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Abstract: Embedded systems have experienced significant growth in recent
years. These systems, which power a wide range of devices from smart
appliances to industrial machinery have become integral to our daily lives
and industries. However, this rapid expansion introduces new challenges for
developers. A critical decision involves whether to employ a Real-Time
Operating System (RTOS) or to forgo it, depending on the specific project
requirements. Additionally, developers are focused on finding effective
strategies to enhance code quality, promote code reuse, reduce complexity,
and streamline the learning curve. These challenges underscore the evolving
landscape of embedded systems, where maximizing potential while
maintaining efficiency and ease of development has become a top priority.
This study presents a comparative evaluation of an embedded system
utilizing the TI-RTOS, which includes an RTOS kernel and a set of libraries,
against an equivalent system using a minimalistic custom kernel without
these libraries. The analysis examines various metrics, including source
code size, complexity, architecture, learning curve, and development time.
The results indicate that the learning curve associated with adopting TI-
RTOS did not show a significant increase compared to the system without
an operating system (bare metal). Furthermore, productivity remained
largely unchanged when using TI-RTOS. Importantly, the implementation of
TI-RTOS did not lead to a notable increase in source code complexity. This
study offers valuable insights for embedded systems developers and
engineers, demonstrating that integrating TI-RTOS can be a viable option
without adding undue complexity to a project. These findings are
particularly relevant for those seeking an efficient and user-friendly solution
for embedded systems.

Keywords: Operational Systems, Embedded Software, Embedded System,
Real-Time Operating System

Introduction
The presence of embedded systems has grown

steadily in recent years, reaching near ubiquity in
people’s lives. As a result, embedded software
development projects have become larger and more
complex, following the increasing complexity of
electronic components that demand a high degree of
reliability and security. (Martins and Oliveira, 2014; Joe
and Kin, 2017; Carvalho and Martins, 2021)

Currently, there are numerous options for embedded
hardware, offering different brands, features, capacities,
and electronic components. These aspects pose new
challenges in embedded software development, such as
dealing with hardware diversity, meeting growing
demand, and reducing development time. (Martins et al.,
2015; Lin et al., 2015)

This study seeks to address questions regarding the
impact of developing embedded software using a Real-
Time Operating System (RTOS), investigating potential
gains in performance, changes in code complexity,
project development time, the learning curve, and the
advantages and disadvantages of using an RTOS in an
embedded system.

Embedded systems can be developed using an
embedded Operating System (OS) or by programming
only the necessary functions for the system to operate
without an OS. Both approaches are validated, each
offering advantages and disadvantages. The choice
depends on factors such as hardware, the problem to be
solved, and project requirements. During the project
design process, developers may face uncertainty about
which approach will bring more benefits and whether or
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not an OS or an RTOS would be advantageous. (Li and
Yao, 2003; Stallings and Paul, 2012; Noergaard, 2012)

The focus of embedded system development in this
context is on microcontrollers, which typically have
limited memory resources and reduced processing power.
(Barr and Massa, 2006; Ball, 2002)

Materials and Methods
In this section, we present the materials and methods

employed in this study. We provide an overview of the
Insulin Infusion Pump and TI-RTOS, which constitute
the core subjects of this research. Additionally, we
outline the Research Questions that guided our
investigation, followed by a detailed discussion on the
Study Definition, Planning, and Hypothesis Formulation.
Furthermore, we describe the Variable Selection process
and the Operational aspects of the study, ensuring
methodological rigor and reproducibility.

Insulin Infusion Pump

The prototype used in this study was a low-cost
insulin infusion pump designed for use in public
healthcare. The insulin infusion pump is an Embedded
System (ES) used in the treatment of Diabetes Mellitus.
This device simulates the insulin release of a healthy
pancreas, replacing manual insulin administration. It
provides the user with precise doses and microinfusions
throughout the day, allowing them to continue other
activities. (Berget et al., 2019; Casini et al., 2020)

The microcontroller used in the insulin infusion
pump is the MSP430, which features ultra-low power
consumption, a 16-bit RISC architecture, 16-bit timers,
up to 512KB of flash memory, and various analog and
digital peripherals. This information is crucial for
understanding the hardware constraints and capabilities.

