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Abstract: Cognitive radio technology has advanced to address the challenge
of limited spectrum availability by employing spectrum sensing techniques.
This process is framed as a detection problem involving two core
hypotheses: Hypo-0 and Hypo-1. Hypo-0 represents the scenario where only
noise is present, and its modeling depends on parameters such as the number
of observed samples, the timing of signal acquisition, and the presence of
Gaussian white noise with a defined variance. In contrast, Hypo-1 accounts
for the presence of a signal, incorporating a channel propagation factor that
reflects the interference power received. Several techniques have been
developed to address this challenge, with energy detection emerging as a
widely adopted approach due to its ability to function without requiring
prior knowledge of the signal. However, its effectiveness diminishes under
low signal-to-noise ratio (SNR) conditions. This paper introduces an
evaluation framework that formulates the spectrum sensing problem using
two primary hypotheses, H0 and H1. It benchmarks conventional energy
detection techniques and those specifically designed for low SNR
environments through comprehensive statistical analysis. This work
introduces a novel framework for benchmarking spectrum sensing methods,
filling a gap not addressed in current literature. It evaluates the performance
of ten cooperative spectrum sensing techniques, Maximum Eigenvalue
Detection (MED), Generalized Likelihood Ratio (GLR), Maximum-
Minimum Eigenvalue Detection (MMED), Energy Detection (ED),
Arithmetic to Geometric Mean Ratio (AGM), Hadamard Ratio (HR),
Volume-Based Detection (VD), Gershgorin Radii Centers Ratio (GRCR),
Gini Index Detection (GID), and the newly proposed Rician Rice Factor-
Based Detection (RFD). The analysis focuses on the probability of detection
across varying signal-to-noise ratio (SNR) levels, from low to high, as well
as different numbers of secondary or cognitive users. Among all methods
evaluated, the proposed RFD technique consistently achieves higher
detection accuracy, maintaining strong performance under both challenging
noise conditions and with an increasing number of cognitive users.

Keywords: Security Spectrum Sensing, Cognitive Radio, Cooperative
Sensing, Energy Detection Method, Statistical Analysis

Introduction
A rapid development has taken place in the evolution

of wireless communication technology over the last
decade. The evolving generation of wireless
communication standards is 2G, 3G, 4G, 4 G-LTE, 4 G-
LTE-Adv, and now 5G (Mshvidobadze, 2012; Albreem,
2015). There are various applications and services being
offered and also conceptualized to be offered in the
future over these evolving wireless communication and
network platforms (Wang et al. 2020). The future

generation application and services utilize both licensed
and unlicensed radio frequency bands (Khan et al.,
2020). The traditional mechanism adopts a static way of
spectrum allocation to the devices irrespective of the
actual requirements, which is not a suitable method in
the case when the spectrum is available in a limited
aspect, as it offers either under-provisioning or over-
provisioning of the spectrum (Hu et al. 2018). The rapid
growth of the Internet of Things, or a communication
system of anything to anything, demands a dynamic
allocation of the spectrum. In other words, it can be said
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that the rapid growth in the demand for wireless
communication-based applications leads to evolve
various technologies and open up new market
dimensions. One of the applications, where the IEEE
802.22 detects the unused bands of the spectrums in
digital TV channel and make it to be utilized into the
rural broadband connectivity. There are restrictions on
transmission through the air, and the allocation is
generally handled by the regulatory bodies, and the
spectrum allocation is a quite difficult and challenging
task. The allocation is a quasi-static process and the
generally whenever a certain frequency band is assigned
to a group of the users, they hesitate to release it,
whereas the traditional technology becomes obsolete
with the new kind of the use-case requirements (Saha,
2019). Therefore, an efficient method namely cognitive
radio technology has evolved in order to provide a
method to use the available spectrum in optimal way
(Ahmad et al., 2020).

In the radio frequency spectrum, there exist many
unused or unoccupied frequency bands, popularly known
as spectrum holes or white spaces. The cognitive radio
technology allows to use of these white spaces, which
increases the efficiency of the available radio frequency
spectrum. The cognitive radio technology-based network
is known as Cognitive Radio Network (CRN), which
usually have both primary and secondary users as PU
and SU respectively. The PUs are licensed user and rest
all users are also known as Cognitive Radio Users
(CRU). In CRN the primary task of each CRU is to
detect or identify the PUs and also detect the available
spectrum, this process is known as Spectrum Sensing
(SS). Therefore, primarily the CRU shall identify the
white spaces and utilize it to maximize their throughput
and Quality of Service (QoS) without switching or
inducing any kind of interference to PUs. Thus, the
problem of spectrum sensing is termed as a problem of
detection which is critical and important for performance
balance for both PUs and CRUs.

There is always possibility of multipath fading,
receiver uncertainty problem and shadowing in a real-
time scenario which causes challenges on method for the
detection of white spaces and presence of primary user.
These challenges can be minimized if the CRUs work
co-operatively by sharing the information of their
sensing to the other CRUs and this approach is called as
cooperative sensing, which is an efficient approach to
mitigate these challenges (Mishra et al., 2006).
Therefore, the problem of optimization of detection
performance is an open research problem. The goal of
optimization is to maximize the probability detection
within the maximum threshold of probability of false
alarm. A typical architecture of the scenario of the
collaborative use of the spectrum by both the PUs and
CRUs is illustrated in the Figure 1.

