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Abstract: Machine learning models trained in medical imaging can help in the 

early detection, diagnosis, and prognosis of the disease. However, it confronts two 

major obstacles: deep learning models require access to a substantial amount of 

imaging data, which is a hard constraint, and the patient data is private and 

sensitive, so it cannot be shared like 1 other imaging data in computer vision. 

Federated Learning (FL) offers an alternative by deploying many training models 

in a decentralized way. In recent years, various techniques that leverage FL for 

disease diagnosis have been introduced. Existing survey articles have analyzed 

and collated research about the use of FL in general. However, the particular 

component of medical imaging is ignored. The motivation behind this survey 

paper is to fill up the research gap by providing a comprehensive survey of FL 

techniques for medical imaging and various ways in which FL is employed to 

provide secure, accessible, and collaborative deep learning models for the medical 

imaging research community. 
 

Keywords: Federated Learning, Medical Imaging, Classification, Segmentation, 

Detection, FL Frameworks 

 

Introduction 

Over the last decade, Machine Learning (ML) has 

shown remarkable success in early disease detection, 

diagnosis, and prognosis (Khan and Robles-Kelly, 2020). 

However, it faces two challenges, (Khan and Robles-

Kelly, 2020) deep learning models require access to a 

considerable amount of imaging data, which is a hard 

constraint (Gupta et al., 2023), medical imaging about the 

patient is private, and of a sensitive nature and, therefore, 

cannot be shared like other imaging data (Liu et al., 2023). 

In response to these challenges, a secure and collaborative 
ML framework has emerged, called Federated Learning 

(FL) (Li et al., 2019), which can assist with training an 

algorithm faster while using less training data. FL, which 

protects patient privacy and enables collaborative model 

training across institutions, transforms medical image 

analysis. It uses edge computing for effective processing, 

enabling cross-institutional research and knowledge 

sharing without centralizing sensitive data. Moreover, it 

facilitates domain adaptation and transfer learning, 

guaranteeing that models generalize well across a variety 

of datasets while upholding data sovereignty and legal 

requirements. FL works on specific tasks faster and more 

efficiently (Deiana et al., 2020) than humans ever could. 
This survey explores the effectiveness and applications of 

FL in introducing privacy to ML solutions based on 

medical imaging. 

Deep learning methods require a large amount of data 
with variations to perform efficiently (Sarker et al., 2021). 
However, it is quite challenging to collect the data from 

various sources and put it in a central place due to privacy 
concerns (Ratta et al., 2021). Even if the data is secured from 
external threats, the data leakage from the internal person is 
quite high, which makes the data owner reluctant to share the 
data. FL is the recent approach introduced by Google in 2016 
(McMahan et al., 2017), that enables the training of the 
universal model without gathering the data in one place 
(Nasri et al., 2023). It trains the centralized model using 
decentralized data (Ye et al., 2022). The data stays in its place 
of origin and the model is trained on the device or location 
where the data is produced (Zhu et al., 2023), which reduces 
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the hardware cost needed to store the data (Jimenez 
Gutierrez et al., 2024). In contrast, FL divides the data into 
small chunks, which speeds up the analysis process 
(Reisizadeh et al., 2020). As a result, these smaller 
datasets can be analyzed in less time and with less 
computing power (Bousbiat et al., 2023). 

This survey enlightens on FL usage in medical 

imaging and has a strong focus on FL frameworks for 

cancer analysis. Furthermore, concepts and types of FL 

are also discussed in this study. The section breakdown of 

this study is given below; it will have an introduction 

followed by an overview of FL with different types of FL, 

FL framework for cancer analysis, and the use of FL in 

medical imaging. At last, the conclusion will be presented. 

Federated Learning Overview 

The concept of FL was first announced by Google in the 

year 2016 (McMahan et al., 2017). FL is a method which 

slices the data into smaller portions and conducts analysis 

on each unit of the dataset independently (Posner et al., 

2021). After the study is completed, the model is built by 

using all of those smaller datasets (Połap and Woźniak, 

2022). FL aims at solving two main problems of the 

existing DL approaches in the first case. Firstly, it is an 

expensive affair to implement deep learning models in a 

discrete architecture as the data has to be transferred 

across the faculties (Zhang et al., 2018). For this reason, 

FL can be applied for distributed fashion and with fewer 

datasets (Kang and Ahn, 2021). Second, obtaining deep 

learning models are used to perform a single task, for 

parenthesis voice recognition (Khurana et al., 2021) or 

image recognition (Li, 2022). However, most of the times 

such companies needs to redeploy the whole model any 

time when they wish to take advantage of such models for 

other purposes such as generating new text or images in 

construction (Langlotz et al., 2019; Połap et al., 2021). FL 

is intended to reduce the ‘performing Enterprise Change’ 

(Wang et al., 2022a) and ‘Time to Recover’ (Jiang et al., 

2023) by decentralized and, accordingly, income flows 

across the goodness of patience. 

