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Abstract: Early detection of Alzheimer's Disease (AD) is crucial for timely
interventions that can slow disease progression, enhance quality of life, and
assist with future planning. Convolutional Neural Networks (CNNs) are an
efficient method for processing image-based data. In this work, we used
CNN-based deep learning models to extract structural information from
structural MRI (sMRI) and brain neuron connectivity patterns from
functional MRI (fMRI) data. In this study, a stacking-based ensemble
multimodal framework was proposed by integrating both texture features
and brain neuron connectivity patterns using Deep Learning (DL) models
such as GoogLeNet, DenseNet-121, GNN, and U-Net. The prediction
probabilities were combined using a vertical stacking approach to create a
meta-feature matrix, which was utilized by the Meta model and trained
using the Random Forest classification algorithm to generate the final
predictions. This approach leveraged the complementary strengths of
structural and functional data, thereby improving classification accuracy and
generalization. The proposed method demonstrated remarkable accuracy of
95.18%, reflecting its exceptional performance and minimal error rates. It
surpassed the effectiveness of existing state-of-the-art methods, showing
high precision in early AD detection and highlighting its potential for
neurodegenerative disease research.

Keywords: Alzheimer's Disease, GoogLeNet, DenseNet-121, Graph Neural
Network, U-Net, Meta Model

Introduction
The leading cause of AD related dementia is

progressive degeneration of brain neuron, predominantly
affecting older adults. It shows up abnormal behavioral
changes, memory loss and decreased reasoning, all of
which have a significant influence on a person's day-to-
day activities. The disease disrupts communication
between brain cells, resulting in their degeneration and
eventual death. AD advances through stages, starting
with mild cognitive impairment and eventually leading
to severe disability, where individuals struggle with basic
activities (Alzheimers and Dementia, 2023).

According to the 2023 report on Alzheimer's disease,
the condition significantly impacts public health. More
than 6 million Americans aged 65 and older are currently
living with Alzheimer’s, a figure expected to increase as
the population continues to age (Xiao et al., 2023).The
report also underscores that Alzheimer’s ranks as the
sixth-leading cause of death in the United States,

highlighting the significant societal impact of the disease
(Ciurea et al., 2023).

Although a definitive cure for AD has not been
found, early detection is crucial for managing its
progression. Early diagnosis enables interventions with
existing treatments that may alleviate symptoms and
improve cognitive function (Patra et al., 2023).
Furthermore, early-stage diagnosis enables individuals to
participate in clinical trials, adopt novel therapeutic
approaches and make lifestyle changes to support
cognitive and emotional well-being (Gunawan et al.,
2024). For families and caregivers, early diagnosis
provides the opportunity to prepare for the long-term
implications of the disease, thereby improving family
dynamics and reducing caregiver stress. Imaging
modalities like structural MRI and functional MRI play a
pivotal role in diagnosing Alzheimer's disease with
enhanced accuracy. Structural MRI provides high-
resolution images of brain anatomy, identifying physical
changes caused by Alzheimer’s, such as cortical thinning

Journal of Computer Science



Parvatham Niranjan Kumar and Lakshmana Phaneendra Maguluri / Journal of Computer Science 2025, 21 (6): 1404.1424
DOI: 10.3844/jcssp.2025.1404.1424

1405

and hippocampal atrophy. Meanwhile, fMRI evaluates
how structural changes affect brain activity and neuron
connectivity over time, providing understanding of the
functional consequences of neurodegeneration (Wang et
al., 2021). By combining sMRI and fMRI data, clinicians
can create comprehensive profiles that account for both
structural and functional brain changes. Research shows
that this dual approach improves predictions of cognitive
decline and facilitates timely interventions (Abrol et al.,
2019).

Deep learning technologies have revolutionized the
analysis of sMRI and fMRI data for Alzheimer’s
diagnosis. Convolutional Neural Networks (CNNs) like
GoogLeNet and DenseNet have demonstrated
remarkable effectiveness in sMRI analysis. GoogLeNet,
with its Inception modules, processes multiple filter sizes
simultaneously, capturing a diverse range of features,
such as subtle anatomical changes associated with AD.
Its efficient design supports deep networks while
minimizing computational costs, making it highly
effective for image classification tasks (Talha et al.,
2024). DenseNet, characterized by its densely connected
layers, promotes feature reuse and mitigates the
vanishing gradient problem. This architecture has shown
exceptional accuracy in distinguishing between healthy
patients, those with mild cognitive impairment and
Alzheimer’s patients (Zia-Ur-Rehman et al., 2024).

Functional MRI data, which captures complex brain
interactions, is particularly well-suited for analysis using
Graph Neural Networks (GNN). Graph Neural Networks
(GNNs) represent the brain like a graph, with nodes
denoting brain areas and edges indicating functional
connections. This structure allows the network to learn
spatial and temporal dynamics, revealing patterns of
disrupted neural connectivity typical in Alzheimer’s
patients (Zhang et al., 2023). U-Net, another deep
learning model, excels in fMRI-based segmentation
tasks. Its encoder-decoder structure with skip
connections preserves spatial information while
capturing abstract features, making it ideal for
identifying abnormal activity in specific brain regions
(Bhosale et al., 2023).

The adoption of hybrid models combining deep
learning techniques (Saxena et al., 2023) represents a
significant advancement in Alzheimer’s classification.
By integrating models such as GoogLeNet, DenseNet,
GNN and U-Net, Hybrid systems utilize the distinct
advantages of each methodology to enhance diagnostic
efficacy. For instance, while one model might excel at
detecting structural changes, another might be more
adept at analyzing functional abnormalities. This
ensemble approach reduces model-specific biases,
enhances classification accuracy and ensures more
reliable predictions in clinical practice. The use of hybrid
deep learning models is particularly advantageous in
addressing the complexity of Alzheimer’s pathology.

These models facilitate a multi-faceted analysis by
combining insights from structural and functional
imaging. This comprehensive understanding of the
condition allows healthcare providers to make accurate
decisions, perhaps resulting in improved patient
outcomes and more successful management of
Alzheimer’s disease. The ensemble method emphasizes
the significance of leveraging diverse computational
tools to advance diagnostic precision and improve
clinical interventions.

The rest of the paper is organized to cover the review
of related literature, followed by a detailed explanation
of the materials and methods used in the study. This is
succeeded by a presentation of the results along with a
comprehensive discussion. The paper concludes with a
summary of key findings and final remarks.

Literature Survey

Jiao et al. (2024) introduced a Framework (MFASN)
to integrate structural (sMRI), functional (fMRI) imaging
data and genetic information for early AD diagnosis and
biomarker discovery. The method employs a deep auto-
encoder for non-linear feature extraction and a sparse
self-representation module for subspace clustering,
capturing meaningful data relationships. Experimental
results on ADNI datasets demonstrate the framework’s
effectiveness in identifying AD-related biomarkers and
SNP associations. Despite its success, challenges such as
high-dimensional data, limited sample size and complex
non-linear relationships persist.

In the study by Yu et al. (2024) GSCANet, a novel
method designed for early AD diagnosis by leveraging
multimodal MRI data was proposed. This includes
Haralick features, functional brain neuron connectivity
patterns and neuropsychological scores. In order to
capture long-term contextual interactions between spatial
and channel information, GSCANet incorporates a
coordinate attention mechanism in addition to a group
self-calibrated module to improve spatial characteristics.
The model demonstrated significant classification
performance: 78.70% accuracy for four-class
classification (AD, early MCI, late MCI and normal
controls), 83.33% for three-class (AD, MCI and NC) and
over 92% for binary classifications. These results
underscore its effectiveness in differentiating AD stages.
Key contributions include the integration of multimodal
data for comprehensive analysis, the development of an
innovative architecture for feature extraction and
superior classification across AD stages. While the study
does not explicitly address its limitations, potential
challenges include training complexity and the need for
larger datasets to ensure generalization.