The evolution framework is a structured approach for
assessing the development of intelligent spectrum

sensing mechanisms in cognitive radio systems. It
focuses on utilizing AI and machine learning to enhance
the detection and utilization of available frequency
bands. Cognitive radios dynamically adjust their
operating parameters based on the environment, and the
framework evaluates their effectiveness through methods
and metrics that measure detection accuracy, speed, and
adaptability. It also considers how these radios adapt to
changing environments through learning, using
simulations to test various algorithms and optimize
performance through algorithm refinement and resource
allocation.

Fig. 1: Architecture of the scenario of the collaborative
spectrum sharing between Pus and CRUs

There are various methods for the spectrum sensing
including Energy detection, cyclostationary features
detection, matched filter detection, covariance based-
detection and now a day's machine learning-based
sensing schemes are gaining popularity. The trade-off
between the probability of the detection and the
probability of false alarm is the core objective of the
evolution of the solution strategies The higher
probability detection ensures lower interferences to the
PUs, whereas if the sensing takes less time, then it
provides better opportunity to the SUs or the CRUs to
avail the white space spectrums to maximize their
network performance Many of the traditional methods
lacks these possibilities, therefore this paper aims to
optimize the traditional Energy Detection Method
(EDM) which works well in the presence of high SNR
and then further evaluate the methods which works well
in lower SNR.

Secondary Users (SUs) are those who do not have
licensed access to specific spectrum bands but can use
them temporarily when the Primary User (PU) is not
active. They rely on spectrum sensing to detect and use
these gaps without causing interference to the PUs.
Cognitive Radio Users (CRUs) are a more advanced type
of SU, equipped with cognitive radio technology that
allows them to adapt their operating parameters based on
real-time spectrum conditions. CRUs can learn from past

http://192.168.1.15/data/13267/fig1.png
http://192.168.1.15/data/13267/fig1.png
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experiences, improve their spectrum usage strategies,
and make intelligent decisions on spectrum access.
While all CRUs are SUs, not all SUs have the advanced
capabilities of CRUs.

Related Works

The broader classification of the spectrum sensing
technique includes analysis of either one frequency or
many frequencies channel at a given time instance,
which are known as Narrowband and wide-band sensing
respectively.

Narrowband Sensing Techniques

In the narrowband sensing algorithms, the methods
like, energy detection (Ranjan et al., 2016; Arjoune &
Kaabouch, 2019), cyclostationary features detection
(Jang, 2020; Reyes et al., 2016), matched filter detection
(Salahdine et al., 2016; Lv & Gao, 2015), covariance
based-detection (Chen et al., 2019; Zeng & Liang, 2009),
and now a day's machine learning-based sensing (Tian et
al., 2019; Lu et al., 2016) is gaining popularity. The
software defined capability of the cognitive radio allows
to operate on the various parameters including, power,
spectrum band and type of the modulation by the
software itself. It is observed by Ranjan et al. (2016) that
the probability of the detection generally increases with
the probability of false alarm, when an Energy Detection
Algorithm (EDA) is coded in sequential programming,
whereas the method adopted by (Ranjan et al.m 2016)
uses a fixed threshold of noise. In contrast, in the work
of (Srisomboon et al., 2015) , a double constraint is
considered which is an adaptive energy detection method
where the threshold are decided on the correlation of the
probability detection and the false alarm. The higher
detection rate of (Srisomboon et al., 2015) comparatively
ensure that the interference to the PU is less as well as
the minimal time of sensing ensure higher opportunity to
the SU or CRUs to avail the spectrum allocated for the
PUs. Though the EDA does not depend of the heuristic
details of the PUs but it fails to classify between the
noise with the signal and due to this it provides lower
detection and higher false alarm in lower SNR. In this
direction, in the work of (Arjoune et al., 2018b), using a
blind technique, the threshold is selected dynamically
depending upon the power of the noise and found that in
this way the detection probability and the false alarm is
optimizes as compared to the static threshold-based
method. The future generation applications require
higher data transfer speed and spectrum utilization, with
the minimal interferences with overcoming the adverse
effect of channel fading. The model proposed by the
(Eslami & Karamzadeh, 2016), uses double thresholding
for the spectrum sensing to improvise the reliability of
the conventional energy detection methods and analyses
the effect in low SRN in a specific fading channel. One
more work carried out by Muralidharan et al. (2015)
adopts the dynamic threshold where the system trains
themselves for the heuristic decision and exhibits better

performance as compared to the conventional-EDA. In
the extensive study by Arjoune & Kaabouch (2019),
highlights that the double-thresholding or adaptive
thresholding does not provide acceptable probability of
detection in the lower SNR conditions as well as it is
highly sensitive in the noise variations. The false alarm is
also higher in comparison of single thresholding.