Malik et al. (2023) DMFL Net model gathers data 

from different types of hospitals then constructs the model 

using DenseNet-169. 

The unique characteristics and challenges of federated 

learning in medical imaging are discussed in Singh et al. 

(2023). Federated source FREE Domain Adaptation 

(FFREEDA), in Shenaj et al. (2023), is described where 

the server only accesses a source labeled dataset for 

pretraining and the clients' data is unlabeled. LADD takes 

advantage of the pre-trained model's expertise by using 

self-supervision and ad-hoc regularisation approaches for 

local training and introducing a novel federated clustered 

aggregation scheme based on the client's preferences. 

FedDebug (Gill et al., 2023) a framework for systematic 

fault localization, makes two unique advancements in FL 

debugging. First, FedDebug uses record and replay 

techniques to build a simulation that accurately represents 

live FL, enabling interactive debugging of real-time 

collaborative training in FL. A realistic approach based on 

iterative model averaging for the federated learning of 

deep networks and a thorough empirical evaluation taking 

into account five distinct model architectures and four 

datasets is presented in citemcmahan 2017 

communication. Kairouz et al. (2021) summarised the 

most recent developments and listed a significant number 

of open problems and challenges related to FL. FL model 

is given below in Fig. (1). 

To create a federated model, a model owner (server) 

first trains the model it created (Lian et al., 2022). The 

model owner then extracts the model and distributes model 

building blocks to other organizations, including data, 

hyperparameters, and an architectural description (Yoo et al., 

2022). The model is then built and executed locally by these 

other organizations using the model building components 

(Banabilah et al., 2022). The server and other organizations 

can utilize the model to generate predictions once it has 

finished training (Li et al., 2023). The initial model is then 

updated by the server by combining the parameters from 

the clients' models (Lu et al., 2022). 

Although FL is a relatively new technique, it has 

already been implemented in projects such as OpenFiscar, 

an open-source tool (Elayan et al., 2021) for generating 

fiscal forecasts, and OpenML, an open-source tool for 

model exchange and collaborative model building 

(Guberović et al., 2022). Darzidehkalani et al. (2022), FL 

enables the participants to train a local model on their data 

without sending the actual data to the server. A global 

model is updated by the participants. This ensures the 

privacy of data. FL tackles the infrastructural barriers of 

moving large volumes of data from one institution to 

another. It requires multiple clients who hold the data and 

perform the local training. A central trusted server 

manages the whole process from the initial model to the 

final model. 

 

 
 
Fig. 1: Use of FL across the organizations. All the models 

trained by different organizations are aggregated by the 

server to get the final result (Mammen, 2021) 
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The equation of federated stochastic gradient descent 

and the updating of weights is presented below: 
 
𝑠:= 𝑠 −

𝜂

𝑥
∑ 𝛻𝑄1(𝑠)

𝑥

𝑙=1
 (1) 

 

Types of FL 

FL is a concept based on leveraging supervised ML 

algorithms to optimize training on a distributed network 
(Huang et al., 2022). There is more than one way to 
approach this concept (Mohamad et al., 2022), we will 

start by having a look at the various types of FL. It can 
be categorized into three different types-model-centric 
FL (Mohamed and El-Gayar, 2022), cross-device FL 
(Yang et al., 2022), and horizontal FL (Guo et al., 2022). 

Some FL types are discussed. 
Model-centric FL (Mohamedand El-Gayar, 2022): In 

this model employees generate a model of the skill set of 

which they are based a model inputted into the system 
through cross device data. on examples fed into the 
system via employees’ cross-device data. The purpose of 
this model is to optimize training for all of them.  

Cross-device FL (Yang et al., 2022): In this federated 
learning (FL) system, the examples for the employees are 
formed from the data obtained from their devices. 

Thereafter, this data is used in training models aimed at 
optimizing the training of each individual employee. 