Dolci et al. (2024) investigated the use of multimodal
MRI to identify amyloid-β (Aβ) positivity, a biomarker
of AD, in unbalanced cohorts across the spectrum.
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Combining sMRI, fMRI and diffusion MRI allowed for
the capture of complimentary structural and connectivity
alterations associated with Aβ deposition. This
multimodal approach achieved a classification accuracy
of 76.2%, with key regions identified as critical for Aβ
detection through explainability analysis. The research
contributes by demonstrating the effectiveness of non-
invasive MRI techniques in detecting Aβ positivity,
identifying brain regions strongly associated with
amyloid accumulation and providing an alternative to
PET scans and cerebrospinal fluid tests for AD diagnosis.
However, the study notes challenges, including potential
biases from the unbalanced cohort and difficulties
integrating high-dimensional multimodal data.

Gupta et al. (2020) suggested a multimodal
neuroimaging approach to group Alzheimer's patients
according to the disease's prodrome. Combining
structural MRI, rs-fMRI ,AV45-PET, FDG-PET, DTI and
APOE genotype data, it employed advanced feature
extraction techniques like brain parcellation, voxel-wise
and graphical analysis. Classification was performed
using kernel-based methods and the EasyMKL classifier,
with a one-at-a-time exclusion cross-validation strategy
ensuring robust performance evaluation. Results
demonstrated improved classification accuracy,
sensitivity and specificity with multimodal approaches,
particularly highlighting the effectiveness of FDG-PET,
AV45-PET and rs-fMRI. Limitations included a small
sample size, dataset variability, potential overfitting,
reliance on selected features and the lack of longitudinal
data, limiting generalizability.

Meng et al. (2022) introduces a multi-modal
LassoNet framework that combines resting-state fMRI
and DTI to classify Alzheimer's Disease (AD). The
framework demonstrated high accuracy, especially in
differentiating Alzheimer’s disease from healthy controls
and early mild cognitive impairment. Results showed the
highest accuracy in the AD-HC group, reaching 92.79%.
It outperformed other models and exhibited stability in
classification. However, the deterministic fiber tracking
method used in the study has limitations, potentially
introducing biases.

Massalimova & Varol (2021) utilizes deep learning
models trained on structural MRI (T1W) and Diffusion
Tensor Imaging (DTI) from the Open Access Series of
Imaging Studies (OASIS)-3 dataset. The study
introduces a unique input-agnostic architecture, enabling
the model to use either or both modalities, distinguishing
it from prior multi-modal approaches. The results
demonstrate that combining MRI and DTI scans yields
the best performance, achieving an accuracy of up to
0.97. Comparisons with similar studies indicate superior
outcomes, suggesting that whole-brain feature extraction
and advanced network architectures contribute to the
improved results.

Vaithianathan et al. (2024) focuses on resting-state
fMRI (rs-fMRI) analysis for classifying Alzheimer’s
disease. It employs a seven-stage preprocessing pipeline
and extracts features using wavelets, shearlets and
scattering transforms. An automated system integrates
heterogeneous features for classification. The results
indicate that wavelet features achieve the highest
classification accuracy. While the model outperforms
others, challenges remain, including overfitting and the
need for external validation. Future work aims to
incorporate additional imaging modalities.

Khatri & Kwon (2022) highlights Alzheimer's
Disease (AD) diagnosis using structural MRI and
resting-state fMRI data. For classification, it leverages
functional network features along with the volume of
amygdala and hippocampus subfields. Feature selection
techniques such as LASSO, SVM-RFE and JMI enhance
classification accuracy. The results indicate that
combining structural and functional features yields high
classification performance, with SVM combined with
JMI outperforming other methods. The study
underscores the significance of specific brain regions in
distinguishing different stages of AD.

Pan et al. (2021) presents a multimodality framework
by integrating features from different brain modalities. It
extracts grey matter volume, surface area and cortical
thickness from pre-processed sMRI data. After feature
extraction using a 3DCNN-SE module, dimensionality is
decreased using an indicator selection strategy. The
Multi-Attention-Fusion Module (MAFM) fuses the
extracted features for classification. Evaluating 596
patients from the ADNI dataset, the model achieves 88%
accuracy in distinguishing AD, MCI and cognitively
normal individuals, outperforming existing methods.

Pamarapa et al. (2024) developed an SVM
classification model to differentiate between Cognitive
Normal (CN), Early Mild Cognitive Impairment (EMCI)
and Late Mild Cognitive Impairment (LMCI) in people
65–75 years old using T1-weighted MR and F-18 FDG
PET data. The methodology involved preprocessing,
registering images to standardized templates and using
SVMs with various feature sets for classification. Results
showed that combined PET/MR imaging improved
accuracy, particularly for CN vs. LMCI classification,
while PET alone was most effective for EMCI vs. LMCI.

In order to diagnose Alzheimer's Disease (AD), the
study Wang et al. (2024) presents a deep joint learning
model and a multimodal feature fusion technique known
as "MRI-p value." It combines ResNet for feature
extraction and attention mechanisms for location
information, enhancing classification accuracy. Using
data from the ADNI, the method achieved high accuracy
and AUC scores across different classifications.
Additionally, six novel genes were identified, providing
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new targets for potential AD treatments. Possible
enhancements include incorporating more pre-trained
models, improving the integration of genetic and
imaging data and addressing increasingly complex multi-
classification task.

Rama Lakshmi and Radhika (2024b) focuses on early
Alzheimer's disease diagnosis using sophisticated
Machine Learning (ML) methods. It employs a dataset
with biomarkers and cognitive traits and introduces an
adaptive filtering process that combines Gaussian and
bilateral filters for noise reduction. This is followed by
feature extraction using a customized ResNet-53 model.
Additionally, the study fine-tunes SVM models for both
binary and multiclass classification. To optimize
performance, Bayesian optimization is applied for
Hyperparameter tuning. The integration of multimodal
data enhances the model's robustness, making it a
reliable tool for early diagnosis.

Using multimodal neuroimaging data from the ADNI
dataset, Desai et al. (2024) investigate the application of
Deep Learning (DL) in the diagnosis of Alzheimer's
disease (AD). Various Convolutional Neural Networks
(CNNs) were tested, with DenseNet achieving the
highest accuracy (90%) and the lowest validation loss
(0.17). The research highlights the significance of
multimodal fusion, combining MRI, PET scans and other
data to enhance diagnostic precision. It also underscores
the importance of ethical considerations, including data
privacy and fairness, in the deployment of DL models for
AD diagnosis. This study can be further enhanced by
fully utilizing these models to advance analysis and
treatment, emphasizing the need for interdisciplinary
collaboration.

A Pareto-optimal cosine color map is presented in the
study by Odusami et al. (2024b) to enhance fused image
classification and visual clarity. For feature extraction
and classification, a mobile vision transformer (ViT)
model with a Swish activation function is employed. The
fused images from the ADNI, AANLIB and OASIS
datasets are used to train the model, while non-fused
images are used for evaluation. The proposed method
achieves high classification accuracy, with notable
results such as 99.25% accuracy for distinguishing AD
from healthy images in ADNI and 99.50% precision for
AD versus CN in OASIS. Evaluation metrics
demonstrate the model’s strong performance.

Thanh et al. (2024) introduces a novel method called
Tensor Kernel Learning (TKL) for Alzheimer’s disease
assessment. By integrating data from MRI, PET, CSF
and SNP using tensor and kernel learning, to enhance AD
prediction. The method uses a supervised SVM classifier
after fusing the data using CP/PARAFAC decomposition
and graph diffusion. Applied to the ADNI dataset, TKL
outperforms single-modality methods, achieving higher
classification accuracies for distinguishing between
cognitive stages. Additionally, Clearer patterns in the

data are made possible by TKL, which facilitates the
comprehension of intricate interactions between
modalities.

