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Abstract: Human gait has gained much attention in behavioral biometrics
as it possesses unique and distinctive characteristics. Gait phases, which
describe the different patterns of human walking, are significant for the
analysis and understanding of movement in an individual. Hence, the
identification of gait phases is important for the accurate determination and
interpretation of walking patterns, ranging from healthcare and security to
rehabilitation. This study aims to propose an efficient model, called
Precision Human Gait Activity Segmentation for Gait Phases Recognition
using YOLOV9 (PHASEY), and a contrastive learning method that localizes
and recognizes the gait stance phase and swing phase more efficiently and
correctly. The proposed PHASEY model localizes the walking Gait phase
patterns and distinguishes movement patterns in each of the phases. It uses
CSPDarknet 53 as its backbone, which is further trained to identify swing
and stance gait phases using silhouette images. The PHASEY model has
three prime components- backbone, neck, and head. There is feature
extraction from the backbone, then, visualization of those features through
Grad-CAM within the neck is provided. Lastly, the head unit is accountable
for the gait phase classification. By training the CSPDarknet 53 in the
PHASEY model, the accuracy, as well as Intersection over Union (IoU), and
inference time were calculated with different epochs. The experimental
results show that the model attained the highest accuracy of 0.9907 at the
epoch value 50. After comparing the YOLO models, it was evident that
YOLOV9 achieved the highest accuracy of 94.8%, with a Precision value of
93.1%, Recall 91.9% and IoU with 87.8%. By utilizing this real-time object
detection model for determining the phases of the gait cycle, the approach
demonstrated exceptional performance in both localization and classification
across different subjects.

Keywords: Swing Gait Phase, Stance Gait Phase, Object Detection, You
Only Look Once (YOLO), Pretrained Network

Introduction

Techniques involved in the identification of humans
from behavioral or physiological characteristics comprise
biometrics. Speech and facial features are the most used
traits in biometric recognition. Facial recognition and
fingerprint-based applications have been widely applied
in medical diagnostics-related fields. However, an
increasing modality of biometry is gait. Biometric
recognition through gait occurs because the walking
patterns of a person have established the possibility of
identification in this domain (Huang et al, 1999).
Human gait analysis has proven to be an important field
of study that offers an in-depth understanding of how
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people walk. Human gait describes how a person moves
their arms or legs as they walk, drink, sit, leap, and do
many other things. In other words, the walking gait
patterns are broadly divided into two phases: the stance
phase and the swing phase (Umberger, 2010). The
duration for which the foot is in contact with the ground
is known as the stance phase, and while the foot is in
contact with the air is known as the swing phase. The
stance and swing phases make a complete gait cycle.
These phases comprise sub-phases further. Initial
Contact, Loading Response, Mid Stance, and Terminal
Stance fall under the stance phase, while Pre-Swing, Toe
Off, Mid Swing, and Terminal Swing are the steps of the
swing phase. Accurate recognition of the gait patterns
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helps in identifying abnormal walking patterns in
patients suffering from any neurological disorder, like
Parkinson's disease or any other medical injury.
Moreover, for monitoring rehabilitation progress and
optimizing the performance of sportspersons, gait
recognition has played its part well. Several different
methods have been proposed for human gait recognition.
These methods can be broadly classified into two
categories: Model-based and Motion-based techniques
(Kusakunniran, 2020). In the model-based approach,
model parameters represent the human body structure,
which is fitted based on the extracted image feature. On
the other hand, a compact representation is used to
characterize a motion pattern of the human body without
considering the underlying model structure. Researchers
have worked on various techniques of gait recognition
since the early period of the emergence of gait as a
Biometric. Approaches of gait can be categorized
broadly into two groups.

Model-Based Approach

In model-based approaches, the kinematics of joint
angles are modeled while the subjects are walking. The
approach started with extracting the skeletons and joints
of the human body in each frame. Model-based
techniques create a human body model and then extract
its characteristics. Cunado et a/. modeled leg movement
with a pendulum in 1997 (Wan et al., 2019) and the
changes in the inclination of the legs were used for gait
recognition. As compared to motion-based methods,
model-based methods can be more robust to many
variations, only if human bodies are correctly and
accurately modeled (Liao et al., 2020). Some traditional
model-based methods use a simple stick model to
simulate legs, and then the leg movement is simulated by
an articulated pendulum during walking. Then, human
identification frequency components are extracted as gait
features at the end.

Motion-Based Approach

Motion-based approach is referred to as Image
measuring techniques that use the samples' walking form
to determine the gait features. Therefore, these methods
do not require working on a model of the walking steps
of a human being. Motion-based approaches can be
broadly categorized as spatial and temporal. However,
they can be further bifurcated into four subcategories
(Rida et al., 2019). These subcategories are contour,
optical  flow, silhouette, moments, and gait
energy/entropy/motion  history (Rida, 2019). The
contours can be interrupted by intra-class variations, but
have a low computational cost (Zhang et al., 2010). An
example of gait recognition-based contour features was
introduced by (Hayfron-Acquah ef al., 2003). Silhouettes
can be taken into consideration as a whole per subject.
This can have more advantages because the errors of
silhouette segmentation can be avoided (Boisvert et al.,

2013). The spatial and temporal features of gait are
extracted by energy features using a single and robust
signature (Roy et al., 2012). The optical flow extracts the
dynamic aspect of human motion and represents a robust
feature representation against the various intra-class
variations.

Gait biometrics means recognizing an individual
based on his/her walking style. In General, gait
recognition can be implemented on two types of data: a
sequence of images (e.g., from a video), or an inertial
gait time series generated by inertial sensors (Zou ef al.,
2020). Various deep-learning algorithms (Kececi et al.,
2020) have been used in this area of research to
recognize gait, abnormal gait, etc. in surveillance
systems, biometrics, Rehabilitation centers, hospitals,
and various other places. Gait phase recognition has
traditionally been performed at broader levels, such as
stance and swing phases. Furthermore, significant efforts
have been directed towards classifying the sub-phases
within these categories, including initial contact, loading
response, mid-stance, and terminal stance.

The PHASEY technique is a new object detection
and localization technique followed by the classification
of walking patterns. PHASEY stands for PHASE
YOLOV9, which operates on the principles of a
Contrastive Multiphase GaitNet scheme. It applies a self-
supervised learning technique with a comparison of
positive and negative samples. It effectively and
precisely segments and classifies all the different phases
of a gait cycle by using some advanced object detection
models. This paper addresses a new challenge, the
simultaneous localization of the object and classification
of the subject's walking phase. This approach is divided
into two stages: the first stage includes object detection,
and the second stage is phase classification. Previous
machine learning algorithms have been mainly designed
to extract features and classify walking phases, with
many studies evaluating the efficiency and performance
of various deep learning (DL) models in this domain.
This work builds upon these advances to propose a better
methodology. The PHASEY framework can extract task-
related features that are necessary for differentiating
various gait phases. A dual-layered approach is used to
achieve this reorganization for gait phases at both the
initial and final levels. PHASEY implements feature
representation at multiple layers. It extracts the common
differences between different gait phases by contrasting
positive and negative samples within each layer
independently. The PHASEY model can detect and
analyze the detailed view of small changes that take
place while a person moves through different phases of
walking or running. The PHASEY model extracts
features at various levels of the neural network as it
processes input data, such as video frames or images of a
person walking. This model calculates a contrastive loss
for each layer, which indicates the level of accuracy in
differentiating the features that represent various phases
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of the gait cycle. This model performs object detection
and classification and focuses on minute, delicate
differences within the gait cycle.

