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Abstract: Super-Resolution enhances image or video quality by upscaling
frames to higher resolutions, which is essential for applications like
investigative analysis demanding higher quality. However, this process is
resource-intensive. GPUs, with their thousands of CUDA cores, offer
significant parallel processing advantages over CPUs, enabling faster
performance. This paper presents an optimized approach for real-time video
enhancement using the EDSR x4 model with Nvidia-CuDNN acceleration.
We employ dynamic CPU-GPU load balancing to distribute computational
tasks based on resource availability, reducing processing time by 18% and
achieving real-time upscaling with a processing time of 205 ms per 10
frames. EDSR, originally designed for Single Image Super-Resolution
(SISR), is chosen over Video Super-Resolution (VSR) methods due to its
superior frame-level clarity, making it ideal for scenarios where individual
frame quality is critical. A notable discovery is the wave-like behavior in
normalized PSNR, SSIM, and VIF metrics across resolutions, revealing a
periodic relationship between resolution and perceived quality. This insight
further informs optimal resolution selection for various applications. The
proposed system efficiently handles 480p to 4K video, maintaining high
image quality and GPU utilization between 60%-80%, making it suitable for
real-time applications that require both speed and high fidelity.

Keywords: EDSR x4, Dynamic Load Balancing, Real-Time Video
Upscaling, Super-Resolution, CUDA

Introduction
In the modern world, where the demand for high-

quality videos is rapidly increasing, the demand for high-
quality video upscaling has significantly increased. This
has led to the development of significant technologies
like deep learning models, with the Enhanced Deep
Super-Resolution (EDSR) x4 model emerging as a potent
tool for achieving remarkable image quality
enhancement (Kim et al., 2016). Despite the exceptional
up-scaling capabilities of such models, the challenge of
attaining real-time super-resolution persists due to
processing limitations, making it necessary for
approaches that leverage cutting-edge technologies to
solve this issue.

This paper embarks on a journey of optimization and
acceleration by delving into the realm of GPU
technology and CUDA optimization to bolster EDSR x4
upscaling to enable real-time video quality enhancement.
Recent advancements in deep learning techniques for
super-resolution, as highlighted in "Photo-Realistic
Single Image Super-Resolution Using a Generative
Adversarial Network" (Ledig et al., 2017) and

"FastDVDnet: Towards Real-Time Video Denoising
Without Explicit Motion Estimation" (Agustsson &
Timofte, 2017), serve as pivotal inspirations. These
works unravel the intricacies of deep learning
architectures and GPU optimization, laying the
groundwork for our exploration into real-time video
enhancement methodologies.

Furthermore, our approach draws insights from
seminal works such as "Deep Laplacian Pyramid
Networks for Fast and Accurate Super-Resolution"
(Dong et al., 2016b), "Real-Time Single Image and
Video Super-Resolution Using an Efficient Sub-Pixel
Convolutional Neural Network" (Shi et al., 2016),
"Accelerating the Super-Resolution Convolutional
Neural Network" (Dong et al., 2016a), and "Image
Super-Resolution Using Deep Convolutional Networks"
(Zhang et al., 2018a). These papers contribute essential
perspectives on different aspects of super-resolution,
encompassing network architectures, real-time
processing, and acceleration techniques.

As we confront the computational challenges
associated with super-resolution, we draw insights from
"Deep Residual Learning for Image Recognition" (He et
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al., 2016), which introduces adaptive super-resolution
techniques dynamically adjusting the upscaling process
based on input frame complexity. Simultaneously,
"Dynamic Load Balancing on Heterogeneous Systems"
(Xiang et al., 2022) offers a glimpse into innovative
load-balancing strategies in parallel processing
environments, a concept central to our methodology.

Guided by the adaptive strategies outlined by (He et
al., 2016) and the load-balancing insights from (Xiang et
al., 2022), our approach unfolds with a focus on
achieving optimal resource utilization. Inspired by the
divide-and-conquer methodology proposed by (Tovar &
Kwon, 2021), a strategic technique that pre-emptively
splits the input frameset, akin to data-prefetching in
Multi-Core Architecture methodologies, we aim to strike
a balance between CPU and GPU resources. This
methodology not only optimizes resource utilization but
also ensures a real-time output without a buffered wait
lag in video delivery.