On the other hand, if the signal which is received is
known as cyclo-stationary if the value of its mean and
the auto-correlation are periodic. These cyclo-stationary
signal features are exploited in the cyclo-stationary based
detection method in order to classify the signal from the
noises by means of the spectrum correlation analysis
(Jang, 2020). In the work of (Yawada & Wei, 2016), a
non-cooperative spectrum sensing based on the cyclo-
stationary signals are proposed whose performance is
analyzed using Receiver Operating Curve (ROC) which
provides better result in comparatively lower SNR as
well as comparatively less sensitive to the unclear noises.
For the wideband signals in cognitive radio it is essential
to achieve very reliable as well as efficient spectrum
sensing but the traditional Nyquist methods which are
used to adjust the lower sampling suffers from a
limitations of lower SNR, therefore, in order to achieve
the robustness along with the efficiency, in the work of
(Cohen & Eldar, 2017), a cyclo-stationary detection is
proposed where the periodic spectrums are recovered
from a low rate samples. In the work of (Reyes et al.,
2016), an experimental approach of an auto-correlation
based spectrum sensing is proposed where the evaluation
of the both the performance metrics probability of
detection and false alarm is evaluated at different
Gaussian noises using USRP device and GNU radio
software and it gives better results as compared to the
energy detection.

Another technique, in the line of evolution is the
Matched Filter Sensing Techniques (MFST), where the
comparison takes place between the pre-allocated and the
signal received. The samples signals are obtained from
the same transmitter are used to compute the trial or
assessment statistics for the comparison with the
threshold and finally if the signal is higher than this
threshold it is considered to be present. In the paper by
Salahdine et al. (2015), in oppose to the static threshold,
a dynamic threshold is considered with the matched filter
technique and compared its performance with previously
discussed techniques. The model suggested by Lv & Gao
(2015) considers a PU with single and SU with multi
antennas and assumed that PU works at varied power
levels. They assume that a cooperation exists among the
PU and SU. In this method not only, the PUs is detected
rather it also identify the transmit power of the PUs. The
model is mapped with the problem space of MFST and
introduces new performance metrics.

Since, the signals of the PUs are correlated, which
can be classified differently from the noise, therefore, the
Covariance Detection Algorithm (CDA) manipulate the



Archana Krishnamuthy and Sudhindra Kumbhashi Rajgopal / Journal of Computer Science 2025, 21 (8): 1760.1771
DOI: 10.3844/jcssp.2025.1760.1771

1763

covariance matrix of the signal and the Singular Value
Decomposition (SVD) to detect the PUs. In the work of
(Chen et al., 2019), the spectrum sensing problem is
being studied that is correlated with multi antennas in the
context of the fading channel for the cognitive radio
network. In the model they assumed that all the antennas
having similar or rather same variance of noise and
designed a covariance-based detection by taking a
theoretical threshold for the computation of the false
alarm. The probability of detection and the RoC is
considered as a benchmarking parameter and if analyzed
provides better results scenario as compared to the works
of Kumar et al. (2013) and Zeng & Liang (2009).

In the recent days, the machine learning based
approaches are gaining momentum to solve various
complex task. The schemes or algorithms proposed in the
cognitive radio network aims to formulate a
classification problem for detecting the white spaces in
the spectrum using feature vectors like probability vector
and the energy statistic (Tian et al., 2019). In the study
by Balaji et al. (2015), a co-operative sensing of
spectrum is devised. In Khalfi et al. (2017), a supervised
learning model is used to estimate the occupation of the
spectrum and claims to achieve higher accuracy in lower
overheads. Another approach of using machine learning
for spectrum sensing CRN is found by Lu et al. (2016),
where a probability vector is introduces as a feature set
for the training the classifier in place the energy vector as
a feature which makes it to perform faster in less training
period.

Wide-Band Sensing

In this type of spectrum sensing method, the division
of the spectrum takes place as multiple sub-bands and
these bands are sensed. The sensing process takes place
in both concurrently as well as sequentially by using the
above discussed narrow-band techniques. Both the
sequential and concurrent sensing method suffers the
challenges of the higher energy consumption and
computational complexities respectively (Lu et al.,
2017). An extensive survey is conducted by Sun et al.
(2013) on Wide-Band Spectrum Sensing (WBSS) , and
the use of the sub-Nyquist is found more frequent for the
sampling process. Under the Nyquist WBSS, various
methods using wavelet detection is found relevant. In
reality the while spectrum sensing the prior knowledge
are not available, Zhao et al. (2014) introduced a novel
WBSS using wavelet transformation with an assumption
that the PUs signal carries a sparse information whereas
noise contains higher degrees of information, and the
domain transformation distinguishes the signals more
effectively. The computational complexity reduces from
degree 2 to degree one in comparison to the ED and CS
methods. In the line of evolution, Kumar et al. (2016)
proposed an improved wavelet transformation where
non-linear scaling of the coefficients ensure better
accuracy. The study by Capriglione et al. (2016)
highlights the fact the wavelet-based methods are

comparatively better but works well only in the high
SNR scenarios or context. Therefore, a further evolution
or optimization is required to work with the dynamic and
challenging SRN conditions. The multiband joint
detection is an approach towards that.

Zhi Quan et al. (2009) introduced an optimal WBSS
as multiband joint detection where detection of the signal
from the PUs takes place on multiple frequency bands in
a given instant of time. The performance metric of the
method considerably improvises and establishes a
milestone for the distributed WBSS algorithm in CRN.
Alijani & Osman (2020) discussed that methods like
cooperative sensing and multi-band joint detection are
proposed to improve the performance as compared to the
energy detection methods.

