle et al., 2012) dataset. 

Moreover, SVM was utilized to detect neonatal seizures 
(Tapani et al., 2019) along with the correlation features in 

the time domain and time-frequency domain.  
EEG decomposition using TQWT of CHB-MIT, 

alongside temporal, nonlinear, statistical feature 

extraction and classification with Random Forest (RF) 

and SVM in Pattnaik et al. (2022). Parameters of hybrid 

SVM were refined by Particle Swarm Optimization (PSO) 

and Genetic Algorithm (GA) in Subasi et al. (2019) for 

the Bonn dataset. In Nandini et al. (2022), a variety of 

classifiers including RF, K Nearest Neighbors (KNN), 

Naive Bayes (NB), Logistic Regression (LR), SVM, 

Decision Tree (DT), etc., used two-time domain features. 

In Sun and Chen (2023), Variational Modal 

Decomposition (VMD) was used on the CHB-MIT 

dataset to extract High-Frequency Detection (HFD) 

Differential Entropy (DE) for ES detection using the 

SVM classifier. Another method, the Hilbert-Huang 

Transform (HHT), along with spectral entropies, sub-

band energies and higher-order statistics as features 

from CHB-MIT and SVM, LR and KNN as classifiers 

was used in Abdellatef et al. (2023).  



Shupta Das et al. / Journal of Computer Science 2024, 20 (10): 1270.1280 

DOI: 10.3844/jcssp.2024.1270.1280 

 

1272 

Several recent DL-based studies showed promising 

outcomes for EEG-based ES detection. CNN was used to 

detect Seizures without extracting features in Kaziha and 

Bonny (2020). Image-based EEG signals were classified 

using CNN by Gómez et al. (2020) from CHB-MIT. For 

ES detection of the Bonn dataset, CNN was used by 

Sameer and Gupta (2022) for raw EEG. In He et al. 

(2022), spatial feature extraction was conducted using 

GAT and classification using Bi-directional Long Short-

Term Memory (BiLSTM) from raw EEG signals of TUH 

(Obeid and Picone, 2016) and CHB-MIT. A CNN-based 

model was also proposed by Qiu et al. (2023). The study 

by Deepa and Ramesh (2022) examined the impacts of 

MinMaxScaler normalization on the results of LSTM, 

BiLSTM, etc. In Dang et al. (2021), another CNN-based 

ES detection on the CHB-MIT dataset involved the 

utilization of frequency bands. 

The ML/DL-based methods discussed above vary in 

their utilization of decomposed EEG signals, raw signals 

and feature extraction. Recognition performance with 

decomposition with empirical mode (i.e., EMD) was 

better as shown in OK and Rajesh (2020). Hence, the main 

motivation of the study is to achieve better EEG-based ES 

recognition by developing a model using features from 

decomposed EEG signals by EMD.  

Materials and Methods 

The novel aim of the present study is to develop an 

ML ML-based well-performed ES detection method 

from EEG signal. Fig. 1 illustrates the proposed ES 

detection framework, outlining key steps including 

EEG signal preprocessing, signal decomposition using 

EMD, feature extraction, feature integration and 

finally, classifying ES using NN. Subsequent sections 

detail each step of the framework. 

Data Collection and Processing 

This study is performed with a well-studied, publicly 

available CHB-MIT dataset (Shoeb, 2009). It has 24 EEG 

recordings of 23 subjects (i.e., patients) from CHB. 

Among 23 subjects, five are males (ages 3-22) and 17 are 

females (ages 1.5-19). A summary of the patients is 

demonstrated in Table 1. Here, case no. 1 and case no. 21 

are from the same patient but signal collection time is 

different and subject information is not available for case 

no. 24. EEG signals from individual subjects are stored in 

individual. Edf format files. There are some gaps of 10 sec 

or more in the continuous signal due to some hardware 

inconvenience and privacy maintenance. The sampling 

rate of the signals is 256 samples per second with 16-bit 

resolution. This study takes common 22 channels’ data for 

each case which are “FP1-F7”, “F7-T7”, “T7-P7”, “P7-

O1”, “FP1-F3”, “F3-C3”, “C3-P3”, “P3-O1”, “FP2-F4”, 

“F4-C4”, “C4-P4”, “P4-O2”, “FP2-F8”, “F8-T8”, “T8-

P8”, “P8-O2”, “FZ-CZ”, “CZ-PZ”, “P7-T7”, “T7-FT9”, 

“FT9-FT10”, “FT10-T8”. Additional details regarding the 

CHB-MIT dataset can be found at: 

(https://physionet.org/content/chbmit/1.0.0/). 