Horizontal FL (Guo et al., 2022): In this type of FL, 
employees are trained on one skill that cuts across 

different domains in the organization. 
Roy et al. (2019) propose BrainTorrent which is 

central free FL framework targeting medical applications. 

Silo FL (Zhang et al., 2023): In this type of FL, one 
group passes their skill set and knowledge to employees 
from other departments. For instance, an engineering firm 

can guide an HR group on the application of their software. 
Vertical FL (Feng, 2022): In this type of FL, 

employees in a particular skill set are taught more 
advanced skills that are still within the same discipline. 

For instance, a marketing department can be advanced to 
the utilization of marketing department. 

Data-centric FL (Huang et al., 2023): In this type of 

FL, central modelling is nonexistent. The AI algorithm is 
what acts as the central theme in this case the label to the 
users’ models created for training the algorithm is the 
training algorithm. There is no need sharing the data 

across devices of employees. 
Federated transfer learning (Zhang and Li, 2022): In 

this type of FL, a particular AI model utilized in the 

organization teaches skills from one employee to other 
employees from other departments. This can address a 
situation whereby people return to the organization after 
being out due to looking after sick people. 

Limitations and Challenges of FL 

The continuous increase in the amount of available data 

and computation has given new dimensions to the design of 

ML models that can be trained to predict as well as make 
decisions (Woldaregay et al., 2019). Whereas many tasks 
have been performed using deep learning models in medical 
imaging, such tasks have been achieved using traditional 
methods (Haskins et al., 2020), among them, classification 
(Yao et al., 2020), detection, and segmentation (Lea et al., 
2017). Instead of viewing big data in a positive light, there 
are also various challenges that are worth discussing about 
such models if they are to be deployed in the field of 

medicine in the near future (Li et al., 2020). FL is thus a 
strategy that enables a healthcare provider and patient to 
work together and reach set targets (Rieke et al., 2020). FL 
when applied for the case of medical imaging brings with it 
both shortcomings and challenges (Kairouz et al., 2021). 
Some of them are disscussed below: 
 
1. Due to privacy reasons, it is hard to discover a patient 

group willing to participate in FL (Pfitzner et al., 2021) 

2. It is challenging to gather and distribute the data 

among the participants as it requires servers and 

client interaction as discussed in (Jiang et al., 2020) 

3. Healthcare professionals have to enable patients to 

talk about sensitive issues to them (Aledhari et al., 

2020). Collaboration with a patient may also be 
stagnant due to the influence of culture 

4. There is a risk that communication between clients and 

servers that contains medical data may be intercepted 

illegally by unauthorized parties (Ma et al., 2020) 
 

Communications and Technologies are particularly 
required to be able to consistently interchange 
information in both the client (or client-side), and the 

server back and forth, FL may be more expensive in terms 
of communication costs than the ordinary meeting with 
eye-ball persons (Pang et al., 2021) 

FL for Medical Imaging (FLMI) is one possible fix for 

these challenges (Ng et al., 2021). It is a approach that 

employs Web based platform with the aim of facilitating 
exchange of data and synergetic work among researchers 

studying alike populations or diseases (Nguyen et al., 2023) 

and for the FLMI dynamically shared patient’s record files, 

they are able to work together and make certain about the 

focus of their research and share any patient records for 

clinical study or research aim (Guo et al., 2021). In the 

absence of such research data from various sources, this 

strategy would not have been conceivable and has led to a 

number of important land mark discoveries (Terrail et al., 

2021). Within the framework of medical domains, among the 

challenges faced during federated learning are the following: 
 
1. Data security and privacy: HIPAA and other laws are 

looking towards machine learning tools must be 

complemented with ensuring privacy and security of 

medical imaging data. The process of federated 

learning requires collaboration among several firms 

and responsiveness with regards to data sharing, which 

can possibly take time to realize (Xu et al., 2021) 



Muhammad Imran Sharif et al. / Journal of Computer Science 2024, 20 (12): 1610.1621 

DOI: 10.3844/jcssp.2024.1610.1621 

 

1613 

2. Data heterogeneity may be: It may prove to be rather 
complex to design a single system which would work 
with data from all medical imaging documents since 
there are bound to be discrepancies in the medical 
imaging data within different centers and different 
machines (Prevedello et al., 2019) 

3. Limited data availability: Such a network can 
enhance the effectiveness of a federated learning 
model but nonetheless is likely not to be achieved 

since a number of hospitals that can adapt the model 
is few (Pandl et al., 2022) 