Further, Filter based, Compressive Sensing-based
WBSS are proposed in a literature. The purpose of the
multicarrier data transmission takes place by means of
the use of the OFDM as it is found to be suitable for the
SS in CR but due to its cyclic nature of prefix the
efficiency of the spectrum gets reduce, where
multicarrier filter banks replaces the OFDM.
Muralidharan et al. (2015) using cosine modulated filter
a two-step SS in CRN is proposed using FIR filter and
FRM filter. Another work by Lin et al. (2011), introduces
a new filter namely Multi-Stage Coefficient Filter
(MSCF) for WBSS in CR to minimize the overheads. An
extensive survey on the application which uses
compressed sensing in CRC is done by Sharma et al.
(2016). Arjoune et al. (2017) reveals that the occupancy
of the spectrum is not optimal in the domains of the time,
frequency and space where compressed sensing theory is
useful. There are important processes like sparse
recovery or non-linear decoding, measurement collection
and sparse representation of the signal in compressed
sensing. Arjoune et al. (2018a) analyses various
measurement metrices in compressed sensing.

Background

Management Modeling Spectrum Sensing Problem

In a cooperative spectrum sensing scenario,
Cognitive Users (CUs) or Secondary Users (SUs) work
together to gather signal samples within a defined
sensing period. When the total number of such users is
denoted as 'M', where each user contributes 'K' signal
samples, the objective is to determine the presence or
absence of a Primary User (PU). This setup can either
represent a single CU or SU equipped with 'M' receiving
antennas, or 'M' individual users each equipped with one
antenna. The resulting collection yields a total of M × K
signal samples, which are then forwarded to a centralized
unit for signal fusion. However, this assumption is only
feasible if one node is capable of capturing all M × K
samples independently, which is generally unrealistic.
On the other hand, having M distributed users each
transmitting K samples to a fusion center introduces
several implementation complexities. Due to these
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constraints, the cognitive detection process is better
modeled using two fundamental hypotheses: Hypo-0 and
Hypo-1. The Hypo-0 scenario incorporates parameters
such as the time instance (t) during which the sampling
occurs, the number of contributing samples (M), and the
presence of Gaussian white noise with a specific
variance (σ²), forming the foundation for detection
analysis.

Where, A(t) is an M x 1 column vector that represents
M signal samples as a complex time series signal at the
time instant t, in other side, the complex Gaussian white
space/noise formed at the random variance of  for B, is
represented by B(t) .
The system adopts a Hypo-0 such that, A(t) = B(t). In the
formulation of Hypo-1, it takes a parameter propagation
channel that evaluates the power arrival as an
interference. The propagational channel at time instance t
is , evaluates the interference between the
Primary User (PU) and M collaborative CUs | SUs. If
D(t) is a denotation of circular complex Gaussian (CCG)
to sample set as t = 1,2,…M, which detects the source of
the signal which having mean value of 0 and the variance
= 1, it means that the condition below is satisfied:

Therefore, the data staking of the observe sensing is:

In a case, where if the signal samples , then,

Where, Q is the signal sample Co-variance matrix
which converge as , s.t A M sample by
M, CUS | SUS, Therefore, Eigen vector of (Q) 
Primary signal. Finally, the system adopts a Hypo-1 such
that: A(t) = pc(t) x D(t) + B(t).

Spectrum Sharing Using Energy Detection Technique

There are various variants of determining the PUs
energy detection for spectrum sensing. Most the model
assume that a specific bandwidth is allocated to the PUs.
Whereas, the SUs or CRUs are one who uses these
bandwidths opportunistically. The algorithms aim to
minimize the false positive so that it balances the
interests of PUs, CRUs and the service providers. If E is
the energy detected and Ep is the energy of the PUs. The
signal generates takes N as noise, the problem of energy
detection is formulated as a signal generation: E = Ep +
N, if the Primary user is present, else, E = N. In the
evaluation model, the signal E is generated and a random

input test for each method including Classical Energy
Detection (CED), General Energy Detection (GED) and
Modified Energy Detection (MED) and the performance
evaluation takes place between the detection probability
versus false alarm. The algorithm for the Classical
Energy Detection (CED) is given as below:

Input: 

Output: 

Start
Initialize: 

for each power factor  do

, where  is the
initial value of , ,  = increment

end for

for each  do

for each  do

 // generate noise

 // primary user signal

 // PU present with added noise

Compute: 

if  then

Update 

end if
end for

end for

End

The algorithm initializes the number of the samples
(Ns), signal to noise ratio (SNR) and, the observation in
a unit probability of a false alarm (fa) value(α). The
values of the probability of the detection: Pa(d) and the
probability of the false alarm: Pb(fa) is computed for
each of the power factor P ∈ {1,2,3,4,5} with 1% of
continuous incremental of the Pb(fa) and unit
incremental till the α.