As a medical device that administers medication to a
patient, the insulin infusion pump requires extremely
stringent deadline accuracy, as any failure could be
catastrophic, leading to injury or even death. The system
responsible for controlling insulin infusion is a periodic
task that uses the insulin dose (previously configured by
the user), and the minimum and maximum permissible
infusion rates per hour, and triggers a stepper motor to
administer the infusion while adhering to specific time
intervals. (Borgioli et al., 2022)

In light of the context presented, an experimental
study was conducted on the development of a low-cost
insulin infusion pump, incorporating an RTOS,
specifically the TI-RTOS, into its control software.

TI-RTOS

TI-RTOS is an operating system developed by TI for
use on its microcontrollers. For example, the MSP430
family facilitates system development by eliminating the
need to create basic system functions from scratch. It
provides a range of built-in features, such as device

drivers, power management, a multitasking kernel,
TCP/IP networking, and a File Allocation Table (FAT)
file system, all licensed under the open Berkeley
Software Distribution (BSD) code license.

The main objective of this study was to explore
different implementation approaches for developing the
control software of a low-cost insulin infusion pump.
Specific objectives included developing the control
software with and without using the TI-RTOS,
comparing these different approaches, measuring the
learning curve, development time, and code complexity,
and identifying the pros and cons of using TI-RTOS in
the development of an embedded system.

Experimental Study Protocol

This study was based on the framework proposed by
Wohlin et al. (2012).

The goal of this experiment was to evaluate different
approaches in the development of embedded systems.
The focus was on comparing software development
using TI- RTOS versus development without it, in order
to address our research questions, as follows.

Research Questions

RQ1: Does the use of TI-RTOS impact the learning
curve in embedded software development? This
question aims to assess the difficulty of learning
how to start using TI-RTOS in an embedded
software project.
RQ2: Can the use of TI-RTOS increase productivity
in embedded software development? This question
investigates changes in productivity and time spent
when developing embedded systems with TI-RTOS.
RQ3: Does the use of TI-RTOS reduce the
complexity of the code produced? This question
seeks to determine whether code developed using
TI-RTOS in embedded software is simpler or more
complex.

Study Definition

To analyze: The development strategies of embedded
systems with TI-RTOS and bare metal.

With the purpose: Of evaluating these strategies and
identifying the advantages and disadvantages of using
the TI-RTOS.

With regard to: Software architecture, learning curve,
development time, and the complexity of the code
produced.

From the point of view: Of the development team.

In the context: Of the control software for a low-cost
insulin infusion pump.

Planning

This study involved developing the control software
for a low-cost insulin infusion pump Bare Metal with TI-
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RTOS implementation. The system remained the same,
with modifications pertinent to the operation of the
RTOS. The results demonstrated the benefits and
challenges that RTOS brought to the project.

Formulation of Hypotheses

Null hypothesis (H0.1): The use of TI-RTOS in
development does not significantly impact the learning
curve.

Alternative hypothesis (H1.1): The use of TI-RTOS
in development significantly impacts the learning curve.

Null hypothesis (H0.2): The use of TI-RTOS does not
increase development productivity.

Alternative hypothesis (H1.2): The use of TI-RTOS
increases development productivity.

Null hypothesis (H0.3): The use of TI-RTOS in
development does not reduce the complexity of the
produced code.

Alternative hypothesis (H1.3): The use of TI-RTOS
in development reduces the complexity of the produced
code. Hypotheses H0.1 and H1.1 were formulated to
investigate our first research question, hypotheses H0.2,
and H1.2 were developed to address the second research
question, and finally, hypotheses H0.3 and H1.3 were
formulated to help answer the third research question.

Variable Selection

This study aimed to evaluate the development
process both without and with the use of TI-RTOS.
Therefore, the independent variable was the
implementation approach of the control software for the
low-cost insulin infusion pump, while the dependent
variables were the learning curve, development time, and
code complexity.

Operation

Preparation: The development of the low-cost insulin
infusion pump control software bare metal was carried
out by a group of four developers. This project was
completed before the research on implementing TI-
RTOS in the insulin infusion pump began and they are
treated as separate projects. The bare metal software
served as the basis for the experimental study, with some
parts of the code being reused.