Odusami et al. (2024a) proposes a novel method for
Alzheimer's Disease (AD) diagnosis using fused sMRI
and FDG-PET images, enhanced with Gaussian
Laplacian pyramid and Static Pulse-Coupled Neural
Network (SPCNN) techniques. The fused images are
processed by a Pareto-optimized Mobile Vision
Transformer (MViT) for classification. The approach
achieves high accuracy in distinguishing AD from CN
and MCI stages, with precision rates of 94.73, 92.98 and
89.36%, respectively. The fusion method outperforms
traditional techniques, ensuring detailed image quality.

In order to categorize Alzheimer's Disease (AD) and
other cognitive illnesses using 2D MRI images, Shah et
al. (2024) suggest the Bi-Vision Transformer (BiViT)
design. For improved feature learning, the model
integrates two new modules: Parallel Coupled Encoding
Strategy (PCES) and Mutual Latent Fusion (MLF).
According to the study, performance may be enhanced
by addressing data imbalance and scarcity.

Kamal & Nimmy (2024) use a multi-modality
strategy that integrates text and visual data to improve
Alzheimer's disease detection. The method involves pre-
processing MRI images with a U-net segmentation
technique to isolate Regions of Interest (ROIs). Vision
transformers (ViT) and BERT are then used to process
the pre-processed data, addressing the complexities of
multi-modal datasets. To improve interpretability,
Explainable AI techniques, such as LIME and LRP, are
incorporated, providing understanding of the model’s
decision-making process. The study uses medical
demographic and image data from Kaggle, achieving an
accuracy of 86%, surpassing other methods.

By combining multi-modal neuroimaging data, Liu et
al. (2024) suggest a Hierarchical Attention-based Multi-
task Multi-modal Fusion (HAMMF) model to improve
the diagnosis of Alzheimer's Disease (AD). The model
simultaneously performs AD classification, cognitive
score regression and age regression using MRI and PET
scans from the ADNI dataset. Using channel and spatial
attention mechanisms, a Contextual Hierarchical
Attention Module (CHAM) is shown to capture fine-
grained data. The Transformer model efficiently
integrates features from the two modalities. The
approach achieves 93.15% accuracy in AD/NC
recognition, showcasing strong pathological feature
recognition.

A novel adversarial learning-based technique for
fusing MRI and PET scans for early Alzheimer's Disease
(AD) diagnosis is presented in the study by Choudhury
et al. (2024). It proposes preprocessing steps to align and
normalize these images, making them suitable for fusion.
The core of the method is a Coupled GAN (CGAN)
architecture that uses dual convolutional auto encoders
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and discriminators to extract and fuse structural (MRI)
and metabolic (PET) features into a shared latent space,
which are then classified for AD stage identification. The
model is tested on the ADNI dataset and shows superior
performance compared to existing methods. This
approach allows for more accurate AD diagnosis by
leveraging both MRI and PET data.

Duenias et al. (2024) introduces a novel framework
based on hypernetworks to effectively Merge Medical
Imaging (MRI) with Electronic Health Record (EHR)
data for enhanced healthcare diagnostics. By
conditioning image processing on the patient’s EHR
data, the approach improves the accuracy of brain age
prediction and Alzheimer's disease classification. The
framework outperforms both single-modality models and
existing MRI-tabular fusion methods, offering superior
data utilization and flexibility. Validation on two clinical
tasks demonstrates its robustness and generalizability.

Using both 3D MRI and amyloid PET imaging,
Castellano et al. (2024) investigate the creation of multi-
modal diagnostic models for Alzheimer's Disease (AD).
The research demonstrates that models using volumetric
data (3D MRI and PET) offer better performance than
those relying on 2D images alone. Integrating these
modalities significantly enhances model accuracy. The
use of Grad-CAM for explainability highlights key brain
regions linked to AD. Limitations include the use of only
50 slices from the axial plane and the loss of temporal
resolution in PET scans.

Mahmud Joy et al. (2025) present ViTAD, a Vision
Transformer-based model for classifying five stages of
Alzheimer's Disease (AD) using 1,296 brain MRI images
from the ADNI dataset. The model improves upon
Google’s ViT by fine-tuning hyper parameters and
adding layers for enhanced performance. Preprocessing
steps include grayscale-to-RGB conversion, cropping
and Laplacian sharpening, while data augmentation
techniques such as flipping, zooming and rotation ensure
robustness. The model was trained for 20 epochs with a
learning rate of 0.0001, achieving 99.98% accuracy,
100% precision and an F1-score of 1.00. It outperforms
CNN-based models like DenseNet and EfficientNet,
reaching optimal accuracy in just 8 epochs. Despite its
high accuracy, the model’s reliance on a relatively small
dataset raises concerns about generalizability and
potential overfitting.

Khan et al. (2024c) proposes Dual-3DM3-AD, a
multi-modal fusion model for early Alzheimer's
diagnosis using MRI and PET scans. Preprocessing
includes noise reduction (QNLM), skull stripping
(Morphology function) and 3D conversion (BDM). A
Mixed-Transformer with Furthered U-Net is employed
for segmentation, followed by multi-scale feature
extraction and fusion using DCFAM. A multi-head
attention mechanism enhances feature selection before

classification with a softmax layer. The model achieves
98% accuracy, outperforming existing approaches.
Potential limitations include computational complexity
and dataset generalizability concerns.

Aghdam et al. (2023) proposes PVTAD, a novel
approach for Alzheimer's disease classification using
Pyramid Vision Transformer (PVT) and White Matter
(WM) features from T1-weighted sMRI scans. The
method integrates CNN and ViT to extract both local and
global patterns, enhancing biomarker identification.
Experiments on the ADNI dataset achieved 97.7%
accuracy and a 97.6% F1-score, surpassing traditional
CNN and ViT models. While effective, the approach may
be computationally intensive and dataset-dependent.

Mora-Rubio et al. (2023) utilizes MRI scans from the
ADNI and OASIS datasets to classify different stages of
Alzheimer's Disease (AD). It employs FreeSurfer for
preprocessing and data augmentation techniques like
rotation, flipping and zooming. The models used include
3D CNNs (EfficientNet, DenseNet, a Siamese network)
and a Vision Transformer architecture. The best accuracy
achieved was 89% for AD vs. Control but dropped to 66-
67% for early-stage detection, highlighting the challenge
of identifying mild cognitive impairment. The study
emphasizes the need for improved detection techniques
for early AD diagnosis.

The existing literature highlights several data fusion
techniques and their limitations, such as small sample
sizes and challenges in integrating features from different
modalities, which often lead to inaccurate analysis of
critical features. The Vision Transformer (ViT)
techniques discussed in the literature survey are
primarily applied to small datasets and face
generalizability issues across different datasets, affecting
their reliability in medical imaging. Additionally, ViTs
require large datasets to prevent overfitting and struggle
with early-stage disease detection due to their limited
inductive biases.

In order to tackle these problems, we suggest a new
strategy that makes use of proven deep learning.
Specifically, GoogLeNet and DenseNet-121 are
employed for sMRI feature extraction and classification,
while GNN and U-Net are utilized for fMRI dataset
feature extraction and classification. Rather than merging
extracted features, which can lead to high dimensionality,
redundant or overlapping features, varying feature vector
sizes and reduced interpretability, we combined the
prediction probabilities from these models to create a
meta-model. This meta-model is designed to diagnose
Alzheimer’s disease with greater precision by mitigating
overfitting and addressing the limitations of feature
merging. The meta-model effectively generalizes these
issues, as it utilizes prediction probabilities as feature
matrix, ensuring sufficient input for robust learning.
Comparative results, as listed in Table (1), the proposed
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meta-model outperforms state-of-the-art techniques. The
key contribution of this research are:

Novel stacking ensemble method: The research
introduces a ensemble learning technique using
"stacking" to combine predictions from multiple
deep learning models trained on both sMRI and
fMRI data.
Multimodal data integration: This approach
effectively integrates information from different
imaging modalities (sMRI and fMRI), leveraging
their complementary strengths for improved
diagnostic accuracy
Addressing feature merging challenges: Instead of
directly merging extracted features, which can lead
to high dimensionality, redundancy and
interpretability issues, the research utilizes
prediction probabilities from individual models as
input for the meta-model
Enhanced accuracy: The suggested meta-model
outperformed current state-of-the-art techniques in
the early diagnosis of Alzheimer's disease,
achieving a noticeably higher accuracy of 95.18%

Table 1: Shows comparison of proposed method with state of art
techniques

S.No Author Dataset Methodology Accuracy
1 Yu et al.