Further, the (MED) is improvised as improved energy
detection (IED) and finally, the dynamic evolution takes
place as variable or changing threshold-based energy
detection (VTED). In the CED, a predefined threshold
(Th) is considered to compare the signal (E), if E>Th
then it defines the presence of the PU else it is assumed

A(t) = ​ ​ ​

A
​

(t)1

A
​

(t)2

⋮
A

​

(t)M

σ2

{B(t) ∣ B(t) ∀, t = 1, 2, …M }{ }

p
​(t) ∈c P

​

c
M×1

E D t =[ 2 ( )] σ
​

≠D  
2 0

Z = ​ ​[ A
​ 1 A

​ 2 …A
​

K1 ( ) 1 ( ) 1 ( )
A

​ 1 A
​ 2 …A

​

K2 ( ) 2 ( ) 2 ( )
A

​ 1 A
​ 2 …A

​

KM ( ) M ( ) M ( )
]

M×K

K → ∞

Q = ​

ZZ
K
1 H

Q → E A.A[ H] ←
→

Ns, SNR, α

(d), Pb(fa)

Ns, SNR, α

P ∈ 1, 2, 3, 4, 5

Pb(fa) = [(fa)
​

, (n −∑ i 1)Δd] (fa)
​

i

fa n = 100 Δd

Pb(fa)
​

n

α

N = f
​

(Ns)1

Ep = SNR × f
​

(Ns)rand

E = Ep + N

μ
​

, μ
​

, σ
​

, σ
​

0 1 0 1

Th(P ) = μ
​

(P ) ×0 Q
​

(Pb(fa)n) +f μ
​

(P )1

E = ∣E∣
​

P

[E] = (1/N
​

) ×s E∑

[E] ≥ Th(P )

E

Pb(d) = /αE



Archana Krishnamuthy and Sudhindra Kumbhashi Rajgopal / Journal of Computer Science 2025, 21 (8): 1760.1771
DOI: 10.3844/jcssp.2025.1760.1771

1765

that the PU is absent, whereas the GED works on the
same principal of the CED except that unlike considering
the |E|2 , i.e, square of the value of the amplitude of the
E, it raises a power P, as |E|P , where P ∈ {1,2,3,4,5}.
Figure 2 shows the performance graph of the probability
of detection Pb(d) versus the probability of the false
alarm Pb(fa).

Fig. 2: Probability of Detection Vs Probability of the false
alarm

In order to minimize the false negative (fn) a
modified energy detection (MED) is designed, as
whenever there exist some short of the impulsive
dynamic changes due to various conditions of the
environment, in those cases the computed E drops below
the Th, therefore this technique adjust the value or the
amplitude of the E as it maintains the heuristic recodes of
the mean values of the previously detected energy. The
process works as if E>Th, then the PU is considered to
be present even if Emean > Th it considers PU is present
otherwise PU is considered to be absent. Further, the to
minimize the false alarm (fa) of the MED, the improved
energy detection (IED) is proposed, which considers the
mean value of the previously measured value of E as
well checks the last but one value to take the decision for
existence of PUs.

In all the methods, of CED, GED, MED, IED
methods considers a fixed or a constant value of the Th,
whereas in contrast, the Variable Threshold Energy
Detection (VTED), considers a varying threshold (Th)
based on the noise variance factor of  which changes in
correlation with the previous observation of E. Though
the method of the energy detection is popular one as it
does not require the priori heuristic about the signals of
the PU but it has its own limitations such as higher time
complexity to compute the Pb(d), performance is
dependent on the noise power uncertainty. It cannot
differentiate the primary signals of the CRUs as well it is
not suitable to identify the spread spectrum signals.
However, this method remains popular in cooperative
signal. Further, this performance issue gets mitigated by
the additional gains by optimal cooperation.

Materials
This study uses a MATLAB-based simulation

environment to evaluate ten cooperative spectrum
sensing techniques under varying Signal-to-Noise Ratios
(SNR) from -20 dB to 10 dB. The cognitive radio
network model includes multiple secondary users
observing a shared spectrum, with each user collecting
between 128 and 1024 samples per sensing interval.
Signals are modeled under two hypotheses: noise-only
(H0) and signal-plus-noise (H1), with AWGN and
Rayleigh or Rician fading channels. Detection
performance is assessed using probability of detection
and false alarm across 10,000 Monte Carlo simulations.
The newly proposed Rician Rice Factor-Based Detection
(RFD) is compared against conventional methods using
an OR-rule for cooperative sensing. All algorithm
implementations were developed and tested using
MATLAB R2023a.

Methods
The improvement into the sensing capacity is

achieved by means of cooperative approach among the
SUs or CRUs (Akyildiz et al., 2011). Whereas, the
Cooperative Spectrum Sensing (CSS) poses overhead of
the bandwidth due to higher number of the node's
participation in the process of the transmission of the
data. In the method of CSS, all the sensing information
collected by the SUs or CRUs is reported to the special
computer unit namely, Fusion Centre (FC), where the
final decision is taken on the basis of the statistical
analysis. This implementation is a performance
evaluation towards model validation of various Data
Fusion Cooperative Spectrum Sensing Techniques (DF-
CSST) in Low SNR condition for cognitive radio
applications under the conditions of : Uniform noise and
Non-uniform noise. There are two different modes for
DF-CSST namely centralized and decentralized, in the
centralized- DF-CSST a Fusion Centre (FC) exist to
aggregate or fuse the sensing information from Sus or
CRUs in order to detect the white space for SUs/CRUs,
whereas in the De-centralized mode of the DF-CSST
such FC does not exist, In the decentralized mode of the
DF-CSST, each SUs or CRUs exchanges their sensed
information to their respective neighbour SUs/CRUs and
anyone of the SUs/CRUs takes the final decision.