 EEG data from all 24 cases were analyzed for ES 

detection. Individual data points in EEG are electric 

voltage measures from the skull through channel leads. 

Figure 2 shows a portion of 22 channels’ EEG signal 

values having epileptic spikes for a sample case, with one-

half of the area highlighted in red. The red-marked region 

indicates abnormal signals containing epileptic spikes, 

visually distinguishable from the unmarked area. EEG 

signal value ranges are diverged among the individual 

subjects. For better understanding, the chart in Fig. 3 

shows a comprehensive visualization of the minimum and 

maximum voltage measured values in different channels 

of seizure and non-seizure periods for individual subjects. 

 

 
 
Fig. 1: Proposed framework for Epileptic Seizure (ES) detection 

 

 

 

Fig. 2: Sample epileptic spike of a patient 
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Table 1: Summary of the CHB-MIT dataset 

Case No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Age (year) 11 11 14 22 7 1.5 14.5 3.5 10 3 12 2 3 9 16 7 12 18 19 6 13 9 6 - 

Gender F M F M F F F M F M F F F F M F F F F F F F F - 

 

 
 
Fig. 3: Individual patients’ minimum and maximum EEG 

responses (unit-volt) for seizure and non-seizure cases 

 

It is observed from Fig. 3 that the seizure period voltage 

range is larger than the non-seizure period in general for a 

particular subject. Seizure symptoms can vary in voltage 

dynamics, potentially showing greater fluctuations. 

Occasionally, non-seizure periods, while relatively stable, 

might register higher voltages than certain seizure phases 

due to transient influences like background brain activity, 

environmental factors, or physiological changes for a 

particular subject (Aurlien et al., 2004). Sometimes, the 

non-seizure voltage ranges of several subjects are higher 

than the seizure voltage values of a few other subjects. For 

instance, the non-seizure voltage range for case 4 is larger 

than the seizure range of cases 1, 2, 5-9 and a few others. 

Such voltage range variation among individual subjects 

depicts the complexity of subject-independent seizure 

detection. For such a complicated scenario, sophisticated 

techniques with feature extraction, as well as appropriate 

ML/DL algorithms, are necessary for proper 

discrimination between seizure and non-seizure states.  

In this study, 11,122 sec of seizure signal and 11,122 sec 

of non-seizure signal are collected from 23 patients/24 cases. 

The EEG signal is divided into consecutive segments 

using a 10-sec window with a 70% overlap (3-sec step size). 

Each segment contains 10 sec of data and the consecutive 

segments have an overlap of 7 sec (10 sec * 70% overlap = 

7 sec), leading to a partially shared time domain between 

adjacent windows. This ensures that all information 

remains intact during segmentation, enabling a more 

comprehensive analysis of the EEG signal, especially in 

scenarios where the events of interest, such as seizures, 

occur in shorter durations. A total of 3707 segments are 

generated for Seizure and an equal number for non-

seizure, resulting in a combined sample size of 7414 for 

further steps.  

Empirical Mode Decomposition (EMD) 

Signal decomposition allows for deeper analysis by 

breaking down signals into simpler components. In the 

proposed method, EEG signal decomposition using EMD 

is crucial. EMD is also able to handle non-stationary and 

non-linear signals (Huang et al., 1998), which are 

common in many real-world applications, such as 

biomedical signal analysis. Seizure signals often contain 

complex patterns with non-stationary and non-linear 

characteristics, so EMD can be used to reduce noise, enhance 

the quality of the signal and make it easier to extract relevant 

information (OK and Rajesh, 2020). Algorithm 1 shows 

the process of EMD followed by OK and Rajesh (2020). 

 

Algorithm 1: Empirical Mode Decomposition  

Initialization: Start with the original EEG signal and set the 

residue to be equal to the original signal [EEG segment of a 

channel] 

r(t) = x(t). 