4. Network constraints: Additionally, participants in 
federated learning and share local models a reliable 
fast network access is essential in order for them to 
communicate updates to each other or share data. 
This might pose a challenge in applying it to remote 
or developing regions (Foley et al., 2022) 

5. Alignment of incentives: There must be an incentives 
framework which defines the scope of cooperation 
between different entities targeting federated learning 
(Wang et al., 2022b) 

 

FL Frameworks for Cancer Analysis 

Current and ongoing cases suggest that several FL 
frameworks can help enterprises in the actual adoption of 

an AI-enabled software for conducting business. For 
examples see Apache-Spark-TF (Guo et al., 2018), 

TensorFlow FL Toolkit (Yang et al., 2019), and Apache 
Hadoop distributed file system (Patil et al., 2019). Also, 

the flt-toolkit was developed by google. Companies, in 
turn, use this toolkit in order to adapt software to their 

specific needs (Mothukuri et al., 2021). Making use of 
international agencies’ data and the use of an open system, 

Geleijnse et al. (2020) created a framework for oral cavity 
cancer that made it quick and easy to perform local data 

trawls across multiple sites. Carpov et al. (2022) in work 
published on 2022, proposed a multiparty computation 

architecture, GenoPPML, that supports FL and 
incorporates multisided computation. 

In addition to protecting privacy by methods already 
cited above, for genomics data regression homomorphic 

encryption and differential privacy are put in use. 
Matschinske et al. (2021) showed a framework which can 

be used more widely than expected and for many more 
aims. “Marketplace” strategy is employed in a secure 

multiparty compute system, whereby FL enables third 
party applications to utilize infrastructure and other 

computational capabilities. Carrying out a computational 
project focused on cancer oriented study incorporating 

analisys Kaplan-Mayer, data normalizing within a 
common structure, and accelerating local data research 

with an open system (Chowdhury et al., 2021).  
Elayan et al. (2021); Banerjee et al. (2020) proposed a 

framework to assist in the training of skin lesion images, 

using IoT base devices. They utilized FL and avoided 

looking for large, labeled data by making use of transfer 

learning (He et al., 2020). The Joint Imaging Platform (JIP) 

has been created by the German National Cancer Center in 

order to facilitate multiclinical trials improving methods of 
the tumor treatment and visualization (Scherer et al., 2020). 

Use of FL in Medical Image Analysis 

Due to security barriers experienced by patients, FL 

has become increasingly popular in medical imaging over 
the years (Degan et al., 2022). It is a subset of machine 

learning where a model is trained without data sharing 
(Wang and Tsai, 2022). This is particularly beneficial for 

medical imaging in that it ensures that data secrecy is 
maintained and that the data sharing is only limited to the 

patient’s consent (Nguyen et al., 2023) This has been used 
in a so-called descretered image and in processes such as 

image processing in classification (Agrawal et al., 2022) 
and in segmentation (Gupta and Alam, 2022) tasks. FL has 

many pros and is a powerful instrument in the fight of 
penetrating privacy issues (Ouadrhiri and Abdelhadi., 

2022). Federated Disentanglement (FedDis), introduced 
by Bercea et al. (2021), is a novel disentangled 

methodology that allows only the parameters of the model 
to be exchanged between the clients. 

According to Bercea et al. (2022), this 
disentanglement technique operates under the supposition 

that brain MRI pictures from many institutions have the 
same anatomical structure and that sharing shape 

knowledge will aid in anomaly detection.  
Model of normal anatomy using actual data from 623 

individuals from multiple institutions (OASIS, ADNI) in 
a privacy-preserving manner to abnormal segment 

regions. To demonstrate superior performance on real 
pathological datasets containing 109 patients, the FedDis 

method outperforms auto-encoders by 42% and federated 
approaches by 11%. 

Yi et al. (2020) introduced an SU-Net approach for 
brain tumor segmentation. It comprises an inception 

module and a dense block in U-Net to improve 
information reusing. Evaluate SU-Net (FL model) on the 

LGG for ’brain MRI segmentation. SU-Net outperforms 
the baselines in a federated setting. It achieved a 99.7% 

AUC and a 78.5% DSC, significantly higher than the 
state-of-the-art deeplabv3+ model, which measures 

classification accuracy on medical images (DSC is a dice 
similarity coefficient that measures segmentation 

accuracy). The concept of data sharing across many 
cloud platforms will aid third-party players in employing 

varied big-data analytical approaches. This would allow 
for the introduction of value-added services such as 

providing healthcare services to clients through the 
collection of medical data from multiple facilities. Apart 

from its numerous applications, data sharing makes 
major contributions to modern human existence 