The system model is built of the various parameters
including the number of Primary User (PU) transmitters,
the number of Secondary Users (SU) / (CRuS) receivers,
the average signal-to-noise ratio (SNR) across all SUs,
the number of samples collected by each SU, and the
type of PU signal (Gaussian or QPSK), along with the
length of the QPSK transmitted symbols, the average
noise variance across all SUs. Other parameters like the
fractions of noise power and received signal variations
about their means, the type of PU-SU channel according
to the configurable sensing channel Rice factor K (mean
and std deviation), the reference probability of false

ô

http://192.168.1.15/data/13267/fig2.png
http://192.168.1.15/data/13267/fig2.png
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

alarm (Pfa) at which the probability of detection (Pd) is
computed by varying several of the system parameters
(K, m, s, n, SNR, rhoN = rhoP). Based on the these
parameters, the test statistics of several spectrum sensing
techniques are generated for all Monte Carlo runs, and
the performance of the techniques are plotted in terms of
Pd versus the respective parameters of the variations.

Signal Generation

The evaluation of the models is performed on the
basis of the varying parameters of secondary users where
the number of SU, m ∈ {2,4,6,8,10,12} and the SNR ∈
Range of {-20:2.5:0}. For each value of SU, m ∈
{2,4,6,8,10,12} and SNR ∈ Range of {-20:2.5:0}, the
fraction of the noise power variations with respect to the
mean (FracN) is assumed to be equal to the fraction of
the receiver power (PRxavg) power variation with
respect to the mean is computed using Eq. 1:

Where, Sigma2avg is the average noise power,
whereas the value of the source power or the power of
the transmitter (PTx) is given by Eq. 2:

Where, s is the number of primary user transmitter.
Theoretically the function CDF () of a random variable
for each number of events for computing the empirical
CDFs, is a function f(X) s.t FX(x) =Probability of (X≤x)

 x ∈ R. On the basis of the generation of the random
number from the normal distribution function the PUs
signal (PxN) is computed where in the condition where
PUSignal =0, then the computation of the signal(S)
follows the initial computation of S using Eq. 3:

Where,  is a mean parameter,  is a standard
deviation parameter,  is the number of primary users
and finally n is the number of samples per secondary
users. The  and  are the real and imaginary part
of the random generator from a normal distribution of {

 }, where,  , then the vector S is further
normalized and approximated as per Eq. 4:

Where,  is the transpose operation of a vector and D
is the diagonal matrix. Figure 3 shows the generated
signal in both the frequency and time domains.

Further, for the computation of the Noise variance
across ( ) all the iterations of the sensing, the initial
value is computed with Eq. 5 and finally approximated
using Eq. 6.

Where NR is several random values, equal to the
number of the secondary receiver (m). The received
power (PRx) vector in all the sensing iterations is PRx
f(m, FracP, PRxavg). The channel matrix (Mxp),
Gaussian noise matrix, the signal and the noise power
measured are PRx (Measured) & Pnoise (Measured), the
received signal vector(Xh0 / Xh1)) for both hypotheses:
Hypo-0 and Hypo-1, are the construct of the evaluation
model. Another variable is the covariance of the received
signal, and the eigenvalues are RH0 and λ H0
respectively.

Fig. 3: Generated signal represented in both the frequency and
time domains

Statistical Test Parameterization

The evaluated methods include Hadamard Ratio (HR)
(Sedighi et al., 2015), Volume-Based Detection (VD)
(Huang et al., 2015), Gershgorin Radii Centers Ratio
(GRCR) (Guimarães, 2018), Gini Index Detection (GID)
(Guimarães, 2019), Generalized Likelihood Ratio (GLR)
(Lim et al., 2008), Maximum-Minimum Eigenvalue
Detection (MMED) (Zi-li et al., 2019), and Energy
Detection (ED) (Liang, 2020). The Arithmetic to
Geometric Mean Ratio (AGM) is referenced by both
Shakir et al. (2013) and Torad et al. (2015), highlighting
its relevance across multiple studies.

Maximum Eigen Value Detection (MED)

This approach relies on evaluating the eigenvalues of
the covariance matrix derived from the primary user's
signal and is grounded in the principles of Random
Matrix Theory (RMT). It emphasizes identifying the
largest eigenvalue for detection purposes. The analysis of
the two hypotheses, H0 and H1, is carried out using Eqs.
7 and 8.

Hypo-0 (MED) = 

Hypo-1 (MED) = 

In this method, the Pr(D) reduces with the increment
of correlation level, therefore, thresholding is used to
compensate for the deviation in the detection accuracy

PRxavg = Sigma2avg × 10
​

10
SNR

PTx = ​

s

PRxavg

∀

S = Rf μ,σ, s,n +( ) If μ,σ, s,n( )

μ σ

s

Rf () If ()

μ,σ, s,n = 1/ ​2

S =↱ S × D
​( PTx)

↱

σ2
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2
​
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(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(16)

(17)

(18)

(19)

and becomes a suitable sensing mechanism in the
correlated context or scenarios of the noise.

Generalized Likelihood Ratio (GLR)

This method also utilizes the covariance matrix's
eigenvector from the sample signal, it exploits the fact
that the signals of PUs in CR occupy a subspace of the
dimensionality much smaller than the observed one,
which indicates the spectrum is a non-white space. It
takes various parameters like noise variance dimension
of the signal space, which provides better results as
compared to the traditional ED. It performs the
computation of the Hypo-0 and Hypo-1 using Eqs. 9 and
10.