In essence, this research positions itself at the
intersection of deep learning, GPU acceleration, load-
balancing strategies, and a comprehensive understanding
of super-resolution methodologies drawn from a rich
tapestry of foundational papers.

Related Work

Super-resolution (SR) is a critical technique in image
and video processing aimed at enhancing the resolution
of visual content to improve detail and overall quality.
The field has seen significant advancements, particularly
with the advent of deep learning models like EDSR
(Enhanced Deep Residual Networks), which have set
new benchmarks in Single Image Super-Resolution
(SISR). Video Super-Resolution (VSR) builds on these
advancements but introduces additional challenges, such
as maintaining temporal consistency across frames.
Furthermore, the integration of CUDA (Compute Unified
Device Architecture) has revolutionized the
implementation of these models, enabling real-time
processing capabilities. This literature review examines
the key developments in SISR and VSR, the rationale for
choosing EDSR for video frame upscaling, and the role
of CUDA in optimizing these processes.

Single Image Super-Resolution (SISR)

SISR has evolved significantly from traditional
interpolation methods to sophisticated deep-learning
models. Early methods, such as bicubic interpolation,
often resulted in loss of detail and smoothness,
particularly at high magnification levels. The
introduction of deep learning models like SRCNN and
later EDSR marked a significant leap in SISR quality.

Enhanced Deep Residual Networks (EDSR),
introduced by Lim et al., is a high-performance model
that improves upon earlier approaches like SRCNN by
removing batch normalization layers, expanding the

model’s capacity, and stabilizing training, achieving
state-of-the-art performance with PSNR values of 26.96
dB on the Ur-ban100 dataset for 4× upscaling (Lim et
al., 2017). EDSR leverages deep residual blocks without
batch normalization, enabling it to handle large-scale
images effectively. Ahn et al. explored compressing deep
models, introducing techniques that maintain high PSNR
and SSIM values while reducing the model size by 56%,
achieving a PSNR of 27.24 dB on Urban100 (Ahn et al.,
2018). Zhang et al. built on EDSR with Residual Dense
Networks (RDN), incorporating dense connections
within residual blocks to improve feature reuse and
gradient flow, resulting in a PSNR of 32.47 dB on the
DIV2K dataset for 2× upscaling, outperforming EDSR
by 0.2 dB (Zhang et al., 2018b). Additionally, Zhou et al.
explored adaptive dictionary learning, where CUDA
acceleration led to a speedup of up to 30× compared to
CPU implementations, enabling real-time processing of
multispectral images (Barman et al., 2021).

Video Super-Resolution (VSR)

VSR extends the principles of SISR to video
sequences, introducing challenges related to maintaining
temporal coherence across frames. These challenges
have led to the development of specialized models that
can handle the unique demands of video data.

FRVSR (Frame-Recurrent Video Super-Resolution),
proposed by Sajjadi et al., integrates a recurrent
mechanism where the output of the previous frame is fed
into the network to super-resolve the next frame,
maintaining temporal consistency. FRVSR achieved a
PSNR of 29.6 dB on the Vid4 dataset for 4× upscaling,
demonstrating superior temporal consistency compared
to traditional methods that process frames independently
(Sajjadi et al., 2018). Yang et al. introduced RealVSR,
focusing on real-world video data rather than synthetic
benchmarks. Trained on a dual-camera system dataset,
RealVSR improved generalization and showed PSNR
gains of 0.5 dB on real-world test videos compared to
models trained solely on synthetic data (Yang et al.,
2021). Isobe et al. developed Temporal Group Attention
Networks (TGAN), which use a temporal attention
mechanism to focus on frames contributing the most to
perceived video quality, achieving a PSNR of 30.02 dB
on the REDS dataset by managing complex motion and
reducing artifacts (Isobe et al., 2020). Kim et al.
introduced AnimeSR, a model tailored for animation
videos with sharp edges and flat regions, maintaining a
PSNR of 33.1 dB on a custom anime dataset and
preserving stylistic elements crucial for high-quality
animation upscaling (Wu et al., 2022).

Why Choose EDSR for Video Frames?