(2024)
ADNI Group self-calibrated

coordinate attention
network GSCANet

83.33%

2 Dolci et al.
(2024)

ADNI Deep Neural Network 76.2%,

3 Jiao et al.
(2024)

ADNI Multi-modal data fusion
framework (MFASN)

---

4 Wang et al.
(2024)

ADNI deep joint learning
diagnostic model

93.44%

5 Desai et al.
(2024)

ADNI DenseNet 90%

6 Thanh et al.
(2024)

ADNI Tensor kernel learning
(TKL)

91.31%

7 Liu et al.
(2024)

ADNI Hierarchical attention-
based multi-task and
multi-modal fusion model

93.15%

8 Long et al.
(2023)

Nanfang
Hospital
data

SVM and ANN 80.36%

9 Meng et al.
(2022)

ADNI multi-modal LassoNet
framework

92.79%.

10 Khatri and
Kwon
(2022)

ADNI LASSO, SVM-RFE, and
JMI(Joint Mutual
Information)

90.35%

11 Pan et al.
(2021)

ADNI Multi-Attention-Fusion
Module (MAFM)

88%

12 Mora-Rubio
et al., (2023)

ADNI Vision Transformer 89%

13 Aghdam et
al., 2023

ADNI CNN and ViT 97.70%

14 Proposed
System

ADNI Stacking based Meta
model using Random
Forest

95.18%

Materials
We utilized datasets that are publicly accessible on

the Alzheimer's disease Neuroimaging Initiative (ADNI)
website (Weiner et al., 2017). This study integrates
structural Magnetic Resonance Imaging (sMRI) and
functional Magnetic Resonance Imaging (fMRI) data
from the ADNI repository to categorize Alzheimer's
Disease (AD) using multimodal imaging. The
characteristics of dataset are described in Table (2).The
dataset is divided into three categories: Normal Controls
(NC), Early Mild Cognitive Impairment (EMCI) and
Mild Cognitive Impairment (MCI). The fMRI dataset
includes resting-state fMRI image, each fMRI 3D image
contains 9800 2D slices and we calculate histograms for
pairs of images and measure the differences between
them using the Chi-Square distance. Images are then
selected based on the degree of variation observed. We
collected 980 images from each 3D images based on
content variation score. The fMRI images are distributed
as follows: 8,316 for EMCI, 9,256 for MCI and 9,849 for
NC. The sMRI dataset, collected from the 55 individuals,
also includes 2 to 5 visits per subject and contains 7,200
EMCI, 7,376 MCI and 7,430 NC images. By combining
these two types of imaging, the study investigates both
structural and functional brain changes to better classify
the progression of Alzheimer's disease. The longitudinal
nature of the data facilitates the examination of changes
over time.
Table 2: Dataset characteristics

Characteristic sMRI
Dataset

fMRI Dataset

Age(years) range 60-90 60-90
Number of Subjects 55 55
Total Number of MRI
images

5069 21600

Number of Visits 5-Feb 5-Feb
Type of modality sMRI Axial rsfMRI (Eyes

Open)

Preprocessing

To prepare the data for effective analysis,
preprocessing techniques were employed to improve its
quality and ensure balanced label distribution. Horizontal
flipping and a CycleGAN-based data augmentation
method (Parvatham and Maguluri, 2024) were applied to
sMRI dataset as shown in Figs. (1-2). These techniques
helped to address class imbalance by generating
additional data samples, thereby improving the
robustness and reliability of the model. Additionally, all
images were resized to a uniform resolution, ensuring
compatibility across the dataset and enabling seamless
processing by the model. Image normalization was also
performed to scale pixel values to a consistent range,
reducing variability and improving the model's training
efficiency.
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To further refine the data, an adaptive median filter
was employed to mitigate the impact of salt-and-pepper
noise as shown in Figure (3), which is a common issue in
image datasets. This filter not only removed noise but
also preserved critical details in the images, leading to
improved overall image quality. By integrating
augmentation, resizing, normalization and noise
reduction, the preprocessing stage ensured the dataset
was well-structured and ready for subsequent feature
extraction and classification tasks.

Fig. 1: Horizontal fragmentation

Fig. 2: Cycle GAN generated images

Fig. 3: Illustrating noise removal using adaptive median filter

Dataset Partitioning for Optimized Processing

The dataset consists of a total of 43, 606 images,
which presents significant computational challenges for

direct processing due to its size and complexity. To
address these challenges and enhance the efficiency of
preprocessing and analysis, the dataset was divided into
four manageable partitions. Specifically, the sMRI
dataset was split into two equal portions, designated as
Dataset-SM1 and Dataset-SM2 shown in Table (3),
ensuring a balanced distribution of samples across both
partitions, similarly the fMRI dataset was divided into
two separate parts, named Dataset-FM1 and Dataset-
FM2 as shown in Table (4). This partitioning approach
not only reduced computational demands but also
allowed for parallel processing and efficient utilization of
available resources.
Table 3: Dataset-SM1 and Dataset-SM2 (sMRI Dataset)

Label Name Number of Images
CN 3715
EMCI 3600
MCI 3688
Total 11003

Table 4: Dataset-FM1 and Dataset-FM2 (fMRI Dataset)

Label Name Number of Images
CN 3600
EMCI 3600
MCI 3600
Total 10800

Methods
In this study, we introduce a stacking-based ensemble

approach that integrates predictions from multiple
models, including GoogLeNet, DenseNet-121, GNN and
U-Net, to improve the classification of Alzheimer’s
disease (Acharya et al., 2021) using sMRI and fMRI
datasets. Initially, we started experimenting with various
state-of-the-art techniques such as GoogLeNet, VGG-16,
ResNet, DenseNet and EfficientNet for sMRI image
analysis. However, GoogLeNet and DenseNet performed
best with the meta-model, so we selected them for sMRI
image analysis. For fMRI image analysis, GNN and U-
Net were used. GNN effectively captures the spatial and
temporal relationships in brain connectivity graphs,
while U-Net was included for its ability to preserve fine
spatial details, which is crucial in detecting subtle
changes in brain structures. The combination of GNN
and U-Net produced good results when we trained the
meta-model using extracted features from these models.

GoogLeNet and DenseNet extract spatial patterns
from sMRI, GNNs analyze functional connectivity in
fMRI and U-Net identifies localized features. The
predictions from these models are combined into a meta-
feature matrix, which is then processed by a second-level
classifier, such as logistic regression, to produce the final
output. This meta-model learns to integrate the strengths
of individual models for final predictions. By leveraging
the complementary nature of structural and functional
data, stacking improves classification accuracy and
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(3)

generalization, making it a powerful tool for multi-modal
analysis in neurodegenerative disease research.