Hypo-0 (GLRT) = 

Hypo-1 (GLRT) = 

The basic limitation of the generalized likelihood
ratio test (GLRT) for SS is that it poses higher
computational complexities because of computational
resource requirements for the estimation of the signal
covariance matrix and decomposition of the eigen
matrix. Whereas it is quite useful for the opportunistic
access mechanism of the spectrum because in the shorter
interval of the sensing, the desired Pr(D) and Pr(Fa) are
achieved.

Maximum-Minimum Eigenvalue Detection (MMED)

The Eigenvalue detection-based SS methods can be
customized to perform better even in low SNR, if the
maximum and minimum ratios of the eigenvalues value
ratio is exploited and this fundamental is used in the SS
methods based on the MMED. It performs the
computation of the Hypo-0 and Hypo-1 using Eqs. 11
and 12.

Hypo-0 (MMED) = 

Hypo-1 (MMED) = 

In the context of the uncertainty of the variance in the
noise say at the 0dB noise or low noise conditions, the
Pr(D) of the methods based on MMED performs better
as compared to the ED and MED

Energy Detection (ED)

This method is implemented and described in detail,
whereas the generalized computation of the Hypo-0 and
Hypo-1 using Eqs. 13 and 14.

Hypo-0 (ED) = 

Hypo-1 (ED) = 

In general, the ED is an optimal method for the
detection of the PUs with a constraint s of single antenna
use and the distribution of noise and signal takes place as
Gaussian random variable (GRV) in very identical and

independent manner as well as the power or the noise
variance is known.

Arithmetic to Geometric Mean Ratio (AGM)

There are methods for SS based on the consideration
of the ratio of the higher eigen and smaller eigen values.
Whereas in AGM a average or the arithmetic mean of the
eigen value or sometime largest eigen value is
considered. The generalized computation of the Hypo-0
and Hypo-1 takes place using Eqs. 15 and 16.

Hypo-0 (AGM) = 

Hypo-1 (AGM) = 

This method considers an approximation of the
probability density function (PDF) for gamma matching
method. Here, () is a array element product function.
This method is feasible in the highly faded context with
the expectation of the low Pr(D) and Pr(F).

Hadamard Ratio (HR)

Many of the methods discussed above are quite
sensitive to the non-uniformity factor of the noise
variance of the antenna which occurs due to the faulty
calibration. The faulty calibrated error is handled by the
Hadamard Ratio based detection methods for the SS. The
generalized computation of the Hypo-0 and Hypo-1 takes
place using Eqs. 16 and 17.

Hypo-0 (HR) = 

Hypo-1 (HR) = 

An analytical modeling for the objective function of
Pr(D) and the Pr (Fa) uses appropriate approximation.

Volume Based (VD)

Originally, the volume-based detector was developed
for the purpose of It is worth pointing out that the
volume-based detector is developed for the observations
of the real value., where as its performance is not
benchmarked broadly. The computation of the Hypo-0
and Hypo-1 takes place using Eqs. 18 and 19.

Hypo-0 (VD1) = 

Hypo-1 (VD1) = 

The volume-based detector exhibits better result as
compared to the AGM and HR in terms of the identical
and independent noise presence based Pr(Fa) and Pr(D)

Gershgorin Radii Centres Ratio (GRCR)

The detector Gerschgorin radii and centres ratio
collectively popular with the name GRCR detector,
where the covariance matrix for either one transmitter or
for more than one transmitter is computed, for the Hype-
0 and Hupo-1 using Eqs. 20 and 21.
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(20)

(21)

(22)

(23)

(24)

(25)

Hypo-0 (GRCR) = 

Hypo-1 (GRCR) = 

The statistical test analysis, does not exhibits a
consistent Pr(Fa) as well as it is not very robust in the
dynamic context of the non-uniform noise conditions and
it is a cooperative and suitable method for the
multiantenna SS.

Gini Index Detection (GID)

Though the Gini index is originally developed for the
purpose of the introduction of a metric in economics as a
statistical dispersion metric, whereas as many
cooperative SS is proposed using Gini Index and those
methods are known as gini index detector (GID). The
normalized format for the computation of the Hype-0
and Hupo-1 using Eqs. 22 and 23.

Hypo-0 (GID) = 

Hypo-1 (GID) = 

Generally, GID exhibits robustness in dynamic noise
conditions and unequal signal power which quite suitable
for the Line Of Sight (LOS) channels and perform
consistent Pr(Fa) in a simplest manner.

Prosed Rician, Rice Factor-Based Detection (RFD)

A method based on the Rician fading channel with
different values of the K(Rice factor) for a multi-rate
spectrum is proposed as Rice Factor Based Detection
(RFD). The normalized approximated computation of the
Hype-0 and Hupo-1 takes place using Eqs. 23 and 24.