The major contribution of this paper lies in
highlighting the growing need for automated recognition
systems, which have practical applications across diverse
domains such as security systems, healthcare, and other
critical fields. To address this, we propose a dual-phase
model, PHASEY, that integrates both object detection
and classification. At the core of the model, CSPDarknet-
53 functions as the primary feature extractor, ensuring
robust performance. Furthermore, the effectiveness of
PHASEY has been evaluated through its ability to
accurately localize and classify gait phases, along with
their bounding boxes, in an efficient manner.

Related Work

An interesting biometric technique that identifies
people by their gait is called gait recognition. Since
2015, deep learning has changed the direction of this
field of study by making it possible for it to learn
discriminative representations autonomously. Deep
learning-based  approaches (Sepas-Moghaddam &
Etemad, 2023) for recognizing gaits, now dominate the
most recent developments in the field and have
encouraged practical applications. The authors in
reference (Niyogi & Adelson, 1994) proposed the earliest
gait recognition system, which was based on a small gait
database. Then, the HumanID initiative, funded by the
Defense Advanced Research Projects Agency (DARPA)
(Sarkar et al., 2005) created the first publicly accessible
database for gait identification.

Early Methods and Approaches

According to biomechanical and clinical research
conducted in early research, each person has a different
gait due to the combined activities of hundreds of limbs,
joints, and muscles. In addition, gait can determine the
presence of certain sicknesses or emotions. It was
demonstrated that a person's gait variability was constant
and could not be changed easily, and was difficult to
alter. Although the majority of the studies in these early
databases were only medically oriented (Lee et al.,
2014).

Developments and Milestones of Existing Techniques

In the domain of Gait recognition (Bari & Gavrilova,
2019), developments were made by introducing deep
learning methodology (Alharthi et al., 2019) which is a
popular machine learning (ML) technique (Kolaghassi et
al., 2021), and opens new doors for advanced analysis
(Yam & Nixon, 2021) of human motion (Han & Bhanu,
2006). The architecture and operation of biological
neural networks serve as an inspiration for deep-
structured learning. Deep learning is based on the idea of
a multi-layer Artificial Neural Network (ANN) to learn

the data representations automatically. Typically, "deep"
refers to the number of layers in one of the following
types of network structures: Boltzmann Machine (BM),
Generative Adversarial Networks (GAN), Convolutional
Neural Networks (CNN) with achieved accuracy of
97.1%, Recurrent Neural Networks (RNN), Deep Belief
Networks (DBN), Feedforward Deep Networks (FDN),
Long-Short Term Memory (LSTM), a specific type of
RNN (dos Santos et al., 2022). The LSTM model on its
own had lower performance, with accuracies greater than
86.8% and F-scores greater than 86.4% (Narayan et al.,
2023).

Structural-Based Approach

Structural and motion models are required in a
standard model-based approach to provide the basis for
tracking and feature extraction. These models can be two
or three-dimensional, although most existing methods
are two-dimensional and have demonstrated the potential
to provide encouraging recognition results on big
databases. The topology or shape of human body
components, such as the head, torso, hip, thigh, knee,
and ankle, is represented by parameters like length,
breadth, and position in a structural model. Stick figures,
random forms describing the edges of various body
parts, or primitive shapes (cylinders, cones, and blobs)
can be used to create this model (Jun et al., 2020).

Appearance-Based Approach

Generally, human Silhouettes are used as raw input
data in appearance-based methods. Gait Energy Images
(GEI) (Benouis et al., 2016) has been widely used and is
the most popular feature that can achieve a high
recognition rate and has a low computational cost. GEI-
based methods follow a common pipeline, which
includes extracting the human silhouettes from videos
and then finding out the average and aligning the
silhouettes, computing the Gait Energy Image (GEI), and
afterward calculating the similarities between two GEIs.
Figure 1 gives a diagrammatic representation of gait
recognition approaches.

Recurrent Neural

Convolutional

Fig. 1: Diagrammatic Representation of Previous Gait
Recognition Approaches
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Table 1: Deep learning techniques used for Gait recognition application

DL Technique/ Hybrid Techniques Applications Dataset Used Recognition
Rate
Convolutional Neural Network (CNN) (Nguyen er  Feature detection, Biometric authentication ~OU-ISIR (Nguyen et al., 91.5%
al.,2023) 2023)
Capsule Networks (Narayan et al., 2023) Tablet Identification OU-ISIR (Narayan et al., 74.4%
2023)

Auto Encoder (Mehmood et al., 2024)

Functions by combining and separating input OU-ISIR (Mehmood et  96%
characteristics

al., 2024)

Recurrent Neural Network (RNN) (Jun et al.,2020) Speech Recognition and Prediction Problems CASIA B (dos Santos ez 91%

Generative Adversarial Networks (Yu et al., 2017)

Combination of Convolutional Neural Networks

al., 2020)

Convolutional Neural Networks (CNN) + Long
Short Term Memory (LSTM) (Zhen et al., 2020)

ZYroscopes.

Motion Feature Extraction of sequential
(CNN) - Recurrent Neural Networks (RNN) (Zhen et temporal data from accelerometers and

Recognition of severe gait abnormalities

al.,2022)

Image to Image Translation, Video Prediction CASIA A and CASIAB  82%

(dos Santos et al., 2022)
whuGAIT and OU-ISIR  99.75%
(dos Santos et al., 2022)

whuGAIT and OU-ISIR  99.75%
(Zhen et al.,2020)

Hybrid CNN-Support Vector Machine (SVM) (Liu et Face Classification, Gender Recognition, and CASIA A and CASIAB  82%

al.,2018)
SVM-Bayesian Network (Gupta et al.,2015)

other recognition tasks
Gait Recognition

(dos Santos et al., 2022)

OU-ISIR 97.6%

Deep Learning and Hybrid Approaches

Researchers have used and put forth various hybrid
deep learning approaches to classify and recognize gait
movements. Before deep learning, machine learning
methods were used to recognize human Gait, but those
methods had certain limitations in using the features that
were handcrafted. Table 1 represents some of the deep-
learning techniques and algorithms used in Gait.

Materials and Methods

The phases for gait phases recognition are described
here.

Feature Extraction and Representation

Three main phases are involved in gait recognition:
first is the segmentation of the silhouette, feature
extraction, and classification. Initially, from the gait
sequence, human silhouettes are identified and separated.
In a gait sequence, the background removal approach is
frequently used to locate the moving human silhouette.
Then, in the feature extraction stage, from the obtained
human silhouettes, gait features are extracted by using
the hand-crafted approach (Gupta et al., 2015). Research
on Gait has been done under controlled and uncontrolled
environments, too. Controlled environments are the
conditions under which the gait data captured are
carefully monitored and standardized. This includes
factors like lighting, background, camera angles, and the
type of surface on which the subject is walking. The aim
is to minimize external variables that could affect the gait
patterns, thus allowing for more accurate and consistent
data collection (Wan et al., 2019). On the other hand,
uncontrolled conditions consist of the real-world settings

where the conditions are not regulated and various
factors influence gait (Xia et al., 2024). For example,
Gait recognition in the wild (Zheng ef al., 2022).