(Maddikunta et al., 2022). 
Bdair et al. (2021) proposed FedPerl, a semi-

supervised FL approach, to construct a community and 
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urge its members to share their information by leveraging 
peer learning. The improvement in the performance of 
FedPerl compared to the baselines and the state-of-the-art 
SSFL is 15.8 and 1.8%, respectively. Samanta et al. 
(2022) used FL with a single model to identify head and 
neck cancer, lung cancer, and lymphoma from 18F-FDG 
PET/CT scans. Furthermore, compared with Centralized 
Learning (CL). The conventional averaging method for 
combining models was more resistant to outliers than the 

coordinate-wise median approach (Balaji et al., 2021). 
Furthermore, PET/CT images from 8 centers to 
investigate disease diversity and scanner variation. 
Experienced neurologists participated in the study to 
evaluate PET/CT scans of 998 patients (Czernin et al., 
2017). A training round lasted 100 epochs (100 
epochs/round). To train the models, a 
centralized/FedAvg/CoMed approach was used (100 
epochs/round). The ROC curve area was 
0.934/0.937/0.950 for lymphoma, 0.988/0.988/0.992 for 
lung cancer, and 0.979/0.979/0.987 for head and neck 
cancer cases (Samanta et al., 2022). Wicaksana et al. 

(2022) proposed FL (CusFL); a global model is 
aggregated into client-specific models for training in each 
iteration. CusFL provides each client with beneficial 
knowledge from the federated model to enhance their 
model by learning from it. CusFL achieves superior 
performance using two key strategies: (1) Features are 
aligned for the federated model using only feature 
extraction layers and (2) The federated feature extractor 
guides the training of each private model. Later, assessed 
CusFL on a multi-source medical image dataset to identify 
critical prostate cancer and classify skin lesions. The 
comparison table for medical imaging with FL techniques 

is given in Table (1). 
In this table, multiple FL approaches are compared and 

a few different datasets, types of diseases, FL Approaches, 

and results based on different factors are analyzed to 

assess the effectiveness of each FL method. After a 

comprehensive assessment, it is determined that FL 

techniques are widely adopted and provide effective 

results when used to train massive amounts of data from 

several institutes without centralizing the data, which is a 

suitable privacy-preservation approach. 

 
Table 1: Comparison table of federated learning approaches for medical imaging. A couple of factors are used to 

see the performance of federated learning techniques: Datasets, the latest paper, algorithms and results 

Ref. No. Year 

Disease 

type FL Approaches Methods Datasets Results 

Roth et al. 

(2020) 

2020 Breast 

cancer 

Federated 

Learning for 

breast density 

classification 

Classification BI-RADS 45.8% 

improv

ement 

in the 

model 
Muthukrishnan 

et al. (2022) 

2022 Breast 

cancer 

MammoDL is 

proposed to 

accurately 

estimate breast 

PD and 

Complexity 

Detection HUP and 

MC 

MAE 

on 

HUP 

data is 

4.2806

% 

Stripelis et al. 

(2021) 

2021 Brain 

tumor 

FL framework 

to predict the 

age of the 

person using 

MRI Images 

Prediction MRI 

Images 

MAE 

6.3% 

Dayan et al. 

(2021) 

2021 COVID

-19 

FL for 

predicting 

future oxygen 

requirements 

Prediction X-ray 

images 

from 20 

institutes 

0.950% 

sensitiv

ity and 

0.882% 

EMR and X-

ray 

specific

ity 

Luo and Wu 

(2022) 

2022 Colorec

tal 

cancer 

FedSLD Classification MNIST 

and 

CIFAR10 

Test 

accurac

y 

5.50% 

Hwang et al. 

(2023) 

2023 Skin 

lesion 
cancer 

FL with 

Proximal 
regularization 

except local 

Normalization 

(FedPxN) 

Classification Electronic 

health 
records, 

Skin 

cancer 

images 

and 

electrocar

diogram 

70.06% 

accurac
y 

Jiang et al. 

(2022) 

2022 Skin 

lesion 

cancer 

Semi-

supervised FL 

(imFed-Semi) 

Detection 25,000 

CT slices 

and 

10,015 

dermosco

py images 

7.61% 

and 

4.69% 

accurac

y 

Pennisi et al. 