Step 1. IMF extraction: Repeat the following steps if the residue 

can be decomposed and the IMF count is less than six:  

a) Identify the local maxima and minima of the residue, 

y_max(t) and y_min(t), respectively. 

b) Fit cubic spline interpolating functions to the local 

maxima and minima to obtain the upper, u(t) and lower, 

l(t) envelopes by: 

u(t) = spline (t, y_max(t)) 

l(t) = spline (t, y_min(t)) 

c) Calculate the mean c(t) of the upper and lower envelopes 

and subtract the mean from residue as d(t): 

c(t) = (u(t) + l(t))/2 

d(t)) = r(t) – c(t) 

d) If d(t) does not satisfy the conditions of IMFs, repeat the 

procedure defined in (a) to (c). Whenever d(t) satisfies the 

conditions, define IMF: 

IMFn = d(t) 

e) Subtract the current IMF component from the residue to 

obtain the new residue:  

r(t) = r(t) – IMFn 

Step 2. Stop if the residue can no longer be decomposed and the 

IMF count is six 
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Fig. 4: Six IMFs of seizure and non-seizure sample 

 

The core concept of EMD is to iteratively extract IMFs 

from the signal until a non-decomposable residue remains 

(Das et al., 2024). In this study, the first six IMFs are 

considered as the initial ones that carry more information. 

Step 1 of Algorithm 1 is the main component of individual 

IMF generation, which is repeated six times (directed in 

step 2) for six IMFs. In the first iteration, IMF1 is 

generated from the original signal. IMF1 is subtracted 

from the original signal to form the new residue. This 

residue is used for further iteration and IMF2 is generated. 

This is how the iterations go on four more times. Seizure 

and non-seizure IMFs are shown in Fig. 4. The figure 

demonstrates that seizure IMFs display abrupt, high-

frequency patterns indicating erratic neuronal firing, 

while non-seizure IMFs are smoother and more 

consistent, reflecting normal brain activity.  

Feature Extraction 

The goal of feature extraction is to extract the most 

relevant information from the data. Reduction in 

dimensionality, improvement of classification accuracy 

and enhancement of computational efficiency are some 

contributions of feature extraction (Boonyakitanont et al., 

2020). In this study, from each IMF, three features are 

extracted: The Fluctuation Index, Variance and Ellipse 

Area of SODP. The Fluctuation Index, which measures 

the degree of change in signal amplitude, typically 

indicates higher fluctuation in Seizure EEG compared to 

Non-Seizure EEG, reflecting the erratic nature of epileptic 

discharges. Variance, representing the extent of 

variability in relation to the mean of signal amplitude, is 

elevated in epileptic signals due to the dynamic nature 

of seizure activity. Additionally, the SODP provides a 

visual representation of the differences between 

consecutive signal points and is particularly adept at 

capturing signal variability. The areas of elliptical 

structures produced by Seizure signals’ SODP are 

higher. Collectively, these features offer valuable 

insights into the unique patterns and characteristics of 

epileptic activity, facilitating accurate differentiation 

between seizure and non-seizure signals. A brief 

demonstration of the extracted features is given below: 

 

1. Fluctuation index (F): The fluctuation index serves as 

a valuable metric for assessing the degree of 

variability within a dataset, particularly in the context 

of time series (here an IMF) analysis. A heightened 

fluctuation index signifies a greater level of variability 

within the dataset, suggesting that the data exhibits 

more pronounced fluctuations over time. Conversely, 

a lower fluctuation index implies a greater degree of 

stability, indicating that the dataset experiences fewer 

and less significant fluctuations 

2. Variance (V): Variance serves as a crucial statistical 

metric, offering insights into the extent of distribution 

or scattering within a dataset, a characteristic pivotal 

in tasks such as classification and clustering. 

Computed by averaging the squared disparities 

between each data point and the mean, variance 

provides a nuanced understanding of how data values 

deviate from the overall average, thus portraying the 

overall data dispersion 

3. Ellipse Area (EA) of second-order difference plot: 

The dispersion or variability in a time series dataset is 

measured by calculating the Ellipse Area (EA) in the 

Second Order Difference Plot (SODP). Here, SODP 

provides a visual representation of a time series of 

second-order statistics and serves as a valuable tool 

for identifying trends and outliers within the 

dataset. EA of the SODP encapsulates a concise 

portrayal of the dataset's variability and 

distribution, offering a comprehensive insight into 

the nuanced patterns and spread inherent in the 

temporal data. The necessary equations for 

calculations are explained below from (Pachori and 

Patidar, 2014): 

 

𝑑1(𝑥) = 𝑡𝑖(𝑥 + 1) − 𝑡𝑖(𝑥) (1) 

 

𝑑2(𝑥) = 𝑡𝑖(𝑥 + 2) − 𝑡𝑖(𝑥 − 1) (2) 
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Fig. 5: SODPs of seizure and non-seizure sample cases of a 

channel of patient 1 

 

In this context, where 𝑡𝑖(𝑥) specifically represents an 

IMF, the assessment of SODP involves plotting 𝑑2(𝑥) 

against 𝑑1(𝑥). The SODP samples of seizure and non-

seizure IMFs are demonstrated in Fig. 5. Upon visual 

examination, it becomes evident that the initial IMFs of 

the Seizure data display a more widespread distribution. 