Structural MRI Image Analysis

GoogLeNet

GoogLeNet, a prominent deep learning architecture
in medical imaging, excels at identifying features in
brain MRI data. Its effectiveness stems from its 22-layer
structure and Inception modules, which capture fine
details in MRI scans. Figure (4) illustrates the pipeline
for Alzheimer’s disease classification using GoogLeNet
(Inception V3) and sMRI images. The dataset undergoes
preprocessing and is split into training, validation and
test sets. A pre-trained Inception V3 model serves as the
base feature extractor, initially with frozen layers to
retain learned knowledge. Feature extraction is
performed using Global Average Pooling, followed by a
dense layer (128 neurons, ReLU activation) and a
Dropout layer (0.5) to reduce overfitting. The model is
then compiled with the Adam optimizer and trained
using categorical cross-entropy loss. After initial
training, the base model layers are unfrozen for fine-
tuning. Finally, the model is evaluated on test data to
determine its classification accuracy (Oh et al., 2019).

Fig. 4: GoogleNet Architecture for AD Classifcation

Equations (1-3) are equations for compute the outputs
of convolution, activation and pooling operations
respectively. The model also utilizes global average
pooling and auxiliary classifiers to improve performance
and ensure training stability (Parvatham and Maguluri,
2024). Finally the softmax function converts scores into
probabilities as shown in (4).

where:

 is the input image

 is the filter (kernel)

 is the output feature map

 is the output feature map value at position
in the  channel after applying the convolution

operation

 are height and width of the filter

where:

 is the input value

 is is the output after applying ReLU:

where:

 is the pooling size

 is the input feature map

 is the output of the pooling layer:

(4)

where:

 is the probability that the input  belongs to
class 

 is the element of the output vector z

 is the total number of classes

DenseNet-121

Figure (5) represents an Alzheimer’s disease
classification pipeline using Dataset-SM2 partition and
DenseNet-121.The Dataset-SM2 partition of the sMRI
dataset, which is divided into 70% training, 20% testing
and 10% validation. Its dense layer connections enable
efficient feature reuse, improving accuracy in detecting
subtle brain structure changes linked to AD (Solano-
Rojas et al., 2020; Hazarika et al., 2023). The model
undergoes preprocessing, feature extraction using Global
Average Pooling and classification with a dense layer
and Dropout (0.5). Initially, the pre-trained model’s
layers are frozen, then fine-tuned after initial training.
The model is compiled using Adam optimizer and
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(5)

(6)

(7)

categorical cross-entropy loss and evaluated on test data
to determine its classification accuracy. Feature
extraction using DenseNet-121 involves applying
convolution operations to capture spatial details,
followed by batch normalization shown in (5) and ReLU
for regularization and non-linearity shown in (2), with
dense blocks concatenating previous layer outputs to
improve feature propagation as shown in (6). The
process ends with global average pooling as in (7) and
softmax in (4) for classification.

Fig. 5: DenseNet-121 Architecture for AD Classification

where:

is the input value for the  feature in the batch,

 is the mean of the input values in the current batch

 is the number of inputs in the batch

 is the variance of the input values in the current batch

 is the small constant added for numerical stability to
prevent division by zero,

is the normalized value of 

 is a learnable scaling parameter applied to the
normalized value

 is the learnable shift parameter that adjusts the mean of
the normalized values,

The final output of the batch normalization:

where:

 is input to the  layer, which is the result of
concatenating all the feature maps produced by the
preceding layers up to the  layer 

 represent the feature maps generated by each of
the previous layers from the  layer up to the layer.
Each  is a set of feature maps from the  layer

where:

 is the output value for the  feature map after
applying Global Average Pooling,

 is the input feature map

and  index the spatial dimensions of the feature map

 indexes the channel or depth dimension

 is the height of the input feature map

 is the width of the input feature map

Functional MRI Image Analysis

Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) are employed for
Alzheimer’s disease classification by analyzing resting-
state fMRI data, which captures interactions between
different brain regions. These functional connectivity
patterns, measured through blood flow variations, differ
between healthy individuals and Alzheimer’s Disease
(AD) patients (Han et al., 2024).The flowchart illustrated
in Figure (6) represents an Alzheimer’s disease
classification pipeline using Dataset-FM1 and a Graph
Neural Network (GNN). The fMRI images are first
converted to grayscale and then transformed into graph
representations, where nodes represent brain regions and
edges define their connectivity patterns (Tong et al.,
2023; Zhou et al., 2024; Gao et al., 2023).Two Graph
Convolutional Network (GCN) layers extract spatial
features by aggregating information from neighboring
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(10)

(11)
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nodes. A Global Mean Pooling layer reduces feature
dimensions while preserving crucial information. Finally,
a fully connected layer classifies brain scans into
Cognitively Normal (CN), Early Mild Cognitive
Impairment (EMCI), or Mild Cognitive Impairment
(MCI).This graph-based method improves classification
accuracy by leveraging the structural relationships in
brain connectivity, making it a valuable tool for early
Alzheimer’s detection.

In this study, every fMRI image is converted into a
graph where the nodes correspond to individual pixels
and edges link each pixel to its adjacent right and lower
neighbors. The Graph  is constructed as shown
in (8) and (9), where  is the set of nodes and  is the
set of edges. It employs graph convolutional layers to
propagate features, followed by global mean pooling to
aggregate node features into a graph-level representation
as shown in (10), (11) & (12). Finally, a fully connected
layer classifies the graph based on the extracted features:

where:

Each pixel value is treated as a node feature  ,

The feature matrix  for all nodes is shown in Eq. 10:

where: 

The GNN uses Graph Convolutional Network (GCN)
layers to propagate and aggregate information across the
graph. The graph convolution operation is defined as:

where:

 is the node feature matrix at layer

is the adjacency matrix with added self-loops

is the degree matrix of

 is the learnable weight matrix at layer  σ is an
activation function

where:

 is the features of the  node after the final GCN
layer.

Fig. 6: GNN Architecture for classification of AD

U-Net Architecture

The U-Net architecture is popular in medical image
analysis, especially for fMRI-based Alzheimer's disease
classification, due to its effective pixel-level
segmentation .It includes a contracting path for capturing
context and an expanding path for precise feature
localization, preserving spatial details in high-resolution
images (Asiri et al., 2023). The U-Net architecture excels
in medical imaging, particularly for identifying structures
and abnormalities in brain scans and is effective in
segmenting brain tumors and regions of interest in fMRI
data (Pang et al., 2023).The flowchart in Figure (7)
represents an Alzheimer’s disease classification pipeline
using dataset-FM2 and a U-Net-based CNN. The model
extracts spatial and hierarchical features through multiple
convolutional layers with ReLU activation and
MaxPooling, progressively increasing the number of
feature channels (64, 128, 256, 512). A Global Average
Pooling (GAP) layer compresses feature representations
before passing them to a fully connected classification
layer. The model classifies brain scans into Cognitively
Normal (CN), Early Mild Cognitive Impairment (EMCI)
and Mild Cognitive Impairment (MCI).

For Alzheimer's disease classification, U-Net aids in
delineating subtle changes in brain activity by
segmenting and analyzing regions associated with
cognitive functions. Its capacity to process high-
dimensional fMRI data efficiently and detect nuanced
variations supports both clinical diagnosis and research
(Fujita et al., 2023). The U-Net model applies
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W l l,

h
​ =G

​ ​

h
​

N
1 ∑i=1

N
i

h
​

i ith

http://192.168.1.15/data/13020/fig6.PNG
http://192.168.1.15/data/13020/fig6.PNG


Parvatham Niranjan Kumar and Lakshmana Phaneendra Maguluri / Journal of Computer Science 2025, 21 (6): 1404.1424
DOI: 10.3844/jcssp.2025.1404.1424

1414

(13)

(14)

(15)

(16)

convolution, ReLU activation, max pooling and adaptive
average pooling for feature extraction as shown in (13),
(2), (14) & (15) respectively, followed by a dense layer
for classification, using cross-entropy loss for
optimization and the Adam optimizer.