Execution: The study was conducted through the
following steps:

1. Utilize the pre-existing low-cost insulin pump
control software bare metal as a baseline

2. Select the features to be implemented in the new
software version

3. Implement the selected functionalities in the low-
cost insulin pump control software using an RTOS

4. Compare the two approaches by selecting specific
characteristics for analysis

5. Analyze and interpret the obtained data
6. Validate the analysis
7. Produce the conclusion report

Results

Executable Size

To evaluate the size of the insulin pump control
software, we analyzed the total size of the output file (the
.out file, which is sent to the development board and
contains the executable along with symbolic debug
information). The analysis considered the total size and
the disk size of the .out file with TI-RTOS and Bare
Metal, as shown in Table (1).

Since this is embedded software, the system size is
crucial. Many microcontrollers have limited storage
capacity and may not support larger code sizes. In this
case, we observed an increase in size when using TI-
RTOS. The bare metal code had a total file size (on disk)
of 258,048 bytes and when TI-RTOS was added, this
value increased to 290,816 bytes. This represents a
12.69.
Table 1: Total and disk size of the output file

TI-RTOS code Bare metal code
284k 258k
290,816 bytes 258,048 bytes

Code Complexity Analysis

This section reports the results of the code
complexity analysis when using TI-RTOS and compares
them to the bare metal source code. The analysis was
divided into two parts: The total number of code lines
and the cyclomatic complexity.

Code Lines

For this analysis, we counted the total number of
lines for each function in the insulin pump control
software. We first counted the lines in the bare metal
source code and then counted again after implementing
TI-RTOS.

To begin, we listed the functions with the highest and
lowest number of lines: The function configuring the
maximum basal doses had the highest number of lines.

(141) in both systems, while the put CPU to sleep
function had the lowest number of lines (3) in both
systems. The average number of lines across all
functions was 34 in the bare metal version and 33 with
TI-RTOS. Based on these results, we classified the
functions into three complexity categories: Functions
with up to 33 lines were considered low complexity,
those with 34-68 lines were classified as medium
complexity, and functions with more than 69 lines were
categorized as high complexity. These thresholds were
determined by analyzing the entire system, considering
maximum, minimum, and average values.
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The functions were then divided into three groups
based on their complexity (simple, medium, and
complex). This classification is illustrated in Figure (1),
where the total number of functions in each category is
shown for both systems.

Fig. 1: Comparison between functions based on number of
lines of code

In Figure (2), all functions (from 1-98) in the
software are listed, along with the number of code lines
in each function, both with TI-RTOS and bare metal.

Fig. 2: Comparison of the individual number of lines of
functions

Figure (3) shows the functions belonging to each
complexity group and the total number of functions for
both systems. The expected values for each group are
presented in Table (2). A chi-square test was performed
using MS Excel, resulting in a p-value of 1, indicating
that there was no significant statistical difference when
using TI-RTOS.

Fig. 3: Comparison of total functions by complexity

Cyclomatic Complexity

The cyclomatic complexity of the management
software for the insulin infusion pump, bare metal, and
with the use of TI-RTOS. It can be observed that there
are five additional low-complexity functions when using
TI-RTOS. This increase is due to the fact that these

functions are not necessary for the system to work on
bare metal versions. Additionally, there was a decrease of
two medium-complexity functions and an increase of
two high-complexity functions. These changes occurred
because these two functions required modifications to
work with TI-RTOS, resulting in their classification
being elevated to high complexity.
Table 2: Obtained values, expected values, and p-value in code

line analysis

Complexity Level Bare Metal TI-RTOS Total
Low Complexity 67 67 134
Medium Complexity 15 15 30
High Complexity 16 16 32
Total 98 98 196
Expected Bare Metal TI-RTOS Total
Low Complexity 67 67 134
Medium Complexity 15 15 30
High Complexity 16 16 32
Total 98 98 196
p-value 1

All the functions developed in both systems and their
complexity levels are shown in Figure (4). The functions
are numbered from 1-98, with the minimum and
maximum complexity values being 0 and 20,
respectively.

Fig. 4: Comparison of the individual complexity of functions

To validate the values obtained from the cyclomatic
complexity analysis of the system with TI-RTOS and a
bare metal version, a chi-square test was applied Table
(3) presents the functions categorized into each
complexity group, along with the total number of
functions for both systems and the expected values for
each group. The chi-square test was conducted using MS
Excel, with a significance level of 0.05. The resulting p-
value was 0.850028. Since the p-value was greater than
0.05, the chi-square test indicates that there were no
results outside the expected pattern (i.e., there is no
significant statistical difference when using TI-RTOS).