As an example, in Fig. 5, the SODP of IMF1 varies 

vertically from -25 to +25 for seizure and the values vary 

from -20 to +20 for non-seizure cases. This allows us to 

compute the area of the elliptical structure formed by the 

SODP. Notably, the SODPs demonstrate that the areas of 

the elliptical structures generated by the seizure-related 

IMFs are notably larger compared to those of the non-

seizure IMFs, particularly for the lower index IMFs. The 

EA of SODP is defined by: 

 

𝐸𝐴 =  𝜋𝑎𝑏 (3) 

 

where, a represents the semi-major and b represents the 

semi-minor axes.  

Feature Integration 

From 22 channels of the CHB-MIT dataset, there is a 

total of 132 = (22×6) IMFs extracted. The extracted 

features for all IMFs are arranged, placing one after 

another for the feature set for a particular method, F, V, or 

EA. Features using the three individual methods are 

concatenated (i.e., F + V + EA) for an integrated feature 

set. The feature values are characterized to distinguish an 

EEG segment as seizure or non-seizure. To explore the 

combined impact of individual features (which is the main 

significance of the present study), a new feature set was 

generated by integrating F, V and EA into a single feature 

set. The integrated feature set holds 396 = (3×22×6) 

features concatenating F, V and EA features. For better 

understanding, Fig. 6 visually demonstrates feature set 

formations using individual methods (Figs. 6a-c) and 

finally integrating individual methods (Fig. 6d).  

Classification 

Integration of features from decomposed EEG signals 

using different methods to achieve better ES recognition 

is the main attraction of this study. Among different ML 

models, NN is considered in this study. NN is the most 

studied ML method due to its ability to learn and make 

good classification predictions. To observe the 

effectiveness of feature integration over individual 

methods, four different NN models are tested in this study: 

three models for individual feature sets (by F, V and EA) 

and a model with the integrated feature set. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 6: Feature set formation using individual methods and 

concatenation of those for integrated feature set. Here, F: 

Fluctuation Index, V: Variance, EA: Ellipse Area of 

SODP; (a) Fluctuation (F) feature set having 132 = 

(22×6) Fluctuation Index; (b) Variance (V) feature set 

having 132 = (22×6) Variance values; (c) Ellipse Area 

(EA) feature set having 132 = (22×6) ellipse areas of 

SODP; (d) Integrated feature set having 396 = (3×22×6) 

features concatenating F, V and EA features 
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Fig. 7: Neural network structure considered to classify seizure. 

The number of output neurons is two (n = 2) for seizure 

and non-seizure cases activation. Input sizes are 132 and 

396 for individual and integrated feature sets. The model 

tested for different h 

 

The NN structure considered to classify ES using 

features demonstrated in the previous section is shown in 

Fig. 7. It consists of an input layer, one hidden layer and an 

output layer. Neurons within each layer are fully connected 

to neurons in the subsequent layer (Alkan et al., 2005). The 

number of output neurons is two (n = 2) for seizure and 

non-seizure cases activation. The input size is 132 for the 

feature set of F, V, or EA; the size is 396 for the integrated 

feature set. The number of Hidden Neurons (HN) is a 

user-defined parameter and a model tested for different 

HNs. ReLU and softmax activation functions are used in 

the hidden and output layers, respectively. 

Experimental Studies  

This section first presents an experimental evaluation 

of NN. However, the experimental setup is given first.  

Experimental Setup 

The experiments, including feature extraction and 

classification, are conducted using Python. To perform 

the experiment, 80% of samples from the prepared 7414 

samples are used to train a model and the remaining 20% 

are used to test (i.e., measure generalization) the model.  

The number of HN in the NN (Fig. 7) is a user-defined 

parameter; and the four models are tested with varying 

hidden neurons 10, 20, 50 and 75 to observe the recognition 

ability for a particular model. The well-known Adam 

optimization algorithm is used to train the NN with a learning 

rate is 0.001. 