Given the complexity and computational demands of
specialized Video Super-Resolution (VSR) models,
EDSR offers a practical alternative for video frame
upscaling. Although it does not address temporal
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coherence explicitly, EDSR excels in enhancing spatial
resolution, making it suitable for applications where
individual frame quality is prioritized and temporal
artifacts are minimal or manageable through post-
processing. Its simpler architecture also enables faster
inference, which is critical for real-time video
enhancement.

While EDSR x4 provides superior frame-level clarity
and efficiency, it lacks mechanisms to maintain temporal
consistency—which is essential for smooth transitions in
video. VSR models such as FRVSR, RealVSR, and
TGAN address this using recurrent or attention-based
designs, but their higher computational overhead limits
their applicability in real-time scenarios. EDSR thus
represents a trade-off, favoring speed and clarity over
inter-frame consistency, and serves well in contexts like
archival restoration or low-latency streaming.

CUDA Enhancement for Super-Resolution

CUDA has become indispensable in accelerating
deep learning tasks, particularly in super-resolution. The
ability to parallelize operations across thousands of GPU
cores allows for significant speedups, making real-time
super-resolution feasible.

Kim et al. evaluated the performance of TensorFlow
and PyTorch on GPUs using super-resolution workloads,
demonstrating that CUDA optimizations can reduce
inference times by up to 50%, which is crucial for
deploying models like EDSR in real-time applications
where latency is a major concern (Tian & Wei, 2024).
Ignatov et al. explored implementing super-resolution
models on embedded GPUs, focusing on balancing
performance and power consumption. Their approach
enabled real-time processing on mobile devices,
achieving a PSNR of 25.5 dB for 2× upscaling on 1080p
video, highlighting the practicality of deploying SR
models in portable applications (Ignatov et al., 2021).
Zhou et al. emphasized the importance of optimizing
memory access patterns and utilizing CUDA streams to
maximize throughput in super-resolution tasks, achieving
real-time performance on multispectral image datasets.
These techniques are directly applicable to optimizing
EDSR for video applications, ensuring high-resolution
outputs are generated efficiently (Barman et al., 2021).

The literature review highlights EDSR’s superior
balance of performance, simplicity, and computational
efficiency compared to models like FRVSR and
RealVSR. While FRVSR achieves better temporal
coherence in video (e.g., a PSNR of 29.6 dB on the Vid4
dataset), its recurrent architecture introduces higher
computational complexity, making it less suitable for
real-time applications. In contrast, EDSR offers
competitive spatial resolution (e.g., 26.96 dB on
Urban100) with lower computational demands,
especially when optimized with CUDA, reducing
inference times by up to 50%. Models like RealVSR,
while effective for real-world video degradation, often

require specialized datasets, whereas EDSR's scalability
and efficiency make it more practical for real-time
applications on embedded devices, such as in video
surveillance and autonomous systems.

The Proposed Architecture

The proposed architecture for real-time video
upscaling integrates dynamic resource management and
deep learning-based super-resolution to efficiently
enhance video quality. Figure (1) outlines the
architecture, showcasing the flow of video data through
the system, from pre-processing to dynamic load
balancing, parallel processing across CPU and GPU, and
post-processing. This system ensures optimal
performance through synchronized merging and load
monitoring, enabling real-time video streaming with
minimized latency and maximized resolution.

Fig. 1: System architecture for real-time video upscaling with
dynamic cpu-gpu load balancing and edsr x4 super-
resolution

The system architecture distributes video frames
between the CPU and GPU based on real-time utilization
analysis. Frames are processed in parallel, with each
processing unit handling its assigned frames
independently to maximize throughput and reduce
latency. The distribution is dynamic—if the GPU is
underutilized, more frames are allocated to it, and vice
versa. This ensures both processors are efficiently
engaged, enabling real-time performance without
introducing frame lag or processing bottlenecks.
Synchronization is maintained in the post-processing
stage to preserve the original sequence of the video
stream.