Fig. 7: U-Net architecture for classification of AD

where:

 is the input image or feature map

 represents the convolution filters

 is the bias term

denotes the convolution operation:

where:

 represents the pixel values in pooling window

where:

 and  are the height and width of the feature map

is the pixel value at position (i,j)

Proposed System Architecture

The proposed Alzheimer's Disease Classification
System aims to categorize patients into three stages—
Normal Control, Early Mild Cognitive Impairment and
Mild Cognitive Impairment using a multimodal approach
with sMRI and fMRI datasets. The architecture of
proposed system shown in Figure (8), the system begins

by acquiring and preprocessing the imaging data,
employing techniques like augmentation, resizing,
normalization and noise reduction to enhance quality and
address class imbalance. Preprocessed data is divided
into four datasets, each tailored for a specific model:
GoogLeNet and DenseNet-121 for sMRI and fMRI
classification, respectively, GNN for analyzing
relationships in sMRI data and U-Net for localized fMRI
feature extraction. Each model independently generates
predictions and their prediction probabilities are
combined using a vertical stacking ensemble approach
(Chen et al., 2022) to create a feature matrix as shown in
Eq. 16. In this matrix, each row represents a sample and
the columns consist of the concatenated prediction
probabilities from all models across all classes. This
resulting feature set (8722, 3) is then used for training
the meta-model with various classifiers. We split the
resultant feature set into two partitions:

80% for training and 20% for testing the model. This
meta-classifier delivers the final classification into NC,
EMCI, or MCI. Performance is assessed using metrics
such as accuracy, sensitivity, specificity, precision and
F1-score. The proposed system enhances the reliability
and precision of Alzheimer's disease classification,
offering a robust tool for neurodegenerative disease
research.

Fig. 8: Architecture of proposed system

Results
This research explored four deep learning

architectures: Graph Neural Networks and U-Net for
analyzing functional MRI data, alongside GoogLeNet
and DenseNet-121 for static MRI analysis. The
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prediction probabilities generated by these models were
integrated into a meta-model to enhance the accuracy of
the final predictions. Given the substantial size of the
dataset, the experiments were performed on Google
Colab, utilizing CUDA—NVIDIA's parallel computing
framework designed to harness GPU cores for
accelerated computation. Google Colab offered free
access to high-performance GPUs, such as the NVIDIA
Tesla, along with a pre-configured Python environment.
This setup facilitated efficient dataset handling and
significantly faster training and inference processes
compared to traditional CPU-based systems.

GNN model Using Dataset-FM1

The model attains a total accuracy of 57.82%,
demonstrating its strongest performance in the CN class
with an accuracy of 80.05%, while its weakest
performance is observed in the EMCI class, achieving an
accuracy of 65.70%. It shows effectiveness in identifying
non-CN cases, reflected by a specificity of 0.8691 and
achieves a balanced F1-score of 0.6812 for CN.
However, for EMCI, lower precision (0.4810) and recall
(0.3870) suggest substantial potential for enhancement.
The MCI class demonstrates moderate performance,
achieving an accuracy of 70.10% and an F1-score of
0.6120. It performs better than EMCI but does not
surpass CN.

U-Net Model Using Dataset-FM2

The U-Net model achieves an overall accuracy of
99.90%, demonstrating an outstanding ability to classify
cases with minimal errors. For the CN class, it achieves
nearly perfect accuracy (99.91%) with high precision,
recall and F1-score values (0.9986 each), reflecting
exceptional reliability. The EMCI class is classified
flawlessly with a 100% accuracy and all metrics at 1.00.
Similarly, the MCI class shows near-perfect accuracy
(99.91%) with excellent specificity, precision, recall and
F1-score (0.9986 each). Overall, the model delivers
superior performance across all classes, with particularly
remarkable results in EMCI classification.

GoogLeNet Model Using Dataset-SM1
The GoogLeNet model utilizes the Dataset-SM1

partition of the sMRI dataset, which is further split into
three subsets: Train, test and validation. For model
training, testing and validation, 70% of the images in
each category are allocated for training, 20% for testing
and the remaining 10% for validation. The GoogLeNet
architecture delivers outstanding results, achieving a total
accuracy of 99.54%, which signifies a minimal error rate.
For the CN class, the model attains an accuracy of
99.73%, accompanied by high specificity (0.9979),
precision (0.9960), recall (0.9960) and an F1-score of
0.9960. The EMCI class also performs exceptionally
well, with an accuracy of 99.68%, a specificity of 0.9966

and balanced metrics such as precision (0.9930), recall
(0.9972) and an F1-score of 0.9950. Similarly, the MCI
class achieves an accuracy of 99.68%, with specificity
(0.9986), precision (0.9972), recall (0.9932) and an F1-
score of 0.9951. These findings highlight the model's
strong generalization ability and robustness when applied
to unseen data.

DenseNet Model Using Dataset-SM2
The DenseNet-121 model achieves impressive

performance with an accuracy of 97.86%, reflecting a
remarkably low error rate. It achieves perfect accuracy in
the CN class (100%) with perfect precision, recall,
specificity and F1-score (all 1.00). For the EMCI class,
the model reaches 97.90% accuracy, with high precision
(0.9490), recall (0.9870) and a strong F1-score of
0.9680. The MCI class also shows near-perfect
performance with 98.31% accuracy, high specificity
(0.9939), precision (0.9873) and recall (0.9488), leading
to an F1-score of 0.9687. Overall, the model
demonstrates outstanding performance across all classes
and is well-suited for the classification task, likely to
generalize well to new data. The Table (5) shows the
results of deep learning models using single modality
images.
Table 5: Results of single modality with various deep learning

models

Label Metric Dataset-
FM1
(GNN)

Dataset-
FM2 (U-
Net)

Dataset-SM1
(GoogLeNet)

Dataset-SM2
(DenseNet-
121)

CN Accuracy 80.05 99.91 99.73 100
Specificity 0.8691 0.9993 0.9979 1
Precision 0.7098 0.9986 0.996 1
Recall 0.6546 0.9986 0.996 1
F1-Score 0.6812 0.9986 0.996 1

EMCI Accuracy 65.7 100 99.68 97.9
Specificity 0.792 1 0.9966 0.974
Precision 0.481 1 0.993 0.949
Recall 0.387 1 0.9972 0.987
F1-Score 0.428 1 0.995 0.968

MCI Accuracy 0.701 99.91 99.68 98.31
Specificity 0.705 0.9993 0.9986 0.9939
Precision 0.546 0.9986 0.9972 0.9873
Recall 0.692 0.9986 0.9932 0.9488
F1-Score 0.612 0.9986 0.9951 0.9687

Overall
Accuracy

57.82 99.9 99.54 97.86

Figure 9(a) presents a comparison of accuracy among
four deep learning models: U-Net, GoogLeNet,
DenseNet-121 and Graph Neural Network (GNN). U-Net
demonstrates the highest accuracy of 99.90%, while
GoogLeNet follows closely with 99.54%. In contrast, the
Graph Neural Network achieves a notably lower
accuracy of 57.82% and DenseNet-121 attains an
accuracy of 97.86%. The results emphasize the superior
accuracy performance of U-Net and GoogLeNet over
DenseNet-121 and the Graph Neural Network. Figures
9(b-d) illustrate a comparison between specificity (TNR)
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and sensitivity (TPR), which are critical metrics in
medical diagnosis. The results are analyzed for each
Alzheimer's disease (AD) stage, including Cognitively
Normal (CN), Early Mild Cognitive Impairment (EMCI)
and Mild Cognitive Impairment (MCI). DenseNet
demonstrates exceptional accuracy in classifying CN,
while U-Net excels in accurately classifying EMCI and
MCI stages.