Experimental Evaluation  

At first, a rigorous analysis is presented for HN = 50 

and then performance is compared among four individual 

methods for different HNs. Figure 8 shows the training 

loss curves for HN = 50 of NN models with feature sets of 

F, V, EA and integrated these (i.e., F + V + EA). 

Consequently, Figs. 9-10 show the training and test sets 

accuracy curves for the same NN with HN = 50. It is 

observed from Fig. 8 that models are converged after 50-

100 epochs. Training set accuracy is smoothly inverse 

correlated with the loss curve of a particular model; such 

correlation is justified as the training samples used to train 

a model. After 100 epochs, all the models show near or 

equal 100% training set accuracies. 
 

  
Fig. 8: Training set loss vs. Epochs curves for HN = 50 
 

  
Fig. 9: Training set accuracy vs. Epochs curves for HN = 50 
 

 
 
Fig. 10: Test set accuracy vs. Epochs curves for HN = 50 
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Most importantly, for HN = 50, notable differences in 

test set accuracies are observed among the models, as seen 

in Fig. 10. Test set accuracy reflects the generation ability 

of an ML model, which is the main performance indicator. 

According to Fig. 10, classification accuracies are 

different for different feature sets. Among individual 

feature sets, the F feature set achieves the highest 

accuracy, reaching 99.73%. In contrast, the V feature set 

yields a lower accuracy of 89.01%, while the EA feature 

set shows a slightly better accuracy of 99.12%. On the 

other hand, the integrated feature set (combining F, V and 

EA) performs well with an accuracy of 99.46%. It is also 

observed from the figure that the V feature is not only the 

worst among the four models, but also its performance 

degrades significantly after 50 epochs. Again, the F 

feature set is the most discriminative, closely followed by 

the integrated feature set and outperforms the EA feature 

aset. Although the integrated feature is not found to be 

effective in improving performance for HN = 50, their 

loss convergence (Fig. 8) and accuracy improvement with 

respect to training epochs are better than models with 

individual feature sets. These results demonstrate the NN 

architecture's effectiveness in identifying patterns and 

achieving high accuracy. 

NN models with three individual features and an 

integrated feature set are trained for HN values 10, 20, 50 

and 70. The histogram in Fig. 11 depicts the test set 

classification accuracies among models with F, V, EA and 

integrated feature sets for different HNs. The histogram 

suggests that a higher HN is generally associated with 

improved classification accuracy. Although accuracy 

improves for the V feature set with respect to HN values, 

its highest accuracy, 89.48 for HN = 75, is worse than any 

other values for other feature sets. For HN = 75, EA also 

achieved the highest accuracy, but the values are lower 

than the F feature set with any HN values. It is also 

remarkable for the F feature set that although it is the best-

performed individual method, showing 99.73% accuracy 

for HN = 50, its performance did not improve further for 

HN = 75. On the other hand, performance with an 

integrated future set is inferior to the F for lower HN 

values (e.g., HN 10, 20), increases gradually and shows 

the best performance of 99.80% for HN = 75. As features 

in the integrated feature set are larger than individual 

methods, better performance with larger HN values is 

logical for the NN model. On the other hand, while 

performance for V is very low for lower HN values, its 

involvement in the integrated set hinders achieving good 

performance. While the performance of individual V and 

EA feature sets improves for HN = 75, the performance 

with integrated feature sets outperforms any individual 

methods. Briefly, the integrated feature set underscores 

the potential benefits of feature integration, despite the 

limitations of certain feature components of individual 

feature sets, especially the V feature set.  

 

 

Fig. 11: Test set accuracies across distinct feature sets for 

different Hidden Neurons (HNs) in the neural network 

 

Comparison with Previous Studies  

Numerous recent investigations have applied various 

ML/DL methods utilizing the CHB-MIT dataset. These 

studies have been consolidated, providing a summary and 

a performance evaluation is presented in Table 2, 

comparing the outcomes with the proposed method. The 

reported results in the respective articles serve as the basis 

for assessing the efficacy of the proposed approach in 

relation to existing studies. Some studies, such as Kaziha 

and Bonny (2020); (Gómez et al., 2020), used raw EEG 

signals. Kaziha and Bonny (2020) segmented the dataset 

into 100-sec intervals, achieving 96.70% accuracy with a 

CNN on a test set comprising 30% of the data. Similarly, 

Gómez et al. (2020) achieved 99.30% accuracy using raw 

EEG data along with CNN and a leave-one-patient-out 

evaluation strategy. Dang et al. (2021) achieved 99.56% 

accuracy by segmenting the dataset by 1 sec, dividing the 

signals into frequency bands and using CNN in a 10-fold 

CV. Qiu et al. (2023) segmented the dataset by 2 sec and 

used 1D CNN to extract features and classify them using 

them, achieving an accuracy of 97.09% in a 10-fold CV. 