Pre-Processing Module

Before upscaling occurs, the input data is pre-
processed, including frame normalization and format
conversion, to prepare the data for super-resolution
scaling. This step ensures that the input frames are
optimized for efficient processing, reducing
computational overhead during the subsequent upscaling
phase.

http://192.168.1.15/data/12945/fig1.png
http://192.168.1.15/data/12945/fig1.png
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Dynamic Load Balancing

This technique effectively divides duties between the
CPU and GPU. It regularly checks CPU and GPU use to
make sure that both are operating below-set load criteria.
Jobs are prioritized based on computational complexity,
with CPU-intensive tasks sent to the CPU queue and
GPU-heavy tasks to the GPU queue. Tasks from the
other queue are intelligently shifted from one queue to
the other if one processor is not being used to its full
potential. As a result, real-time video upscaling with
balanced CPU-GPU processing is made possible while
also ensuring that the system maintains responsiveness,
maximizes performance, and effortlessly adapts to
changing workloads.

The proposed dynamic load-balancing algorithm uses
a priority-based allocation strategy guided by real-time
CPU and GPU utilization. Frames are assigned to the
processor with available capacity, based on predefined
thresholds, to avoid overloading either resource. Unlike
round-robin scheduling, this approach adapts to system
load fluctuations, ensuring efficient parallelism.

EDSR x4 Model

The CUDA-enabled GPU plays a major role in the
architecture as it reduces the computational time by a
factor of over 100 times. However, this may vary based
on the resolution of the input frame. Hence, in such cases
the load is shared with the CPU to compensate for this
loss in framerate. This ensures the most optimal
upscaling of frames in real-time scenarios.

Post-Processing Module

Following the super-resolution, it is crucial to order
the upscaled frames from the CPU and GPU in the same
order as the video input. This is ensured by dynamically
sorting them aided by comparing the upscaled image
with the corresponding video input frame in that
timeline. Hence, we now have achieved a sorted array of
frames used for real-time streaming.

Materials and Methods
The proposed methodology outlines a systematic

approach for real-time video enhancement using the
EDSR x4 model, emphasizing dynamic CPU-GPU
resource allocation and is depicted in Figure (2). The
process begins with the acquisition of the input video,
which is then systematically buffered for efficient frame
management. Concurrently, CPU and GPU utilization are
monitored to intelligently divide video frames based on
the processing capabilities of each resource.
Subsequently, the frames undergo EDSR x4 upscaling,
leveraging parallelized computations on both CPU and
GPU. The methodology adapts its processing strategy
based on real-time utilization analysis, ensuring optimal
resource usage. Finally, the upscaled frames are

seamlessly integrated to generate an enhanced video
output.

frame_buffer = [ ]
while True:

ret, frame = cap.read()
if not ret:

break
frame_buffer.append(frame)

Fig. 2: Flowchart of the real-time video upscaling process

Input Video Acquisition

The first step is loading the input video using
OpenCV. Frames are sequentially read from the video
source using cv2.VideoCapture() is stored in a buffer for
efficient processing.

http://192.168.1.15/data/12945/fig2.png
http://192.168.1.15/data/12945/fig2.png
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Utilization Analysis

Utilization analysis dynamically assesses the current
resource usage of both the CPU and GPU, providing
real-time insights crucial for informed decision-making.

def analyze_cpu_utilization():
cpu_utilization = psutil.cpu_percent(interval=1)
return cpu_utilization

def analyze_gpu_utilization():
gpu_utilization = GPUtil.getGPUs()[0].load * 100
return gpu_utilization

cpu_utilization = analyze_cpu_utilization()
gpu_utilization = analyze_gpu_utilization()

Using the `psutil` library, CPU utilization is
measured, while the `GPUtil` library is employed for
GPU utilization analysis. These insights guide
subsequent processing steps, ensuring adaptive strategies
based on the dynamically changing system conditions.

Frame Division Based on Utilization

Frames are categorized based on dynamically
assessed CPU and GPU utilization thresholds. This
adaptive division ensures an optimal processing strategy,
distributing frames between CPU and GPU paths based
on the current system's resource usage. The utilization-
driven frame division paves the way for efficient parallel
processing and real-time video enhancement.