Datasets in Gait Recognition

Various datasets have been used in gait recognition,
which are described below.

Video-Based Datasets

Chalidabhongse et al. (2001) released the UMD
dataset in 2001. Two walking-outside datasets make up
the UMD dataset. In the larger setup, 55 people walk in
T patterns in front of two orthogonally positioned
cameras in a parking lot to record gait data. Furthermore,
this dataset has four views: frontal, left, right, and rear.
The National Institute of Standards and Technology
(NIST) Dataset, often known as the HumanID dataset,
was released in 2005 by Sarkar et al. (2005). The CASIA
dataset was released in 2003 by Wang ef al. (2003), with
dataset B being the most commonly utilized. There were
124 people in all, representing 11 distinct perspectives
and four different walking speeds. Likewise, in 2004,
2005, 2007, and 2014, CMU, USF, datasets published by
Nixon and Carter, and TUM-GAID datasets were
published (Hofmann et al., 2014).

Accelerometer-Based Datasets

In 2005, 2007, 2012, 2014, 2014, 2016, Speed
Dataset, = Motion-Recording-Sensor-Based  Dataset,
Walking Pattern Dataset, Android phone Google Gl
Dataset, large accelerometer-based gait dataset, Human
Activities and Postural Transitions, were published
respectively (Saha et al., 2024).
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Floor-Sensor-Based Datasets

The First Floor-sensor-based dataset was published
by Orr and Abowd. Furthermore, from 2004 to 2007,
further advancements were made in floor-sensor-based
datasets (Dong & Noh, 2024).

Radar-Based Datasets

Otero released the first dataset based on wave radars
in 2005. 49 people provided gait data for this dataset.
People in this dataset moved closer to and further away
from the radar. Wang and Fathy released a dataset in
2011 that contained gait information from a single
person. Later, further developments were made by
researchers (Collado Pérez, 2023).

INPUT
(SILHOUTTE
IMAGES)

|

BI-GRAINED
CONTRASTIVE LEARNING

POSITIVE PAIRS

NEGATIVE PAIRS

CSPDARKNET.53

.

RESIDUAL
BLOCKS

Fig. 2: Proposed methodology: Silhouette input, contrastive
learning, CSPDarknet 53, and residual blocks

Contrastive Multiphase GaitNet

Contrastive learning is a technique that is used in
vision tasks to enhance performance by using the
principle of contrasting the samples against each other to
learn attributes that are common between data classes
and attributes that differentiate one data class from
another (Gao ef al., 2023). It has an extraordinary ability
to grab and learn different feature representations
through a self-supervised methodology by comparing
positive and negative samples (Hu et al, 2024). This
concept is widely used in many domains, such as natural
language processing (Zhang et al., 2022) and important
visual tasks. These methods usually treat each instance
and its augmented version as a positive pair, while other
randomly selected instances are regarded as negative
samples. The memory bank is usually used to store the
features of the training data (Liu ef al, 2023). The
overview of the proposed methodology for gait phase
localization and classification has been presented in
Figure 2.

In this paper, a new model called Contrastive
MultiPhase GaitNet (PhaseY) has been proposed,
designed to effectively extract and recognize multiple
gait phases. The proposed model has expertise in
categorizing both Stance and Swing phases. Unlike
traditional gait phase recognition models, our approach
simultaneously detects multiple gait phases by
implementing both coarse-grained and fine-grained
levels of gait phase data recognition across different
walking patterns. Contrastive learning is essential for
improving the model's capacity to differentiate between
the various gait cycle phases for gait phase identification.
The contrastive learning configuration is used in the
PHASEY to achieve high accuracy in segmenting and
identifying various gait phases.

Objective of Contrastive Learning

The main motive of contrastive learning in PHASEY
is finding representations that maximize similarity
between positive pairs (features indicating the same gait
phase) and minimize similarity between negative pairs
(features representing different gait phases). This method
enables the model to get a more thorough understanding
of the small differences among various gait phases,
which is essential for precise identification.

Positive and Negative Pair Selection

In this model architecture, positive and negative pairs
of samples are defined to configure contrastive learning.
Positive pairs are feature representations taken from
separate frames that are extracted from the same gait
phase. For example, a positive pair is formed when
features from consecutive frames that depict the "Initial
Contact" phase come together. Negative pairs are feature
representations that correspond to different gait phases
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(e.g., "initial contact" vs. "mid-stance"). These pairings
have been chosen to illustrate the most challenging cases,
in which there are few but significant changes between
phases.

Contrastive Loss Function

A contrastive loss function is created to maximize the
feature representations acquired by the YOLOV9 model
(Ali & Zhang, 2024; Hussain, 2024). This function
guides the contrastive learning process in PHASEY.
Figure 3 shows the contrastive feature transformation
through sampling and contrastive learning.

\ Embedding
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Fig. 3: Contrastive Feature Transformation Process through
GAITNET Contrastive Learning

Overview of PhaseY model

You Only Look Once (YOLO) is the most common
and widely used algorithm (Jiang et al., 2022; Kang et
al., 2025). The phases of the PhaseY model have been
described below.

Network Architecture of PHASEY Model

The proposed method works on the network
architecture that is derived from the recent object
detectors like Mask-RCNN (Jia et al., 2024), YOLO (Jia
et al., 2024). Typically, the object detectors consist of an
end-to-end architecture including a Feature extractor, a
proposal generator (Tao et al, 2024), and a mask
predictor, respectively. They can locate the objects and
classify their semantic categories simultaneously.
Limiting the object categories to Stance and Swing
phases naturally solves some of the drawbacks of gait
recognition methods to a certain extent. Inspired by that,
the authors adopt a robust and effective architecture and
propose a new bi-grained contrastive multiphase GaitNet
scheme customized for the feature extractor, proposal
generator, and mask predictor (Zhang et al., 2024).

Bi-Grained Contrastive Learning

To enhance the model's capacity to categorize
between various Gait phases, a Bi-grained contrastive
learning technique is followed, which includes learning
representations at two different levels of granularity, that
is coarse-grained and fine-grained (Zhang & Ran, 2024).
This method is efficient and works well for tasks where
it is important to capture the overall structure as well as
the minor details (Huang et al., 2024). The general

contrastive GaitNet technique serves as the model for our
study, as it allows us to identify the Gait stance and
swing phases by examining how the walking phases are
related to each other. Our method specifically looks for
these relationships on the end-to-end architecture at the
coarse-grained (proposal-wise) and fine-grained (pixel-
wise) levels (Huang et al, 2024). The items in the
feature extractor's features represent different stance and
swing leg proposals across various scales, and the items
in the mask predictor's features correspond to different
pixels in legs in the stance and swing phases. Figure 4
shows the architecture of bi-grained contrastive learning.

swiNG.

smnce e
@ -/r!