Hypo-0 (RFD) = 

Hypo-1 (RFD) = 

Though the wideband SS using Nyquist sampling
rates provides better performance in comparison of other
SS, but the multi-rate SS like proposed RFD exhibits
better Pr(D) and Pr(Fa) in lower computational
complexity. The values of variance for both Hypo-o: Ho
and Hypo-1H1 in average 2000 observations are
tabulated in Table 1, to understand the consistency of the
all SSDs discussed.
Table 1: Variance with 2000 observations

Method MED GLRT MMED ED AGM
Hypo-H0 0.0977 0.0283 52.3458 1.0133 x 103 0.9973
Hypo-H1 3.8865 0.2765 239.4252 2.1822 x106 2.0562
Method HR VD1 GRCR GID RFD
Hypo-H0 2.4172 x 10-4 0.0042 0.0020 2.3392 x 10-6 8.1796 x 10-4

Results and Discussion
The iterative simulation of proposed RFD and six

state of the art SS methods namely: AGM, MMED,
GLRT, VD1, and HR is performed and the value of the

probability of detection (Pr(D)) is tabulated in Table 2
from the lowest SNR value of -20 till 0.
Table 2: Probability of Detection (Pr(d)) versus Average SNT in (dB)

SNR AGM MMED GLRT VDI HR GID Prop-RFD

-20 0.088 0.084 0.101 0.1265 0.325 0.18 0.1695
-17.5 0.0725 0.075 0.096 0.1475 0.2 0.233 0.2245
-15 0.073 0.065 0.096 0.2265 0.3325 0.3545 0.377
-12.5 0.0555 0.0485 0.0835 0.4415 0.6325 0.6155 0.669
-10 0.056 0.0515 0.093 0.7355 0.8785 0.853 0.9075
-7.5 0.0515 0.0575 0.112 0.951 0.979 0.9605 0.987
-5 0.0795 0.084 0.344 0.991 0.9955 0.988 0.996
-2.5 0.1945 0.1595 0.8095 1 1 0.995 1
0 0.5415 0.337 0.976 1 1 0.9985 1

Fig. 4: Frequency and Time domain signal of Gaussian PU
Signal when PUSignal = 0

Figure 4 plots these observations for Pr(D) Vs SNR.
The graph shows that the Pr(D) for the MMED is lowest
after AGM and the proposed RFD performs best after
HR and closely to the VD1 in ranging low SNR of -20
till 0 The iterative simulation of proposed RFD and six
state of the art SS methods namely: AGM, MMED,
GLRT, VD1, and HR is performed and the value of the
probability of detection (Pr(D)) is tabulated in Table 3
for the varying number of SUs or CRUs from lowest of 2
SUs to 12 in max at the incremental of two additional
Sus.
Table 3: Probability of Detection (Pr(d)) versus Number of Secondary

users(SUs/CRUs)

No of Sus/CRUs AGM MMED GLRT VDI HR GID Prop-RFD

2 0.665 0.0665 0.0665 0.3515 0.392 0.313 0.398
4 0.0495 0.0465 0.07 0.6515 0.7925 0.7285 0.81
6 0.0595 0.044 0.0935 0.8255 0.9245 0.909 0.937
8 0.0685 0.055 0.129 0.9225 0.98 0.975 0.985
10 0.0765 0.0735 0.2025 0.9625 0.9945 0.995 0.9945
12 0.0795 0.0975 0.363 0.981 0.9995 0.9985 0.998

Figure 5 plots these observations for Pr(D) Vs SNR.
The graph shows that the Pr(D) for the MMED is lowest
after AGM and the proposed RFD performs best after
HR and closely to the GID in ranging number of
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secondary or the cognitive radio users in the series of
{2,4,6,8,10,12}.

Fig. 5: Probability of Detection (Pr(d)) versus Number of
Secondary Users (SUs / CRUSs)

Conclusion
Efficient spectrum sensing plays a critical role in

enabling cognitive radio systems to support next-
generation applications by facilitating optimal spectrum
sharing between primary and secondary users, without
causing interference to licensed transmissions. This work
conducts a comprehensive statistical evaluation of
various cooperative sensing approaches, analyzing their
detection probability performance under both favorable
and challenging SNR conditions. The Maximum
Eigenvalue Detection (MED) technique employs a
thresholding mechanism to mitigate errors, focusing on
the analysis of the eigenvalues of the signal's covariance
matrix. The Generalized Likelihood Ratio (GLR)
method, on the other hand, incorporates eigenvectors
along with parameters like noise variance, making it
more complex and resource-intensive. The Maximum-
Minimum Eigenvalue Detection (MMED) method
demonstrates better accuracy than both ED and MED,
particularly when fine-tuned for low SNR environments.
Energy Detection (ED), despite its limitations, remains
the most commonly adopted technique due to its
simplicity, flexibility for standalone or cooperative use,
and lack of dependency on prior signal knowledge. The
Arithmetic to Geometric Mean (AGM) method evaluates
different averages derived from the smallest and largest
eigenvalues, incorporating a gamma distribution
approximation for probability density function (PDF)
matching. It proves to be effective in scenarios involving
faded channels, especially when both the likelihood of
detection and the false alarm rate are expected to be low.
The proposed method, Rice Factor-Based Detection
(RFD), utilizes the Rician fading channel with varying
values of the Rice factor (K) for a multi-rate spectrum.
This method, along with the Hadamard ratio, volume-
based detection, Gershgorin Radii Centers Ratio
(GRCR), and Gini Index Detection (GID), is thoroughly

evaluated. The multi-rate Spectrum Sensing (SS),
particularly the RFD approach, demonstrates improved
detection probability (Pr(D)) and false alarm probability
(Pr(Fa)) while maintaining lower computational
complexity. While wideband spectrum sensing using
Nyquist sampling rates delivers superior performance
compared to other methods, the proposed RFD offers a
practical trade-off.
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