def divide_frames(frame_buffer, cpu_threshold,
gpu_threshold):

cpu_frames, gpu_frames = [ ], [ ]
for frame in frame_buffer:

cpu_utilization = analyze_cpu_utilization(frame)
gpu_utilization = analyze_gpu_utilization(frame)
if cpu_utilization < cpu_threshold:

cpu_frames.append(frame)
elif gpu_utilization < gpu_threshold:

gpu_frames.append(frame)
return cpu_frames, gpu_frames

EDSR x4 Upscaling

In this phase, the EDSR x4 model is applied to
upscale frames for both CPU and GPU processing paths.
Dedicated instances of the model leverage parallelized
computations to enhance each frame’s quality. By
dynamically utilizing both the CPU and GPU, the system
reduces bottlenecks in the video frame processing
pipeline. This dynamic CPU-GPU allocation not only
distributes the computational workload efficiently but
also minimizes the time spent on each frame, improving
real-time processing capabilities. The combined power of
both resources significantly lowers time per frame, as
evidenced by an 18% reduction in overall processing
time, resulting in more efficient upscaling at higher
resolutions.

sr_cpu = cv2.dnn_superres.DnnSuperResImpl_create()
result_cpu = sr_cpu.upsample(cpu_frame)
sr_gpu = cv2.dnn_superres.DnnSuperResImpl_create()
sr_gpu.readModel(path)
sr_gpu.setPreferableBackend(cv2.dnn.DNN_BACKEND

_CUDA)
sr_gpu.setPreferableTarget(cv2.dnn.DNN_TARGET

_CUDA)
sr_gpu.setModel("edsr", 4)
result_gpu = sr_gpu.upsample(gpu_frame)

Utilization-Driven Processing

Utilization-driven processing involves conditional
checks to determine whether CPU or GPU utilization
surpasses predefined thresholds. This dynamic decision-
making guides the subsequent processing strategy,
ensuring optimal resource allocation for real-time
enhancement.

def utilization_driven_processing(cpu_utilization,
gpu_utilization, cpu_threshold, gpu_threshold,
result_cpu, result_gpu):

if cpu_utilization > cpu_threshold:
process_on_cpu(result_cpu)

elif gpu_utilization > gpu_threshold:
process_on_gpu(result_gpu)

If CPU utilization exceeds a set threshold, the
processing continues on the CPU path, and similarly for
the GPU. This adaptability optimizes resource usage for
enhanced real-time performance.

Output Generation

The implementation yielded impressive outcomes,
demonstrating significant advancements in video quality,
processing speed, and efficiency. Initial results were
obtained on a system equipped with an RTX 3070 GPU
and a Ryzen 7 5800H CPU. The Resource Utilization
section further compares this setup with an RTX 4070,
highlighting the improvements in computational
efficiency and reduced system load offered by newer
hardware.

Qualitative Inspection of Upscaled Images

The final upscaled frames undergo the generation of
an enhanced video output. De-pending on the specific
application requirements, the enhanced video can either
be saved for later use or displayed in real-time. This step
finalizes the real-time video enhancement process,
providing a tangible output reflecting the improvements
achieved through the EDSR x4 model and adaptive
CPU-GPU utilization.

Results
A crucial aspect of evaluating the performance of an

image upscaling model is to visually inspect the output
images across different resolutions. While numerical
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metrics can provide a sense of how well an image is
preserved during upscaling, they do not always convey
the full picture of how an image might be perceived by
the human eye.

The images were upscaled to several key resolutions,
such as from 144p. 360p, 480p, 720p to 600p, 1440p,

1920p and 2880p respectively. For each resolution, the
original image is displayed alongside its upscaled
version as in Figure (3). This side-by-side comparison
allows for a direct assessment of how well the upscaling
model preserves the quality of the image as the
resolution increases.

Fig. 3: Visual Comparison of Upscaled Images at Different Resolutions Using EDSR x4

http://192.168.1.15/data/12945/fig3.png
http://192.168.1.15/data/12945/fig3.png
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Fig. 4: Comparison of average psnr, ssim, vif, and mse across different resolutions

Quantitative Inspection of Upscaled Images

The effectiveness of the EDSR x4 model was
evaluated using four widely recognized image quality
metrics: Peak Signal-to-Noise Ratio, Structural
Similarity Index Measure, Visual Information Fidelity,
and Mean Squared Error and plotted in Figure (4).