A
ﬁ ﬁ
%l % &

A A

FINE GRAINED CONTRASTIVE LEARNING

Fig. 4: Architecture of Bi-grained contrastive learning
Coarse-Grained Contrastive GaitNet Model

The coarse-grained contrastive GaitNet technique
focuses on capturing the discriminative walking features
among positive and negative proposals based on the
feature extractors, i.e., putting together the features of
proposals in the same category and segregating the ones
of different categories (Liu et al., 2024b). Two different
samples from different views are generated, and for
contrastive learning, a pair of feature extractors is
generated. For an input image, where the two feature
extractors share the same network architecture with
different parameters. After that, the feature extractors get
each of these two samples, in turn, to provide proposals
at various levels (Yin et al., 2025). Contrastive learning
(Ju et al., 2024) is conducted at each layer independently
to capture multi-layer proposal-wise diverse walking
patterns by matching the proposals with distinct walking
steps, as proposals at various levels cannot be directly
compared. Next, the contrastive learning configuration
and the data view configuration are executed in order.

Dataset Description

A labeled or unlabeled dataset of the gait phases is
the primary requirement for estimating and developing
human pose estimation and gait recognition approaches
(Bansal et al., 2024). This study uses the publicly
accessible OU-ISIR dataset that contains walking
patterns of people for all age groups. Silhouette images
from the OU-ISIR dataset, which is accessed online
(Takemura et al., 2018). are used, with 4,163 images
taken. The dataset is applicable for many applications,
including security and surveillance systems, sports
performance optimization, smart wearable technologies,
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as well as robotics and exoskeleton development. In the
PHASEY model, used in this paper for Gait recognition,
data pre-processing techniques have been carried out in
an effective approach to combat the data scarcity
problems and improve the effectiveness of the deep
learning model (Parashar et al., 2023). In this paper, the
dataset used is taken from OU-ISIR (Takemura et al.,
2018). Figure 5 shows the collection of OU-ISIR gait
image samples in the form of silhouette images.

RAEIEIEICICE RN 73 7882055 EE A2
BIAAIRIRIRIRIAIAAALSIA81814(9(2412

Fig. 5: Samples of silhouette images

Preliminary Conceptualization for the PHASEY Model

In this paper, the focus is on achieving accuracy and
efficiency in recognizing and classifying the gait
sequences (Chao et al, 2021) falling under the stance
(Perry & Burnfield, 2024) and swing (Liu ef al., 2024a)
phases. Gait phase recognition is achieved by using
silhouette images. These are binary images, where the
subjects are represented specifically in  white
(Foreground) against black (background). The input
images that are used & have dimensions of 224 x 224
pixels in the PHASEY model, although this can be
changed depending on the hardware limitations and
dataset. Figure 6 shows the layered diagram of the
PHASEY model.
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Fig. 6: Architecture Diagram of PHASEY model

Backbone of PHASEY

CSPDARKNETS3 backbone has been used (Guo et
al., 2025) for extracting the features of input silhouette
images. The process can be described as follows.

Feature Extraction and Bounding Box Regression

Feature Extraction (Ray ef al., 2024) and Bounding
Box Regression (Ming et al., 2024) are important tasks
in the context of gait phase detection utilizing the

PHASEY model with the CSPDarknet 53 backbone.
These activities allow the identification of various gait
phases, including the stance and swing phases. The steps
in this process can be explained as under.

Feature Mapping

Convolutional Networks are multilevel architectures
consisting of multiple stages (Y. Yu et al., 2024). The
inputs and outputs in each stage are the sets of arrays
called feature maps. A series of convolutional layers is
incorporated into our proposed model to process the
input images given in the form of silhouettes. The feature
extractor used i.e., CSPDARKNET.53 processes the
input images and derives the extremely complex features
like shapes, edges, and textures. These features proceed
from basic elements such as edges and textures in the
outer levels to more abstract elements in the inner layers
that depict various aspects of the human gait. The layers
included in this process make a series of operations like
Convolution, Activation, and Normalization.

Semantic Mapping of Convolution:

In the PhaseY model, the first convolution layer
consists of 65 filters with dimensions 3 x 3 x 3. This
implies that the walking silhouette is processed using 64
different convolutional filters, commonly referred to as
kernels. To extract certain characteristics from the
silhouette, such as gradients or edges, each filter moves
through the sample and applies the convolution process.
Since the walking image used here is a picture with three
channels (Red, Green, and Blue), so the input shape is
640%640x3. The convolution process involves sliding
3x3x3 filters through the walking silhouette image and
applying a dot product between the filter and the local
areas of the image. A feature map is generated by the
filter, which extracts the specific features in the Image.

Residual Blocks

The model proposed uses a series of residual blocks
to capture the high-level features. residual blocks are
included in CSPDarknet 53, which have been organized
in the following stages.

Step 1: A lot of convolutional and residual blocks at
the initial stage.

Step 2: For the process of downsampling the feature
maps obtained, deeper blocks with bigger strides and
pooling layers are used.

Step 3: More residual blocks are used for even more
downsampling.

Step 4: Final residual blocks that consist of
aggregated features from previous stages.

Anchor boxes: To predict the bounding boxes our
model uses anchor boxes around the detected and
specific parts of the body that are involved in the gait.
This model uses anchor boxes as reference boxes.
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PHASEY Model Pseudocode

Step 1: Define Inputs and Outputs
Input: Gait Dataset OU-ISIR: A collection of gait phase
sequences with labeled frames, "Swing", "Stance".
Step 2: Preprocess Data for Pair Selection
Input: Gait Dataset
for each sequence in D:
for each frame i, frame j in sequence:
if gait phase(frame i) == gait phase(frame j):
add (frame _i, frame j) to positive pairs
else:
add (frame i, frame j) to negative pairs
Output: Positive and Negative Pairs
Step 3: Coarse-Grained Contrastive Learning
Input: Positive and Negative Pairs
for each pair in positive_pairs + negative_pairs:
inputl, input2 = pair
features] = FeatureExtractor(input1)
features2 = FeatureExtractor(input2)
if pair in positive_pairs:
compute loss(featuresl, features?2,
label="positive")
else:
compute loss(features1, features?2,
label="negative")
Step 4: Fine-Grained Proposal-Based Learning
Input: Frames and Proposals
for each frame in D:
proposals =
ProposalGenerator(FeatureExtractor(frame))
for proposal in proposals:
coarse_features =
extract_features_at_layer(proposal,
layer="coarse")
fine features =
extract_features_at_layer(proposal,
layer="fine")
compute
proposal_matching_loss(coarse_features,
fine features)
Output: Classification Loss, Contrastive Loss
Step 5: Precision Gait Phase Segmentation
Input: Frames
Classification
for each frame in D:
predictions =
MaskPredictor(FeatureExtractor(frame))
ground_truth = get_ground_truth(frame)
compute segmentation_loss(predictions,
ground_truth)
Output: Segmentation Loss for Accurate Gait Phase
Step 6: Optimize Model
Input: Total Loss (Contrastive Loss + Proposal Loss +
Segmentation Loss)
total loss = contrastive loss + proposal_matching_loss +
segmentation_loss
optimize_model(total _loss)
Output: PhaseY model capable of accurately classifying gait
phases and segmenting activities.

Performance Parameters

For the evaluation of the PHASEY model, several
performance parameters have been used. The description
of each performance parameter is provided hereunder.

Precision

Calculates the ability of the model to recognize
positive pairs of images while minimizing the false
positives (Aman et al., 2024). It is computed as the ratio
of true positives to the total predicted positives.

Recall

It is called the true positive rate in common. It can be
defined as the ratio of actual positives (the total of true
positives and false negatives) to true positives (properly
anticipated positive samples (Lai et al., 2020). Recall
measures the scale up to which this model captures all
true positives without missing any of them.