(2024) 

2024 Tuberc

ulosis 

and 

melano

ma 

Decentralized 

distributed 

learning 

Classification Montgom

ery 

Country 

and 

Shehzhen 

Hospital 

X-rays 

Sets 

0.792% 

accurac

y with 

8 nodes 

for IID 

data 

and 

0.716% 

for 

nonsen-
IID 

data 

Shiri et al. 

(2022) 

2022 Head 

and 

neck 

cancer 

Decentralized 

Federated 

Deep 

Transformer 

Learning 

Algorithm 

Segmentation 220 

Clinical 

PET/CT 

images 

Errors 

less 

than 

5% for 

SUVm

ax and 

SUVm

ean 

Bernecker et 

al. (2022) 

2022 Liver 

cancer 

FedNorm: 

Modality-

Based 

Normalization 

in FL 

Segmentation CT and 

MRI 

images of 

428 

patients 

Dice 

per 

patient 

scores 

0.961 

Kalendralis et 

al. (2022) 

2022 Head 

and 

neck 

cancer 

Dysphagia 

dose response 

model 

validation 

Detection Head and 

Neck 

cancer 

patients 

AUC 

0.83 

Hansen et al. 

(2022) 

2022 Larynx 

cancer 

Open-source 

distributed 

learning 

Prediction 1745 

patients 

C-

index 

0.74 

and 
0.70 for 

two 

centers 

Kakka et al. 

(2022) 

2022 Chest 

disease

s 

Six distinct 

transfer-

learning 

approaches 

Detection and 

Classification 

112,120 

chest x-

ray 

images 

from NIH 

97.71% 

accurac

y 

Mamun et al. 

(2022) 

2022 Lung 

cancer 

Ensemble 

learning 

techniques 

Prediction Survey 

dataset of 

309 

people 

94.42% 

accurac

y 

Islam et al. 

(2023) 

2023 Brain 

tumor 

FL and CNN 

Ensemble 

Architectures 

Classification MRI 

images 

96.68% 

accurac

y 

Yi et al. 

(2020) 

2020 Brain 

tumor 

Aggregation 

logic in FL 

framework 

Segmentation 341 

subjects 

Dice 

scores 

0.874, 

0.773 

and 

0.721 

Mahlool and 

Abed (2022) 

2022 Brain 

tumor 

Aggregation 

Model in FL 
environment 

Classification MRI 

Images 

98% 

accurac
y 

Tuladhar et al. 

(2022) 

2022 Brain 

tumor 

FL using 

Variable Local 

Training 

Segmentation MRI 

Images 

Averag

e DSC 

score 

0.685 

Pati et al. 

(2022) 

2022 Brain 

tumor 

FL for Rate 

Cancer 

Boundary 

Detection MRI 

Images 

33% 

improv

ement 

over a 

publicit

y 

trained 

model 

Pati et al. 

(2022) 

2022 Skin 

cancer 

Integrated 

strategy based 

many-objective 

evolutionary 

algorithm 

(MaOEA-IS) 

Detection ISIC-

2018 

Compa

rison 

with 

five 

algorith

ms 

Lan et al. 

(2022) 

2022 COVID

-19 

FL for 

COVID-19 

Non-IID 

Detection X-ray 

images 

84.4% 

accurac

y 
Elshabrawy et 

al. (2022) 

2022 Prostate 

cancer 

Xception and 

VGG19 

models 

Classification Local 

dataset 

83.76% 

accurac

y 

 

Conclusion 

FL has only recently become a popular AI technique. 

As a result, researchers have only just begun to explore 
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its potential. First, FL can be used in various situations, 

including small datasets and distributed environments, 

making it applicable to many businesses and the privacy 
of health-related sensitive data. Second, this technique 

can speed up deep learning's training time, which means 

the detection of disease will be easier and more accurate. 

Finally, FL aims to reduce model retraining time, which 

means doctors don't need to wait as long to see results. 

All in all, FL is a promising technique for boosting 

medical imaging AI capabilities. To process medical 

data, hospitals may need GPUs cloud-based storage, and 

data centers with high computational power and strong 

internet connection which are not always available in all 

hospitals. The hospitals are now moving toward FL 
techniques because their priorities are working on 

massive medical data as well as privacy. FL offers 

straightforward and secure data access for institutions. A 

Federated environment will help achieve good 

performance and a deep learning model can be trained 

on a big dataset which mitigates the over-fitting issues. 
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