Normalized Comparison of PSNR, SSIM, VIF, and
MSE by Resolution. To provide a comprehensive
comparison, the PSNR, SSIM, VIF, and MSE values
were normalized and plotted together. For MSE, since
lower values indicate better performance, the normalized
MSE values were inverted (1 - normalized MSE) to
ensure that higher values consistently represent better
image quality across all metrics. The resulting graph,
presented in Figure (5), reveals a distinct wave-like or
cosine-like pattern across different resolutions. This
pattern indicates that the relationship between resolution
and image quality is not linear but fluctuates periodically.
Understanding these patterns allows for more informed
decisions when selecting resolutions for specific
applications.

Fig. 5: Wave-like behavior in normalized values of PSNR,
SSIM, VIF, and MSE across input resolutions

The wave-like or cosine-like pattern observed in the
normalized PSNR, SSIM, and VIF metrics across
varying input resolutions suggests a non-linear
relationship between resolution and perceived image
quality. While this behavior enhances our ability to select
optimal resolutions for different applications, its
underlying causes warrant deeper investigation. Potential
contributing factors include interpolation artifacts,
aliasing, or GPU memory and processing limitations at
specific frame sizes. To further understand this
periodicity, future studies could apply Fourier analysis or
spectral decomposition techniques to the metric curves,
potentially uncovering frequency-domain characteristics
or hardware-level interactions influencing these
fluctuations.

Comparative Analysis: EDSR x4 vs VSR Models

To better understand the trade-offs between real-time
performance, spatial quality, and temporal consistency,
we present a comparative analysis of EDSR x4 against
leading Video Super-Resolution (VSR) models—
FRVSR, RealVSR, and TGAN. These models are known
for their ability to maintain temporal coherence across
frames, a feature that EDSR inherently lacks due to its
single-image super-resolution (SISR) architecture.

As shown in Figure (6), VSR models achieve higher
temporal consistency and PSNR, with RealVSR and
TGAN offering smoother transitions across frames.
However, these gains come at the cost of significantly
increased runtime, with processing times reaching up to
800 ms per 10 frames—substantially higher than EDSR’s
205 ms. This increase in computational overhead limits
their practicality for real-time applications, particularly
in resource-constrained or latency-sensitive
environments.

http://192.168.1.15/data/12945/fig4.png
http://192.168.1.15/data/12945/fig4.png
http://192.168.1.15/data/12945/fig5.png
http://192.168.1.15/data/12945/fig5.png
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In contrast, EDSR x4 delivers competitive spatial
resolution quality while maintaining a much lower
computational cost, making it highly suitable for use
cases like archival restoration, video surveillance, or live
streaming, where real-time output is prioritized and
minor temporal artifacts are acceptable. This analysis
highlights the performance-consistency trade-off,
reinforcing the rationale behind selecting EDSR for this
work.

Fig. 6: Comparative analysis of EDSR x4 and VSR models
(FRVSR, RealVSR, TGAN)

Real-Time Processing

When running on CPU alone, EDSR exhibits longer
processing times compared to other methods, such as
ZTE VIP and Diggers (Bhat et al., 2021; Zhou et al.,
2022-2023; Park et al., 2023; Yue et al., 2023). However,
the introduction of GPU acceleration significantly
reduces EDSR's runtime, achieving a speedup of nearly
8.9x lowering the total processing time to 205 ms per 10
frames.

Comparatively, other methods, such as Diggers and
Rainbow, perform well in terms of GPU runtime, with
processing times of 199 ms and 180 ms per 10 frames,
respectively. However, these methods fall short in image
quality, as indicated by their PSNR values in previous
evaluations. Table (1) shows the comparative runtimes of
various Video Upscaling Methods against our proposed
methodology.
Table 1: Utilization of RAM, GPU, and CPU for various input

video resolutions

Method Runtime per
10 frames
(CPU, ms)

Runtime per
10 frames
(GPU, ms)

Speedup
(CPU to
GPU)

Runtime with
Load
Balancing
(ms)

EDSR 2231 250 8.9x 205
Diggers 916 199 4.6x N/A
Rainbow 429 180 2.4x N/A
TerminalVision 448 Error N/A N/A
ZTE VIP 163 113 1.4x N/A

This balance of PSNR and runtime makes EDSR
with load balancing a standout method for scenarios
where both image fidelity and computational efficiency
are critical. The results indicate that, while other methods

may offer faster runtimes, they do not deliver the same
high level of image reconstruction quality, making EDSR
the optimal choice for applications requiring both speed
and precision.