The chi-square test results for our table of functions
(classified as low, medium, and high complexity)
indicated that adding TI-RTOS to the software did not
introduce significant variance among the three classes. In
other words, this metric suggests that cyclomatic
complexity is not significantly increased. Given the

http://192.168.1.15/data/13069/fig1.png
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benefits that TI-RTOS can provide to a project—such as
deterministic task execution timing, semaphore usage,
mutual exclusion, network connectivity modules, drivers,
energy management, and file systems—this is a positive
indication, as it implies that these advantages can be
realized without increasing the overall complexity of the
project.
Table 3: Obtained values, expected values, and p-value in the

cyclomatic complexity analysis

Complexity Level Bare Metal TI-RTOS Total
Low 66 71 137
Medium 21 19 40
High 11 13 24
Total 98 103 201
Expected Bare Metal TI-RTOS Total
Low 66.79 70.2 137
Medium 19.5 20.49 40
High 11.7 12.29 24
Total 98 103 201
p-value 0.850028

Development Time

For the analysis of development time, six functions of
the control software were selected and redeveloped using
TI-RTOS. Each function was tested 10 times and the
time for each attempt was measured using a stopwatch
on a cell phone to individually evaluate the development
time.

This test aimed to show the evolution of development
time when using TI-RTOS. The results revealed a
decrease in development time, with a rapid reduction
observed until the time stabilized. To avoid bias in the
collected data, all these functions were developed by the
same software engineer, with a two-day interval between
each attempt. This interval was used to prevent the
development process from becoming too mechanical and
to minimize bias in comparing the time spent. After each
development attempt, the code was compiled and
executed on the Printed Circuit Board (PCB) to validate
the attempt and ensure it was error-free. Each function
showed a reduction in development time, which can be
observed in the learning curve of the functions. The
percentage of time saved is shown in Table (4), where
each row indicates the percentage reduction in time
compared to the first attempt.

It was observed that the time measured for each
attempt showed a significant reduction, particularly
between the first and second attempts. This pattern was
consistent across all functions of the control software.
However, after a few attempts, the reduction became
smaller with each new attempt.

To analyze these time curves, the Cox survival
analysis statistical process was used. The curve was
analyzed until the occurrence of an event of interest,
defined as the number of attempts required for the

development time of each function using TI-RTOS to
match the bare metal time.
Table 4: Time reduction in percentage with each new development

attempt

Task Semaphore Config Basal
Infusion

Bolus
Infusion

Standard
Bolus

50% 79.32% 50.45% 96.34% 90.32% 90.62%
46.04% 59.58% 33.33% 77.07% 77.06% 84.59%
40.70% 47.84% 24.62% 73.56% 67.62% 80.80%
35.58% 37.96% 19.52% 68.78% 63.80% 76%
33.02% 36.73% 21.32% 61.18% 62.84% 64.40%
32.55% 35.49% 20.42% 59.91% 62.48% 59.37%
31.39% 37.04% 19.82% 58.37% 61.53% 54.57%
30% 36.42% 24.02% 57.24% 60.69% 51.11%
29.53% 35.80% 18.91% 56.54% 60.09% 48.77%

The time curve for implementing the task function in
the insulin pump software is shown in Figure (5). This
curve showed the greatest reduction in time during the
first attempt and reached stability after the seventh
attempt.

The development time curve for the implementation
of the semaphore function is shown in Figure (6). This
curve exhibited a significant reduction in time during the
first two attempts, with a slight increase in the eighth
attempt, after which it reached stability.

Fig. 5: Time spent in seconds per number of retries of the task
function

Fig. 6: Time in seconds per number of development attempts
for the semaphore function

The system configuration curve was the only one that
did not indicate stability, including two attempts with
increased time. It was observed that the first attempt
presented the greatest drop-in time, which continued on a
smaller scale until the fifth attempt. After that, there was
a small increase in time, and on the ninth attempt, a new

http://192.168.1.15/data/13069/fig5.png
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rise in development time was observed, as shown in
Figure (7).

Fig. 7: Time in seconds per number of attempts of TI-RTOS
configuration

The basal infusion function curve was the only one in
the insulin infusion pump control software that did not
show a considerable time reduction in the second
attempt, as seen in Figure (8). The third attempt showed
the largest decrease in time, which continued at a smaller
scale until the sixth attempt when it began to stabilize.