Intersection over Union (loU)

It evaluates the accuracy of the model in detecting
objects and in determining the accuracy with which a
bounding box overlaps with the original bounding box. It
assists in recognizing the phases of the gait cycle, stance,
and swing. It is calculated as the ratio of the area of
overlap to the area of union (Lanshammar, 1982). The
values of IoU range from 0 to 1. Zero means no overlap
between the predicted and actual bounding boxes, and it
means that there is perfect overlap.

Results

All experiments were performed on a computer with
an Intel(R) Core (TM) i5-10310U CPU running at 1.70
GHz and 2.21 GHz, 16GB of RAM, and a 64-bit
operating system. Python version 3.7 was used with the
Pytorch platform on a 64-bit Windows 11 Pro system.

Dataset Preparation and Preprocessing

In computer vision fields and Image processing, this
process has been observed for a long time and includes
foreground and background segmentation (Wang et al.,
2003). A binary silhouette is used to make the suggested
solution insensitive to variations in the color and texture
of clothing (Ji et al., 2024). Figure 7 represents the
training dataset consisting of walking silhouettes of
people from both the gait stance and swing phases. The
data-preprocessing technique followed is described
below.

AMANA IR Rt
TRRTIN AN 1 IR

Fig. 7: Samples of Silhouette images

Silhouette Extraction

In this paper, the initial and unprocessed gait
sequences from OU-ISIR are first processed to extract
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silhouette Images. Every image frame is transformed into
a binary silhouette picture, where the human figure is
represented in white pixels with the backdrop
represented by black pixels. Concerning the dataset
available online, 4016 silhouette images were taken from
the website. The dataset consists of people walking on
the ground recorded by two cameras at 30 frames per
second at 640 by 480. The datasets are made available
with a size normalization of 224 by 224 pixels. Figure 8
shows the silhouette images before and after
1mplement1ng the extraction process

Fig. 8: Pre-processed Silhouette Images

Image Resizing

The Silhouette images extracted from real human
walking sequences are processed first. The silhouette
preprocessing process is then implemented on the
extracted silhouette sequences. For our PHASEY model,
image consistency was maintained by resizing the
images to 224x224 pixels. It made sure that the
silhouette images were fed properly and suited the
dimensions of our proposed model without any loss of
information about gait characteristics. After image
resizing, the dimensions of images on a consistent scale
have been changed through the normalization technique
(Jlassi & Dixon, 2024).

Image Augmentation

Image augmentation is an efficient way to increase
the boosting speed of the dataset. As the number of
samples in the dataset is too small it can decrease the
training accuracy of the PhaseY model. To increase the
speed of the model's accuracy through data augmentation
techniques. The data augmentation techniques
(Chandrasekaran ef al., 2024) such as flipping, cropping,
and rotation help to increase the dataset size. After data
augmentation, a total of 17,500 images were obtained,
which were divided into training sets and testing sets in
the ratio of 7:3, thus preventing the detection model from
overfitting. 12250 images were kept for training
purposes, and 5250 images were used for testing. The
augmented dataset in the form of image samples has
been presented in Figure 9.

Dataset Diversity

The dataset derived from the OU-ISIR collection was
initially imbalanced. To correct this problem, image

augmentation techniques were applied to it, which also
boosted the performance of the PhaseY model. After
augmentation, the dataset was divided into the training
and testing subsets. The process generated a total of
17,500 images, that are five times more than the original
dataset. Moreover, 317 images were annotated to
delineate the pictograms for each stance and swing phase
class. Table 2 summarizes the distribution of training and
testing images across classes after augmentation.
Distribution of training and testing images across classes
after augmentation, where the number of classes 0-3
represents the stance phase and 4-7 shows the swing
phase classes.

I\
Rild
LA
I

Fig. 9: Augmented Images

>Table 2: Images per class distribution

Total number of images for training

Class number 0 1 2 3 4 5 6 7
Pictogram IC LR MS TS PS TO MS TS
1463 1517 1312 1711 960 1687 1690 1593
Total number of images for testing

Class number 0 1 2 3 4 5 6 7
Pictogram IC LR MS TS PS TO MS TS
650 635 646 639 590 710 688 692

No of images

No of images

Prediction Results of PHASEY

The gait phase recognition is done by using the
PHASEY model, which has three core components:
Backbone, Neck, and Head. The contribution of each
component has been discussed in this section.
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Output as a Backbone

From the input silhouette images, the feature
extraction is done wusing CSPDarknet 53. The
architecture consists of five convolutional blocks and
four feature extractors. Deep feature extraction is done
by capturing the high-level features important for
recognizing gait features (Marimon et al., 2024). The
initial stage convolutional layers process the input
silhouettes, and the convolutional layers at the later
stages identify the gait phases, like stance and swing.
Using CSPNet (Cross-Stage Partial Networks) optimizes
gradient flow, enhancing model learning while reducing
computing costs (Han er al, 2024). By minimizing
repetition, this structure ensures that important features
are maintained throughout the levels. The backbone
consists of Spatial Pyramid Pooling SPPF and a
Transformer block (Peng et al., 2024). The transformer
improves the important spatial features (Bilal et al.,
2024), which is important for differentiating between
minute differences in gait phases. Table 3 shows the
output of the backbone in terms of its parameters.

Table 3: Parameter details of PHASEY

Layer (type) Output Shape Param
#
Input layer (InputLayer) (None, 224,224, 0
3)
zero_padding2d (ZeroPadding2D) (None, 230, 230, 0
3)
convl_conv (Conv2D) (None, 112, 112, 9,408
64)
convl bn (BatchNormalization) (None, 112, 112, 256
64)
convl_relu (Activation) (None, 112,112, 0
64)
zero_padding2d 1 (ZeroPadding2D)  (None, 114, 114, 0
64)

pooll (MaxPooling2D)

conv2 blockl 0 bn

conv2 _blockl 0 relu (Activation)
conv2_blockl 1_conv (Conv2D)

(None, 56, 56, 64) 0
(None, 56, 56, 64) 256
(None, 56, 56, 64) 0
(None, 56, 56, 8,192
128)

conv2 blockl 1 bn (None, 56, 56, 512

(BatchNormalization) 128)
conv2 blockl 1 relu (Activation) (None, 56, 56, 0
128)

Total params: 8,062,504 (30.76 MB)
Trainable params: 7,978,856 (30.44 MB)
Non-trainable params: 83,648 (326.75 KB)

ar arm

Fig. 10: Neck output of PHASEY Model

Output of the Neck

The multi-scale feature maps are combined at the
neck of the architecture. This section contains up-
sampling layers, concatenation blocks, and additional
CSPDarknet53 modules. Figure 10 shows the output
from this layer.

Detection of Gait Phases

Three types of detections are carried out in the three
output layers that make up the Head. Figure 10 shows
the detection accuracy of different YOLO models for gait
phase recognition.