Fig. 9(a): Accuracy comparison of deep learning models using
single modality

Fig. 9(b): Sensitivity and Specificity comparison of CN stage

Fig. 9(c): Sensitivity and Specificity comparison of EMCI
stage

Fig. 9(d): Sensitivity and Specificity comparison of MCI stage

Fig. 9(e): F1-score comparison by model

Figure 9(e) illustrates an F1-score comparison among
four deep learning models, which presents a balanced
evaluation of their performance across three AD stages.
U-Net and GoogLeNet consistently achieve high F1-
scores across all stages, while DenseNet-121 also
performs well. In contrast, the GNN demonstrates
significantly poorer performance, with a notably lower
F1-score compared to the other models.

GoogLeNet and DenseNet-121 outperformed GNN
and U-Net primarily because the latter models were
trained on fMRI data, which presents unique challenges.
Functional MRI (fMRI) captures temporal brain activity
and connectivity, requiring graph-based representations
to model inter-region relationships. Unlike sMRI images,
which have a well-defined spatial structure, fMRI data
must first be converted into a graph, where brain regions
are represented as nodes and functional connectivity
defines the edges. One of the major challenges with this
approach is that fMRI connectivity patterns vary across
individuals, making it difficult for GNNs to generalize
effectively. In contrast, CNNs like GoogLeNet and
DenseNet work with spatially consistent sMRI images,
allowing them to learn more stable and robust features.
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Additionally, optimizing GNN architectures is inherently
more complex than training CNNs. A potential strategy
to enhance performance is by integrating CNN-based
spatial features from sMRI with GNN-based functional
connectivity features from fMRI, creating a more
comprehensive classification model that leverages both
structural and functional information.

Multimodality Meta modal

We created various meta-models, including FFNN,
Logistic Regression, Random Forest, XGBoost,
LightGBM and SVM, for the classification of
Alzheimer’s disease by combining two modalities (sMRI
and fMRI) and evaluated them to identify the optimal
model that yields the most accurate final predictions.

Feed Forward Neural Network

The FFNN model achieves an overall accuracy of
90.09%, demonstrating good performance. For the CN
class, it achieves 95.0% accuracy with high specificity
(0.96), precision (0.93), recall (0.93) and an F1-score of
0.93. The EMCI class shows 92.0% accuracy, with
specificity of 0.94, precision of 0.89, recall of 0.86 and
an F1-score of 0.88. For the MCI class, the model attains
93.0% accuracy, specificity of 0.94, precision of 0.88,
recall of 0.91 and an F1-score of 0.90. Overall, the
FFNN model performs well across all classes, making it
a suitable choice for classifying the dataset.

Logistic Regression

The Logistic Regression (LR) classification
algorithm achieves an overall accuracy of 89.91%,
indicating solid performance. For the CN class, it has
95.0% accuracy, with high specificity (0.96), precision
(0.92), recall (0.93) and an F1-score of 0.93. In the
EMCI class, the model reaches 91.0% accuracy, with
specificity of 0.94, precision of 0.88, recall of 0.87 and
an F1-score of 0.88. For the MCI class, the accuracy is
93.0%, with specificity of 0.95, precision of 0.90, recall
of 0.89 and an F1-score of 0.90. Overall, the model
performs well across all classes, making it suitable for
classifying the dataset.

XGBoost

The XGBoost model achieves an overall accuracy of
94.15%, demonstrating excellent performance. For the
CN class, it achieves 97.0% accuracy, with high
specificity (0.99), precision (0.97) and a solid recall
(0.94), resulting in an F1-score of 0.96. The EMCI class
shows 95.0% accuracy, with good specificity (0.96),
precision (0.92) and recall (0.95), leading to an F1-score
of 0.93. In the MCI class, the model performs with
96.0% accuracy, high specificity (0.97) and balanced
precision and recall (both 0.94), achieving an F1-score of
0.94. Overall, the model excels across all classes and is
likely to generalize well to new data.

Light GBM

The Light GBM model achieves an overall accuracy
of 94.72%, indicating strong performance with low error.
For the CN class, it reaches 97.0% accuracy, with high
specificity (0.99), precision (0.97), recall (0.94) and an
F1-score of 0.96. The model performs similarly for the
EMCI class, with 96.0% accuracy, a specificity of 0.96
and a precision of 0.92, achieving an F1-score of 0.94.
For the MCI class, the model demonstrates 97.0%
accuracy, with specificity of 0.98 and precision of 0.95,
resulting in an F1-score of 0.95. Overall, the model
performs consistently well across all classes and is
expected to generalize effectively to new data.

SVM

The SVM model achieves an overall accuracy of
89.62%, indicating solid performance. For the CN class,
it performs well with 95.0% accuracy, high specificity
(0.96) and good precision (0.93), recall (0.93) and an F1-
score of 0.95. In the EMCI class, the model has 91.0%
accuracy, with specificity of 0.94, precision of 0.88,
recall of 0.86 and an F1-score of 0.87. For the MCI class,
the model achieves 92.0% accuracy, specificity of 0.94,
precision of 0.88, recall of 0.89 and an F1-score of 0.89.
Overall, the SVM model performs well across all classes
and is suitable for classifying the dataset.
Table 6: Results of proposed Meta model and other classifiers

Label Metric FFNN Logistic
Regression

XGBoost Light
GBM

SVM Proposed
Meta
model
(Random
Forest)

CN Accuracy 95 95 97 97 95 98
Specificity 0.96 0.96 0.99 0.99 0.96 0.99
Precision 0.93 0.92 0.97 0.97 0.93 0.97
Recall 0.93 0.93 0.94 0.94 0.93 0.95
F1-Score 0.93 0.93 0.96 0.96 0.95 0.96

EMCI Accuracy 92 91 95 96 91 96
Specificity 0.94 0.94 0.96 0.96 0.94 0.97
Precision 0.89 0.88 0.92 0.92 0.88 0.93
Recall 0.86 0.87 0.95 0.96 0.86 0.96
F1-Score 0.88 0.88 0.93 0.94 0.87 0.94

MCI Accuracy 93 93 96 97 92 97
Specificity 0.94 0.95 0.97 0.98 0.94 0.98
Precision 0.88 0.9 0.94 0.95 0.88 0.95
Recall 0.91 0.89 0.94 0.94 0.89 0.95
F1-Score 0.9 0.9 0.94 0.95 0.89 0.95

Overall accuracy 90.09 89.91 94.15 94.72 89.62 95.18

Random Forest

The Proposed Meta Model using Random Forest
achieves an overall accuracy of 95.18%, indicating high
performance and low error rates. For the CN class, it has
an accuracy of 98.0%, with high specificity (0.99),
precision (0.97) and recall (0.95), resulting in an F1-
score of 0.96. The EMCI class shows 96.0% accuracy,
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specificity of 0.97, precision of 0.93 and recall of 0.96,
with an F1-score of 0.94. For the MCI class, the model
achieves 97.0% accuracy, specificity of 0.98, precision of
0.95 and recall of 0.95, leading to an F1-score of 0.95.
Overall, the model performs excellently across all classes
as shown Table (6), suggesting it is well-suited for
classification tasks and generalizes well to new data.

Fig. 10(a): Illustrates the performance comparison of various
classifiers

Fig. 10(b): Sensitivity and Specificity comparison of CN stage

Fig. 10(c): Sensitivity and Specificity comparison of EMCI

Fig. 10(d): Sensitivity and Specificity comparison of MCI

Fig. 10(e): F1-score comparison by model

Figure 10(a) illustrates the performance comparison
of various meta classifiers, the proposed meta model
with the Random Forest classifier leads with an accuracy
of 95.18, demonstrating superior effectiveness. Light
GBM and XGBoost follow closely with scores of 94.72
and 94.15, respectively, indicating strong performance.
The Feed-Forward Neural Network (FFNN) achieves a
score of 90.09, performing reasonably well but lagging
behind the tree-based models. Traditional methods like
Logistic Regression and SVM have the lowest scores, at
89.91 and 89.62, respectively, showing their limitations
compared to more advanced techniques.