Fig. 8: Time in seconds per number of attempts of the basal
infusion function

During the development of the bolus infusion
function, a significant time reduction was observed until
the fourth attempt. Figure (9) shows that stability was
achieved after the sixth attempt.

Fig. 9: Time in seconds per number of attempts of the bolus
infusion function

The implementation of the standard bolus function
did not reach stability and showed continuous time
reductions. However, this decrease became less
significant after the seventh attempt, as shown in Figure
(10). The second and sixth attempts showed the greatest
time reductions.

Fig. 10: Time in seconds per number of attempts of the
standard bolus function

Complexity Assessment

The evaluation of the control software was conducted
using 10 functions, which were extracted and analyzed
individually to highlight differences in complexity
(cyclomatic complexity, number of code lines, and time
spent in development).

Function Selection

To evaluate the development of the insulin infusion
pump control software, 10 functions were purposely
chosen based on the following criteria: 5 high-
complexity functions and 5 medium-complexity
functions, focusing on those with the highest complexity
present in both systems. The analyses included
cyclomatic complexity, number of code lines, and time
spent in the development of each function—both in the
version with TI-RTOS and the bare metal version.

Comparison

After selecting and redeveloping each of the
functions, Tables (5-7) were created to facilitate the
visualization and analysis of these functions.
Table 5: Functions developed and their complexities with TI-

RTOS and bare metal

Function Bare metal
Complexity

Complexity with
RTOS

Adjust qnt steps 8 8
configure hour 10 10
configure dose maxima
basal

20 20

configure dose maxima
bolus

16 16

calculator bolus 16 19
infusion bolus standard 4 7
infusion bolus extended 5 7
duration bolus 6 6
menu infusion basal 5 5
menu infusion bolus 5 5

Cyclomatic complexity: In the cyclomatic complexity
analysis, 7 functions remained unchanged, while 3
functions experienced an increase in complexity (an
increase of 3 points for the functions calculator bolus and
infusion bolus standard and an increase of 2 points for

http://192.168.1.15/data/13069/fig7.png
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http://192.168.1.15/data/13069/fig9.png
http://192.168.1.15/data/13069/fig9.png
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the function infusion bolus extended). However, despite
these increases, none of the functions moved from the
medium to the high complexity class. In other words,
even with the increase in complexity, all the selected
functions remained in the same complexity group, as
shown in Table (5).

Number of Code Lines: The analysis of the number
of lines for each function closely mirrors the findings
from the cyclomatic complexity analysis. Seven
functions remained unchanged in terms of line count,
while three functions saw an increase: The calculator
bolus function gained 11 lines, the infusion bolus
standard function increased by 7 lines and the infusion
bolus extended function added 8 lines. These changes
were necessary to adapt the code to work with TI-RTOS.
Similar to the cyclomatic complexity analysis, none of
the evaluated functions experienced a change in their
complexity class, as shown in Table (6).
Table 6: Functions developed and total lines of code

Function Bare Meal Number
of Lines

Number of Lines with
TI- RTOS

adjust qnt steps 65 65
configure hour 78 78
configure dose
maxima basal

141 141

configure dose
maxima bolus

129 129

calculator bolus 120 131
infusion bolus
standard

15 22

infusion bolus
extended

17 25

duration bolus 56 56
menu infusion basal 98 98
menu infusion bolus 90 90

Development Time: Each of the selected functions
was developed once and the development time was
recorded to compare the time spent using TI-RTOS
versus not using TI-RTOS. The results indicated that
development took longer with TI-RTOS in 7 functions:
Adjusting the number of steps, configuring time,
configuring the maximum basal dose, configuring the
maximum bolus dose, bolus calculator, standard bolus
infusion, extended bolus infusion, bolus duration, basal
infusion menu, and bolus infusion menu. Conversely,
shorter development times were observed when using TI-
RTOS in 3 functions: Setting the time, configuring the
maximum basal dose, and basal infusion menu. These
results suggest that development with TI-RTOS generally
takes slightly longer. The most significant difference was
observed in the bolus calculator function, where the
development time was approximately 1 minute and 4
seconds longer, representing about a 12% increase.
However, this additional time is not excessively high for
the infusion pump software, as shown in Table (7).