Figure 11 presents the detection performance
achieved by YOLOv3, YOLOv4, YOLOvS, and the
proposed YOLOvV9-based PHASEY model. As shown in
the figure, the PHASEY model outperforms earlier
YOLO versions, achieving higher detection accuracy for
both stance and swing phases of the gait cycle. This
graphical comparison further validates the effectiveness
of integrating contrastive learning and the CSPDarknet
53 backbone within the PHASEY framework.
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Fig. 11: Detection accuracy analysis of YOLOv3, YOLOv4,
YOLOVS, and YOLOV9 for swing and stance gait phase
recognition

Performance Evaluation

In this paper, the experimental platform used is
PyTorch. Following data augmentation, a total of 17,500
walking images were obtained. These were split into
training and testing sets at a 7:3 ratio to avoid the
overfitting of the detection model. A total of 5250 images
were used for testing, while 12250 images were retained
for training. Even the total loss calculated during each
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phase of the PhaseY model with different iterations has
been presented in Figure 12.

—e— Contrastive Loss
\ —s— Proposal Matching Loss
\ mentation
25 \ —a— Segmentation Loss.

\ -~ Total Loss

\

Loss Value

Epochs

Fig. 12: Iteration-based total loss fluctuation for PhaseY model

Discussion

In this experiment, the ability to recognize the gait
phases (stance and swing phases) in silhouette images is
evaluated utilizing the CSPDarknet 53 backbone of
several versions of the YOLO object recognition models
(YOLOvV3, YOLOv4, YOLOvS, YOLOvV9). About
12,250 of the 17,500 images in the dataset are utilized
for training, while the remaining 5,250 are used for
testing. Results are based on important measures such as
Intersection over Union (IoU), accuracy, precision,
recall, and 40 model training epochs. Table 4 shows the
Training and testing accuracy of different YOLO models.

Table 4: Training and testing accuracy of different YOLO models

Model Tr. Acc  Testing Acc. Prec. Recall IoU IT
YOLOvV3 87.5% 842% 85.4% 839% 78.5% 30
YOLOv4  91.3%  88.6% 89.1% 88.0% 82.9% 32
YOLOv5S  93.6%  90.8% 91.5% 90.3% 85.5% 35
PHASEY 94.8% 92.5% 93.1% 91.9% 87.8% 38

Table 5: State-of-art comparison

References Models

A.S.M. H. DLNN - Deep
Bariet.al  Learning Neural
Network

Dataset Accuracy
UPVC gait dataset- UPVC
images from 30 Dataset-
subjects, 55-120 85.30%
frames per sequence Kinetic Gait
Kinetic Gait Biometry
Biometry Dataset- Dataset-
164 subjects, 500- 88.8%
600 frames.

USF, HumanID 91%
Database, 122

Individuals, 122

J. Han et.al Naive Bayes

Sequences
M. Benouis DBN- Deep Belief CASIA-B Gait 90.8%
et.al Network Dataset
Gait Sequences of
124 subjects, Total
sequences- 13,640
T. Zhen CNN+Autoencoder  Private Gait Dataset 91.2%
et.al - 16 subjects, 144
sequences
PHASEY Bi-contrastive OU-ISIR 94.8%

Learning based
YOLOV9 model

State-of-the-Art Methods: A Comparative Evaluation

The comparison of the proposed PhaseY model with
previous state-of-the-art methods for gait phase
recognition with different datasets has been presented in
Table 5.

In gait phase identification, particularly in the
recognition of stance and swing phases, the IoU metric is
often used to evaluate the accuracy of segmentation in
time-series data or spatial data. Misclassification loss is a
critical aspect of evaluating model performance, as it
shows how often the model incorrectly classifies the
stance and swing phases. Different IoU thresholds can
influence how strictly the model's predictions are
compared to ground truth, thus affecting
misclassification loss. The misclassification error at
different IoU values has been presented in Figure 13.
Moreover, the confusion matrix obtained by the
PHASEY model with the SGD optimizer during the
validation step on OU-ISIR data is shown in Figure 14.

0.40

Misclassification Error
]
o
N
o
Error Value

0.5 0.75 10
loU Value

Fig. 13: Misclassification errors at different IoU values

Heel Strike

Loading Response - 0.04 0.68 0.06 0.02 0.05 0.04 0.06 005

Midstance - 0.03

Terminal Stance - 0.02 003 0.06 0.70 0.05 0.04 005 0.05

Preswing - 0.03 004 005 0.05 072 003 0.04 0.04

<03

Predicted Gait Phase
o
=

Initial Swing - 0.01 004 003 005 003 078 003 003
0.2

Midswing - 0.08 0.06 0.04 0.05 0.04 0.02 0.65 0.06

-0.1

Terminal Swing - 0.05 0.04 0.03 003 0.04 0.03 0.04 074

True Gait Phase

Fig. 14: Confusion matrix showing misclassification errors
during validation for gait stance and swing phase
classification using the PHASEY model

Practical Implications of the PHASEY Model

The PHASEY model aims to enhance the
understanding and precision of gait phase recognition.
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The practical implications of the PHASEY model are
described below.

¢ Improving Clinical Diagnoses: By accurately
segmenting and classifying gait phases (Xu et al.,
2024; Ranjan ef al., 2025). The PHASEY model
helps to recognize gait abnormalities caused by
conditions such as Parkinson's disease (Burtscher et
al., 2024), stroke, or musculoskeletal disorders that
allow for more targeted treatment plans.

¢ Advancing Rehabilitation Techniques: The model
provides real-time insights into gait dynamics,
enabling tailored rehabilitation programs for
individuals recovering from surgeries or injuries,
thus accelerating recovery processes.

¢ Enhancing Athletic Performance: PHASEY
supports the analysis of athletes' stance and swing
phases, optimizing running or walking techniques,
reducing the risk of injury, and improving overall
performance through data-driven training
adjustments.

e Wider Accessibility for Remote Monitoring: The
implementation of PHASEY in wearable devices or
remote monitoring systems allows clinicians to
analyze gait activities without requiring patients to
visit healthcare facilities, facilitating broader access
to healthcare.

¢ Supporting Robotics and Prosthetics Development:
Insights from PHASEY can improve robotic
systems and prosthetic device design by providing
precise data on human gait mechanics, leading to
more natural and efficient movement solutions.

Conclusion

In this study, the OU-ISIR gait database has been
used, which is a secondary source to work on the
reorganization of gait swing and stance phases. Efficient
pre-processing techniques have been applied, like
silhouette  extraction, normalization, and data
augmentation, to deal with issues like insufficient data.
For Gait stance and swing phase recognition, this study
used the CSPDarknet 53 backbone to implement and test
several YOLO models (YOLOv3, YOLOv4, YOLOVS,
and YOLOV9) for gait phase detection. According to the
findings, YOLOvV9 with the CSPDarknet 53 backbone
performed noticeably better than previous iterations in
terms of recall, accuracy, precision, IoU, and inference
speed. With 92.5% testing accuracy, 93.1% precision,
91.9% recall, and 87.8% IoU, YOLOV9 is the most
effective and dependable model for identifying gait
phases. Furthermore, YOLOVY is appropriate for real-
time applications because it has an enhanced feature
extraction architecture that maintains high accuracy with
speed, which is important for real-time applications. The
outcomes of this study find their implementations in
various domains like security and surveillance,
rehabilitation and medical diagnosis, and in the sports
field. In crowded places, where traditional biometrics,

e.g., Facial recognition, is not feasible, this model can be
integrated into non-interfering gait-based biometric
systems to identify individuals. It can be an advantage
for long-range identification in smart cities and airports.
In the medical field, doctors can benefit by launching the
model to monitor abnormalities in gait caused by any
neurological disorder or stroke recovery. Moreover, this
model, when implemented in IoT devices, can assist in
tracking the rehabilitation progress of patients recovering
from surgeries or major injuries. Last but not least, this
model can assist in optimizing the performance of
sportspersons by helping analyze the inefficiencies in
their running and walking styles. Besides these
advantages, the model has certain limitations too. If we
talk about the gait patterns that are unfamiliar or not
common, recognizing those walking patterns remains a
challenge, particularly when the movements are unusual.
Although the dataset used is quite diverse, but may lack
in capturing global variations in gait patterns that
environmental and physical factors might influence. This
study can be implemented to capture the dynamic nature
of gait phases using Long Short-Term Memory (LSTM)
models, and Temporal Convolutional Networks (TCNs)
to improve the model's understanding between stance
and swing phases.