Figure 10(b) evaluates the sensitivity and specificity
of different classifiers in classifying the AD CN stage.
The proposed model stands out with a sensitivity of 0.95
and specificity of 0.99, showcasing outstanding
performance. Light GBM and XGBoost also perform
robustly, with sensitivity and specificity values of 0.94
and 0.99, respectively. The Feed-Forward Neural
Network (FFNN), Logistic Regression and SVM show
slightly lower performance, with sensitivity and
specificity values of 0.93 and 0.96.

Figure 10(c) showcases the sensitivity and specificity
of different classifiers for EMCI classification. The
proposed model exhibits robust and consistent
performance, achieving sensitivity and specificity values
of 0.96 and 0.97, respectively. Light GBM and XGBoost
also show competitive performance with similar metrics.
In contrast, models such as Logistic

Regression, FFNN and SVM tend to underperform
compared to these more advanced methods. Figure 10(d)
evaluates the sensitivity and specificity of different
classifiers for MCI classification. The proposed model,
listed first, demonstrates strong performance with values
of 0.95 and 0.98. Light GBM and XGBoost also show
competitive and reliable results. In contrast, traditional
models such as FFNN, Logistic Regression and SVM
perform less effectively compared to the advanced
techniques.

Figure 10(e) compares the F1-scores of different
classifiers across EMCI, CN and MCI stages. The
proposed model excels with F1-scores of 0.965, 0.946
and 0.955 for CN, EMCI and MCI, respectively,
showcasing outstanding performance. Light GBM and
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XGBoost also deliver strong and consistent results,
closely trailing the proposed model. While FFNN
performs reasonably well, it falls short compared to the
top models. Logistic Regression and SVM achieve the
lowest scores, reflecting their limited effectiveness in
this context. The Proposed Random Forest model
consistently surpasses other models such as FNN,
Logistic Regression, XGBoost, Light GBM and SVM in
terms of accuracy and various evaluation metrics.

 Cross-Validation is used to evaluate the
performance of a proposed model by dividing the dataset
into equal subsets (folds). The model is trained on 

 folds and tested on the remaining fold, repeating the
process  times so that each fold serves as the test set
once. The final performance is determined by averaging
the results across all folds, ensuring a more reliable
evaluation. The results of 15-Fold Cross-Validation are
presented in the Table (7), showing the accuracy
obtained in each fold. The model demonstrates consistent
performance across folds, with an overall average
accuracy of 95.13%.Its strong performance demonstrates
its ability to generalize effectively to unseen data,
making it suitable choice for AD early prediction.
Table 7: Results of K-fold Cross validation

Fold No ACC Fold No ACC Fold No ACC
1 95.7 6 93.33 11 95.69
2 95.7 7 95.69 12 95.48
3 92.9 8 93.11 13 96.98
4 93.97 9 94.62 14 95.48
5 96.12 10 96.34 15 95.69
Mean Accuracy 95.13

ACC: Accuracy

Discussion
Alzheimer’s disease (AD) has no definitive cure, but

early detection is critical for managing its progression.
Accurate identification, particularly in very mild and
mild cases, is challenging with a single modality like
sMRI. Combining multi-modal imaging, such as sMRI
for structural analysis and fMRI for functional analysis,
provides a more comprehensive approach. This study
utilized a dataset of 43,600 images, including both sMRI
and fMRI data, divided into four subsets. Four deep
learning models—GNN, U-Net, GoogLeNet and
DenseNet-121—were developed using transfer learning.
The prediction probabilities from these models were
combined through vertical stacking to create a feature
matrix, which was used to train a meta-model. This
meta-model effectively reduced overfitting issues
associated with single-modality models, offering more
accurate and reliable results, particularly for early
detection. Figure (11) compares deep learning techniques
using single modality with a stacking-based ensemble
approach with multi-modality. The multi-modality
approach achieves an average accuracy of 92.27%,

significantly higher than the single modality's 89.29%.
Additionally, the multi-modality method shows superior
average specificity (93.98%) and sensitivity (88.77%)
compared to the single modality approach. This
highlights that multimodal ensemble techniques are more
effective for achieving high accuracy and reliability.

Figure (12) shows a comparison of various meta-
classifiers based on their confusion matrices and reveals
that the proposed Random Forest (RF) model achieves
the highest accuracy, correctly classifying 1,661 out of
1,745 cases with only 84 misclassifications,
demonstrating superior reliability and robustness. FFNN
and XGBoost also perform well, particularly in
identifying CN and EMCI stages, though they exhibit
some confusion between EMCI and MCI. Logistic
Regression (LR) and SVM maintain strong accuracy for
CN but encounter challenges in clearly distinguishing
EMCI from MCI. Light GBM, although effective in
detecting CN and EMCI, struggles with MCI
classification due to notable misclassifications.

Figure (13) presents the AUROC analysis,
highlighting the superior performance of the proposed
system, which achieves high scores across all classes
(CN: 0.97, EMCI: 0.96, MCI: 0.96), indicating strong
and balanced classification capabilities. Light GBM
closely matches this performance, while XGBoost also
performs well with slightly lower AUC values. In
contrast, Logistic Regression, SVM and FFNN exhibit
moderate effectiveness, particularly struggling with
EMCI classification, which consistently yields lower
AUROC scores across these models. This suggests that
EMCI is the most challenging stage to distinguish.
Overall, the proposed model demonstrates higher
reliability and precision, especially in addressing the
complexities of early stage cognitive impairment.

Figure (14) shows the Precision-Recall curve of
proposed system, which demonstrates strong
performance across all three classes: CN, EMCI and
MCI, with Average Precision (AP) scores of 0.94, 0.91
and 0.92 respectively. The model maintains high
precision and recall, indicating it correctly identifies
most cases with few false positives or negatives.
Cognitively Normal (CN) shows the highest AP,
suggesting it is the easiest for the model to classify
accurately. EMCI has the lowest AP, which is expected
due to its subtle symptoms making it harder to detect.

Fig. 11: Performance Comparison between single modality
models with multi-modality models

K − fold

k k −
1

k
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Fig. 12: Confusion matrix of proposed system and other
classifiers

Fig. 13: Comparison of Proposed System AUROC Curve with
other classifier

A sharp drop at high recall values is observed, which
is common when the model starts to misclassify more to
achieve full recall.

Figure (15) shows the stage-wise confusion matrices
for the proposed system. These matrices demonstrate the
robustness of the model in classifying CN, EMCI and
MCI stages. For the CN class, the model shows excellent
precision and recall, indicating a strong capability to
distinguish normal cases with minimal error. The EMCI
classification also performs well, although a slightly
higher number of false negatives suggests room for

improved sensitivity. The MCI results show balanced
performance, with consistent true and false prediction
counts, reflecting reliable detection. Overall, the model
exhibits high classification accuracy across all stages,
with further refinement potentially enhancing EMCI
detection. Figure (16) shows comparison of proposed
method with state-of-the-art techniques and it is revealed
its superior accuracy across all categories (CN, EMCI,
MCI), highlighting its potential for improving treatment
outcomes.

Fig. 14: Precision-Recall Curve of proposed model

Fig. 15: Stage-wise confusion matrix of proposed meta model

Fig. 16: Comparing proposed method with state-art-techniques

Conclusion
This study introduces a novel ensemble method based

on stacking for early Alzheimer's disease diagnosis using
multimodal neuroimaging data. By combining
predictions from deep learning models trained on both
sMRI and fMRI data, the proposed approach capitalizes
on the complementary strengths of these different
modalities. The meta-model achieved an impressive
accuracy of 95.18%, surpassing current state-of-the-art
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methods. This reliable and precise system has significant
potential to enhance early AD detection, enable timely
interventions and advance research in neurodegenerative
diseases. Future improvements could include
incorporating additional modalities and geographical
data to better predict AD progression. Additionally,
vision transformer techniques can be used with large
datasets to enhance the proposed system.
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