Table 7: Functions and total time in seconds for development

Function Bare Metal
development time

Development time
usingRTOS

adjust qnt steps 288 sec 294 sec
configure hour 243 sec 237 sec
configure dose
maxima basal

498 sec 495 sec

configure dose
maxima bolus

458 sec 462 sec

calculator bolus 532 sec 596 sec
infusion bolus
default

73 sec 111 sec

infusion bolus
extended

104 sec 146 sec

duration bolus 231 sec 245 sec
menu infusion basal 392 sec 391 sec
menu infusion bolus 359 sec 378 sec

Learning Curves

This section presents the selection criteria for the
functions analyzed, the development time for each
function, and the learning curves of five functions within
the low-cost insulin infusion pump control software. The
purpose of this analysis is to examine the learning curves
when using TI-RTOS, to understand their behavior, and
to determine whether the learning curve is steep or
gradual.

Function Selection

Functions were selected based on their need to utilize
TI-RTOS functions, allowing for a meaningful
comparison, as some functions in the source code did not
require modification for TI-RTOS implementation. The
chosen functions include: The task function, which is a
small piece of code that creates and initiates a task used
within the system; the semaphore function, which creates
and initiates a semaphore used for task management;
system configuration, which involves the TI-RTOS setup
process (although not directly related to coding, it is
essential for TI-RTOS operation); the infusion basal
function, responsible for basal insulin infusion by
running in the background, calculating intervals and
insulin doses and triggering the stepper motor for insulin
delivery; and the infusion bolus function, responsible for
bolus insulin infusion, which receives insulin units and
activates the infusion motor, adhering to the restriction of
1.5 units of insulin per minute.

Comparison

The learning curves for both systems were plotted
and presented individually for each function. Each
function was developed ten times with a consistent time
interval between attempts and the time spent (in seconds)
was recorded. The times for each attempt are shown in
Table (8), with functions listed in rows and attempts in
columns. Based on this data, a learning curve was
generated for each function.
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The curves illustrate the speed of learning
convergence. The closer the curve approaches a vertical
line (between two consecutive attempts), the faster the
learning process for that function using TI-RTOS.

After measuring the execution time of each chosen
function, the Wright model equation y = C1 · xB was
applied, where: y represents the time required to perform
the xth repetition of the observed task; C1 is the
execution time of the first iteration; and B represents the
learning rate, with values ranging from 0 to -1. The
closer B is to -1, the faster the learning process. The
calculated B values for each function are listed in Table
(9).
Table 8: Development time in seconds of the control software

functions

Code T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Task 430s 215s 198s 175s 153s 142s 140s 135s 129s 127s
Semaphore 324s 257s 193s 155s 123s 119s 115s 120s 118s 116s
Configuration 333s 168s 111s 82s 65s 71s 68s 66s 80s 63s
Basal 711s 685s 548s 523s 489s 435s 426s 415s 407s 402s
Bolus 837s 756s 645s 566s 534s 526s 523s 515s 508s 503s

Table 9: Values of B for each curve

Function Value of B
Task -0,755343419
Semaphore -0,840911127
Configuration -0.71831459
Basal Infusion -0.924426041
Bolus Infusion -0.865067849

The curve for the Task function, shown in Figure
(11), exhibits an exponential decrease. The most
significant reduction occurs between the first and second
attempts, while the later attempts (6 through 10) show
minimal time improvement, with a decrease of just two
seconds from the ninth to the tenth attempt.

The curve for the Semaphore function, shown in
Figure (12), demonstrates a sharp decline during the
initial attempts, particularly between the first and second
attempts. After the sixth attempt, the curve begins to
stabilize, with increasingly smaller differences in time.

The curve for the Configuration function, shown in
Figure (13), exhibits a significant reduction in time
during the initial attempts, reaching stability after the
fifth attempt. There was a slight increase in time during
some attempts, particularly from the fifth to the sixth and
from the eighth to the ninth.

The curve for the Basal Infusion function, shown in
Figure (14), demonstrates a slightly slower learning
process compared to the previous curves, with a steady
reduction in time at each attempt, albeit small. The most
significant time decrease occurred during the initial
attempts, with stability beginning to emerge after the
seventh repetition.

The curve of the Bolus Infusion function is illustrated
in Figure (15). This curve exhibited a slight decrease
across attempts, with a consistent downward trend. The
most significant reduction occurred during the initial
repetitions and the curve did not stabilize over the course
of the ten attempts.