Data Availability Statement

The public dataset has been taken from the Institute
of Scientific and Industrial Research, Osaka University,
for providing access to the dataset. (OU-ISIR).

Acknowledgment

The authors would like to thank the Department of
Intelligent Media, The Institute of Scientific and
Industrial Research, Osaka University, for providing
access to the dataset. (OU-ISIR).

Author’s Contributions

Urvashi: Drafted and wrote the manuscript.

Deepak Kumar: Developed and wrote the

methodology; reviewed the manuscript.

Vinay Kukreja: Reviewed the manuscript; prepared
figures and tables.

Ayush Dogra: Prepared figures and tables.

References

Alharthi, A. S., Yunas, S. U., & Ozanyan, K. B. (2019).
Deep Learning for Monitoring of Human Gait: A
Review. IEEE Sensors Journal, 19(21), 9575-9591.
https://doi.org/10.1109/jsen.2019.2928777

Ali, M. L., & Zhang, Z. (2024). The YOLO framework:
A comprehensive review of evolution, applications,
and benchmarks in object detection. Computers,
13(12), 336.
https://doi.org/10.3390/computers13120336

1806


https://doi.org/10.1109/jsen.2019.2928777
https://doi.org/10.3390/computers13120336

Urvashi et al. / Journal of Computer Science 2025, 21 (8): 1795.1810
DOI: 10.3844/jcssp.2025.1795.1810

Aman, N., Islam, M. R., Ahamed, M. F., & Ahsan, M.
(2024). Performance Evaluation of Various Deep
Learning Models in Gait Recognition Using the
CASIA-B Dataset. Technologies, 12(12), 264.
https://doi.org/10.3390/technologies12120264

Bansal, A., Jain, A., & Bharadwaj, S. (2024). An
exploration of gait datasets and their implications.
2024 IEEE International Students' Conference on
Electrical, Electronics and Computer Science
(SCEECS), 1-6.
https://doi.org/10.1109/SCEECS61402.2024.10482
347

Bari, A. S. M. H., & Gavrilova, M. L. (2019). Artificial
Neural Network Based Gait Recognition Using
Kinect Sensor. IEEE Access, 7, 162708-162722.
https://doi.org/10.1109/access.2019.2952065

Benouis, M., Senouci, M., Tlemsani, R., & Mostefai, L.
(2016). Gait recognition based on model-based
methods and deep belief networks. International
Journal of Biometrics, 8(3/4), 237.
https://doi.org/10.1504/ijbm.2016.082598

Bilal, M., Jianbiao, H., Mushtaq, H., Asim, M., Ali, G.,

& ElAffendi, M. (2024). Gaitstar: Spatial--
temporal  attention-based  feature-reweighting
architecture ~ for human gait recognition.

Mathematics, 12(16), 2458.
https://doi.org/10.3390/math12162458

Boisvert, J., Shu, C., Wuhrer, S., & Xi, P. (2013). Three-
dimensional human shape inference from
silhouettes: reconstruction and validation. Machine
Vision and Applications, 24(1), 145-157.
https://doi.org/10.1007/s00138-011-0353-9

Burtscher, J., Moraud, E. M., Malatesta, D., Millet, G. P.,
Bally, J. F., & Patoz, A. (2024). Exercise and
gait/movement analyses in treatment and diagnosis
of Parkinson's Disease. Ageing Research Reviews,
93, 102147.
https://doi.org/10.1016/j.arr.2023.102147

Chalidabhongse, T., Kruger, V., & Chellappa, R. (2001).
The UMD database for human identification at a
distance. Technical Report, University of Maryland

Chandrasekaran, M., Francik, J., & Makris, D. (2024).
Enhancing gait recognition: data augmentation via
physics-based biomechanical simulation. 170-188.
https://doi.org/10.1007/978-3-031-91575-8 11

Chao, H., Wang, K., He, Y., Zhang, J., & Feng, J. (2021).
GaitSet: Cross-view gait recognition through
utilizing gait as a deep set. [EEE Transactions on
Pattern Analysis and Machine Intelligence, 44(7),
3467-3478.
https://doi.org/10.1109/TPAMI.2021.3057879

Collado Pérez, M. (2023). Evaluation and analysis of
open-set radar-based human gait recognition
performance with an adapted radar dataset.

Dong, Y., & Noh, H. Y. (2024). Ubiquitous Gait Analysis
through  Footstep-Induced  Floor  Vibrations.
Sensors, 24(8), 2496.
https://doi.org/10.3390/s24082496

dos Santos, C. F. G., Oliveira, D. de S., Passos, L. A.,
Pires, R. G., Santos, D. F. S., Valem, L. P., Moreira,
T. P., Santana, M. C. S., Roder, M., Papa, J. P., &
Colombo, D. (2022). Gait Recognition Based on
Deep Learning: A Survey. ACM Computing
Surveys, 55(2), 1-34.
https://doi.org/10.1145/3490235

Gao, B., Zhao, X., & Zhao, H. (2023). An Active and
Contrastive Learning Framework for Fine-Grained
Off-Road Semantic Segmentation.  [EEE
Transactions on Intelligent Transportation Systems,
24(1), 564-579.
https://doi.org/10.1109/tits.2022.3218403

Guo, X., Jiang, F., Chen, Q., Wang, Y., Sha, K., & Chen,
J. (2025). Deep learning-enhanced environment
perception for autonomous driving: MDNet with
CSP-DarkNet53.  Pattern  Recognition, 160,
111174.
https://doi.org/10.1016/j.patcog.2024.111174

Gupta, A., Prasad, P. W. C., Alsadoon, A., & Bajaj, K.
(2015). Hybrid method for Gait recognition using
SVM and Baysian Network. 89-94.
https://doi.org/10.1109/iwcia.2015.7449468

Han, J., & Bhanu, B. (2006). Individual recognition
using gait energy image. I[EEE Transactions on
Pattern Analysis and Machine Intelligence, 28(2),
316-322. https://doi.org/10.1109/tpami.2006.38

Han, N., Ryu, S. J., & Nam, Y. (2024). Real-time moving
object tracking on smartphone using cradle head
servo motor. Sensors, 24(4), 1265.
https://doi.org/10.3390/s24041265

Hayfron-Acquah, J. B., Nixon, M. S., & Carter, J. N.
(2003). Automatic gait recognition by symmetry
analysis. Pattern Recognition Letters, 24(12),
2175-2183.
https://doi.org/10.1016/S0167-8655(03)00086-2