Deepa and Ramesh (2022) achieved 99.55% accuracy 

using BiLSTM on a test set of 20% available data. He et al. 

(2022) achieved 98.52% accuracy using GAT and BiLSTM 

in a 5-fold CV. Some studies employed signal decomposition 

techniques like TQWT (Pattnaik et al., 2022) and VMD 

(Sun and Chen, 2023). Segmenting EEG signal by 2 sec, 

(Pattnaik et al., 2022) used TQWT to decompose EEG 

and achieved 93% accuracy using RF in a 10-fold CV. 

Sun and Chen (2023) used VMD to decompose and SVM 

to classify 10-fold achieving 98.3% accuracy. The 

proposed method outperforms all others, achieving a top 

accuracy of 99.80% on the CHB-MIT dataset through 

EMD decomposition, feature integration and NN 

classification (HN = 75). Finally, the proposed method is 

revealed as an effective ES detection method with an 

integrated feature set. 
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Table 2: Comparison of the proposed method with leading studies using CHB-MIT dataset 

Study Segmentation + Decomposition + Train-test split + Classification 

reference overlap feature extraction classification accuracy (%) 

Kaziha and Bonny (2020) 100 sec + N/A N/A + N/A 70/30+ CNN 96.70 

Gómez et al. (2020) 4 sec + N/A N/A + N/A Leave-one-patient 99.30 

   - out + CNN 

Dang et al. (2021) 1 sec + 50% Frequency bands + 10-fold CV + CNN 99.56 

  N/A 

Pattnaik et al. (2022) 2 sec + N/A TQWT + nonlinear, 10-fold CV + RF 93.00 

  temporal, statistical 

  feature 

He et al. (2022) 1 sec + 50% N/A + GAT 5-fold CV + BiLSTM 98.52 

Deepa and Ramesh (2022) N/A + N/A N/A + N/A 80/20 + BiLSTM 99.55 

Qiu et al. (2023) 2 sec + 50% N/A + CNN 10-fold CV + CNN 97.09 

Sun and Chen (2023) 2 sec + N/A VMD + DE, HFD 10-fold CV + SVM 98.30 

The proposed method 10 sec + 70% EMD + integrated 80/20 + NN 99.80 

  features of F, V, EA 
 

Conclusion 

Epileptic Seizure (ES) detection can help physicians 
accurately diagnose and monitor epilepsy and automatic 
ES detection from EEG signal is revealed as an open 

challenge in the ML/DL domain. This study investigates 
a novel strategy of ES detection from EEG signals through 
signal decomposition, feature extraction and feature 
integration. The well-known CHB-MIT benchmark EEG 
dataset is used in this study. EMD decomposes the raw 
EEG signals to extract essential components (i.e., IMFs) 

and uncover the underlying patterns that might be hidden 
in raw data. The fluctuation index (F), Variance (V) and 
Ellipse Area (EA) of SODP features are extracted from 
individual decomposed IMFs. The features were also 
concatenated to generate an integrated feature set, which 
is the main significance of this study. Finally, NN models 

are trained with individual and integrated feature sets. The 
performance of individual models is identified through a 
comprehensive analysis. Among individual methods, 
variance performs much worse than the fluctuation index 
or Ellipse area. The proposed method with an integrated 
feature set reveals an effective ES detection method that 

outperforms models with individual feature sets and 
prominent existing studies. However, it is noticeable that 
feature integration does not show significant 
improvement over the Fluctuation Index; the worst 
performed Variance features consideration in the 
integrated feature set might be the reason for that.  

The findings and insights from this study open several 
future studies in ES detection. This study considers NN 
for classification and shows competitive performance 
with different DL methods (Table 2). However, the 
appropriate DL model (i.e., CNN) and other ML models 
(i.e., SVM) might perform well for features from 

decomposed signals and integrated feature sets. Thus, 
there is a scope for work remaining with other ML models 
using feature integration. In the present study, integration 
is performed considering all the individual features for 
simplicity. Appropriate selection of features might 

enhance performance further and remain an interesting 
but challenging future work. 
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