Fig. 11: Task learning curve

Fig. 12: Semaphore learning curve

Fig. 13: Configuration learning curve

Fig. 14: Basal infusion learning curve
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Fig. 15: Bolus infusion learning curve

Discussions
The results of this experimental study were obtained

directly from the code complexity analysis through the
number of code lines, cyclomatic complexity, .out file
size, development time, and learning curve. The results
showed us that the complexity variance between the low-
cost insulin infusion pump management software was
not significant in all complexity tests.

The development of the system using TI-RTOS ran
into problems mainly at the beginning of development,
given the lack of previous experience with any RTOS
and even with the development of embedded systems.
Most of the time spent implementing the code with TI-
RTOS was spent studying its operation and consulting its
documentation. Writing the code was as simple and easy
as the bare metal development without using a TI-RTOS,
which contradicts the learning curve because it was
created taking into account the time taken to develop,
and write each code of a given function of the system
and did not take into consideration all the time dedicated
to understanding TI-RTOS its particularities and system
configuration.

TI-RTOS was essential for the development of the
insulin infusion pump, as its development brought
convenience to the project. It allowed for a higher level
of abstraction for the most basic functionalities of the
embedded system, as these system functions were
already incorporated into the OS, along with access to
some hardware resources that were also abstracted by the
operating system.

Many of the modifications needed to run TI-RTOS
did not occur by coding. During the execution of this
experimental study, a lot of time was dedicated to system
configuration using IDE CCS. As this configuration was
not made for any specific system function or IDE
configuration, this learning time is not accounted for in
the system complexity analysis.

TI-RTOS brought several benefits to our system.
However, not all of its features were utilized. According
to the analysis performed, evidence was found that
RTOS did not significantly impact all complexity tests,
development time, and the learning curve. The only

notable impact was observed in the analysis of the output
file size sent to the microcontroller, which showed an
increase of 12.69%. This rise could be substantial for
certain microcontrollers.

The lack of experience with RTOS was the greatest
challenge faced in this work. However, this inexperience
contributed to achieving the learning curve, which might
not have been possible with experienced programmers. It
is essential to consider the time required for training and
study before starting development with TI-RTOS. While
the benefits are considerable, from the perspective of this
research, the use of TI-RTOS becomes particularly
advantageous after some time, as the development team
gains experience, making the development process more
fluid and straightforward.

Conclusions
The results of the experimental study analyzing the

impact of using TI-RTOS in the management software of
a low-cost insulin infusion pump were based on the
model published by Amaral (2003). To conduct this
experimental study, several hypotheses were formulated,
leading to the following results:

The null hypothesis H0.1 was accepted: The use of
TI-RTOS in development does not present a high
learning curve, as the learning curve of TI-RTOS
was indeed found to be low. Thus, the alternative
hypothesis H1.1 The use of TI-RTOS in
development presents a high learning curve was
rejected in favor of H0.1. This result is discussed in
Section 3.5
The null hypothesis H0.2 was accepted: The use of
TI-RTOS does not increase development
productivity, as it was demonstrated that the time
required for system implementation tends to be
comparable to bare metal development after a few
trials. The alternative hypothesis H1.2: The use of
TI-RTOS increases development productivity was
therefore rejected in favor of H0.2. This result is
discussed in Section 3.3
The null hypothesis H0.3 was accepted: The use of
TI-RTOS in development does not reduce the
complexity of the code produced, as demonstrated
in Section 3.2. No significant variance was
observed between systems using TI-RTOS and
those without. Thus, the alternative hypothesis
H1.3: The use of TI- RTOS in development reduces
the complexity of the code produced was rejected in
favor of H0.3. This result is discussed in Section 3.4

Work Limitations

The study utilized only one OS. The results obtained
in this study might differ if other RTOS were involved.

The study considered only Texas Instruments
microcontrollers (MSP430). Using different
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microcontrollers could yield results different from those
observed here.

Future Work

The following future works are identified based on
this article:

Analyze whether the use of TI-RTOS affects the
flexibility of the code, either increasing or
decreasing it
Investigate whether the results of this study hold
true for other microcontrollers available on the
market
Examine whether the findings of this article remain
consistent when using different RTOS
Explore the role of rigorous testing and bug
detection in safety-critical software, particularly in
systems like insulin infusion pumps, as a potential
direction for further research.
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