The proposed CPU-GPU load-balancing mechanism
has demonstrated an 18% reduction in processing time,
lowering the upscaling time per frame to 205 ms. This
efficiency gain is achieved by dynamically distributing
the frame processing workload between the CPU and
GPU, preventing bottlenecks and ensuring both
resources are used to their maximum capacity.

CPU, RAM, and GPU utilization

The utilization rates of CPU, GPU, and RAM were
monitored across various input video resolutions using
both RTX 3070 and RTX 4070, as shown in Figure (7).
With the RTX 3070, CPU usage approached the 80%
threshold, and RAM utilization peaked at 100% for high
resolutions, indicating potential memory constraints.
GPU usage ranged from 60% to 80% as resolution
increased. In contrast, the RTX 4070 demonstrated more
efficient performance, maintaining lower utilization
across all components—CPU usage remained below
80%, GPU usage stayed between 50 and 77%, and RAM
usage showed a more gradual increase, peaking at 95%
for 4K input. This highlights the benefits of newer
hardware in reducing system strain during real-time
video upscaling.

Fig. 7: CPU, GPU, RAM Resource utilization of RTX 3070
and RTX 4070

Discussion
Despite the improvements demonstrated by the

proposed CPU-GPU load-balancing method for EDSR
x4 upscaling, there are several areas where future work
can enhance the system's scalability and efficiency. One
limitation observed during testing is the 100% RAM
utilization at higher resolutions, which may hinder
performance in memory-constrained environments.

To address the high GPU RAM usage observed at
higher resolutions, future work could explore memory
optimization techniques such as model pruning, weight
quantization, and tensor compression. These methods
can significantly reduce memory footprint without

http://192.168.1.15/data/12945/fig6.png
http://192.168.1.15/data/12945/fig6.png
http://192.168.1.15/data/12945/fig7.png
http://192.168.1.15/data/12945/fig7.png
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substantial loss in performance. Pruning removes
redundant parameters, quantization lowers precision to
reduce storage requirements, and tensor compression
optimizes intermediate data representations during
inference. Integrating such strategies can make the
system more scalable and efficient for high-resolution or
memory-constrained environments.

Additionally, while the current implementation
focuses on single GPU usage, extending the system to
support multi-GPU architectures could significantly
boost performance, especially when processing higher
frame rates or larger batches. Another area for future
exploration is the dynamic adjustment of CPU-GPU
load-balancing thresholds based on real-time system
conditions, allowing for more flexible and adaptive
resource allocation.

Temporal coherence, which is not addressed by
EDSR, could also be considered for future work,
particularly for applications requiring smooth transitions
between frames. Finally, investigating the wave-like
behavior observed in quality metrics across different
resolutions could uncover opportunities to optimize the
super-resolution process further, improving both runtime
and image quality.

Conclusion
This work explores the optimization of the EDSR x4

super-resolution model for real-time video enhancement,
utilizing Nvidia-CuDNN acceleration and a CUDA-
based load-balancing approach. By dynamically
distributing computational workloads between the CPU
and GPU, we demonstrated a significant 18% reduction
in processing time, achieving 205 ms per 10 frames,
which sets a new benchmark for real-time upscaling at
multiple resolutions. This hybrid CPU-GPU approach
not only re-duces bottlenecks but ensures consistent
performance across diverse resolutions.

The quantitative metrics including PSNR, SSIM, and
VIF illustrated that EDSR offers superior image quality
while maintaining computational efficiency, making it an
excellent choice for high-resolution video processing.
Our approach also capitalized on efficient GPU
utilization, maintaining usage between 60% to 80% on
RTX 3070 and 50% to 77% on RTX 4070.

A central finding was the discovery of a wave-like
pattern in the normalized PSNR, SSIM, and VIF metrics
across different resolutions. This cosine-like fluctuation
indicates that the relationship between image resolution
and perceived quality is periodic rather than linear.
Understanding this behavior provides valuable insights
into selecting optimal resolutions for different
applications.

Looking ahead, memory consumption, especially at
higher resolutions, presents an area for further

optimization. Enhancing memory efficiency could push
the scalability of this system even further, making it
suitable for more demanding real-time video
applications.
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