Hofmann, M., Geiger, J., Bachmann, S., Schuller, B., &
Rigoll, G. (2014). The TUM Gait from Audio,
Image and Depth (GAID) database: Multimodal
recognition of subjects and traits. Journal of Visual
Communication and Image Representation, 25(1),
195-206.
https://doi.org/10.1016/j.jvcir.2013.02.006

Hu, H., Wang, X., Zhang, Y., Chen, Q., & Guan, Q.
(2024). A comprehensive survey on contrastive
learning. Neurocomputing, 610, 128645.
https://doi.org/10.1016/j.neucom.2024.128645

Huang, D., Deng, X., Chen, D.-H., Wen, Z., Sun, W.,
Wang, C.-D., & Lai, J.-H. (2024). Deep clustering
with hybrid-grained contrastive and discriminative
learning. IEEE Transactions on Circuits and
Systems for Video Technology, 34(10), 9472-9483.
https://doi.org/10.1109/TCSVT.2024.3399596

Huang, P. S., Harris, C. J., & Nixon, M. S. (1999).
Human Gait Recognition in Canonical Space Using
Temporal Templates. [EE Proceedings - Vision
Image and Signal Processing, 146(2), 93-100.
https://doi.org/10.1049/ip-vis: 19990187

1807


https://doi.org/10.3390/technologies12120264
https://doi.org/10.1109/SCEECS61402.2024.10482347
https://doi.org/10.1109/SCEECS61402.2024.10482347
https://doi.org/10.1109/access.2019.2952065
https://doi.org/10.1504/ijbm.2016.082598
https://doi.org/10.3390/math12162458
https://doi.org/10.1007/s00138-011-0353-9
https://doi.org/10.1016/j.arr.2023.102147
https://doi.org/10.1007/978-3-031-91575-8_11
https://doi.org/10.1109/TPAMI.2021.3057879
https://doi.org/10.3390/s24082496
https://doi.org/10.1145/3490235
https://doi.org/10.1109/tits.2022.3218403
https://doi.org/10.1016/j.patcog.2024.111174
https://doi.org/10.1109/iwcia.2015.7449468
https://doi.org/10.1109/tpami.2006.38
https://doi.org/10.3390/s24041265
https://doi.org/10.1016/S0167-8655(03)00086-2
https://doi.org/10.1016/j.jvcir.2013.02.006
https://doi.org/10.1016/j.neucom.2024.128645
https://doi.org/10.1109/TCSVT.2024.3399596
https://doi.org/10.1049/ip-vis:19990187

Urvashi et al. / Journal of Computer Science 2025, 21 (8): 1795.1810
DOI: 10.3844/jcssp.2025.1795.1810

Hussain, M. (2024). YOLOv1 to v8: Unveiling Each
Variant-A Comprehensive Review of YOLO. IEEE
Access, 12,42816-42833.
https://doi.org/10.1109/ACCESS.2024.3378568

Ji, B., Chen, X., Yang, W., & Zhu, F. (2024). Boosting
robustness of silhouette-based gait recognition
against adversarial attacks. 72-84.
https://doi.org/10.1007/978-981-97-5594-3 7

Jia, Z., Zhang, Y., & Yang, H. (2024). Research on High-
Precision  object  detection and  instance
segmentation using Mask-RCNN. 1050-1055.
https://doi.org/10.1109/ICCASIT62299.2024.1082
7917

Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A
Review of Yolo Algorithm Developments.
Procedia Computer Science, 199, 1066-1073.
https://doi.org/10.1016/j.procs.2022.01.135

Jlassi, O., & Dixon, P. C. (2024). The effect of time
normalization and biomechanical signal processing
techniques of ground reaction force curves on
deep-learning model performance. Journal of
Biomechanics, 168, 112116.
https://doi.org/10.1016/j.jbiomech.2024.112116

Ju, W., Wang, Y., Qin, Y., Mao, Z., Xiao, Z., Luo, J.,
Yang, J., Gu, Y., Wang, D., Long, Q., Yi, S., Luo,
X., & Zhang, M. (2024). Towards graph contrastive
learning: A survey and beyond. ArXiv,
arXiv:2405.11868.

Jun, K., Lee, D.-W., Lee, K., Lee, S., & Kim, M. S.
(2020). Feature Extraction Using an RNN
Autoencoder for Skeleton-Based Abnormal Gait
Recognition. IEEE Access, 8, 19196-19207.
https://doi.org/10.1109/access.2020.2967845

Kang, S., Hu, Z., Liu, L., Zhang, K., & Cao, Z. (2025).
Object detection YOLO algorithms and their
industrial applications: Overview and comparative
analysis. Electronics, 14(6), 1104.
https://doi.org/10.3390/electronics 14061104

Kececi, A., Yildirak, A., Ozyazici, K., Ayluctarhan, G.,
Agbulut, O., & Zincir, 1. (2020). Implementation of
machine learning algorithms for gait recognition.
Engineering  Science and  Technology, an
International Journal, 23(4), 931-937.
https://doi.org/10.1016/j.jestch.2020.01.005

Kolaghassi, R., Al-Hares, M. K., & Sirlantzis, K. (2021).
Systematic Review of Intelligent Algorithms in
Gait Analysis and Prediction for Lower Limb
Robotic Systems. IEEE Access, 9, 113788-113812.
https://doi.org/10.1109/access.2021.3104464

Kusakunniran, W. (2020). Review of gait recognition
approaches and their challenges on view changes.
IET Biometrics, 9(6), 238-250.
https://doi.org/10.1049/iet-bmt.2020.0103

Lai, B., Sasaki, J. E., Jeng, B., Cederberg, K. L.,
Bamman, M. M., & Motl, R. W. (2020). Accuracy
and precision of three consumer-grade motion
sensors during overground and treadmill walking in
people with Parkinson disease: cross-sectional
comparative study. JMIR Rehabilitation and
Assistive Technologies, 7(1), €14059.
https://doi.org/10.2196/14059

Lanshammar, H. (1982). On practical evaluation of
differentiation techniques for human gait analysis.
Journal of Biomechanics, 15(2), 99-105.
https://doi.org/10.1016/0021-9290(82)90041-0

Lee, T. K. M., Belkhatir, M., & Sanei, S. (2014). A
comprehensive review of past and present vision-
based techniques for gait recognition. Multimedia
Tools and Applications, 72(3), 2833-2869.
https://doi.org/10.1007/s11042-013-1574-x

Liao, R., Yu, S., An, W., & Huang, Y. (2020). A model-
based gait recognition method with body pose and
human prior knowledge. Pattern Recognition, 98,
107069.
https://doi.org/10.1016/j.patcog.2019.107069

Liu, J.,, Tan, X, Jia, X, Li, T., & Li, W. (2024a). A gait
phase recognition method for obstacle crossing
based on multi-sensor fusion. Sensors and
Actuators A: Physical, 376, 115645.
https://doi.org/10.1016/j.sna.2024.115645

Liu, J., Wang, W., Yi, B., Shen, X., & Zhang, H. (2024b).
Contrastive multi-interest graph attention network
for knowledge-aware recommendation. Expert
Systems with Applications, 255, 124748.
https://doi.org/10.1016/j.eswa.2024.124748

Liu, T, Ye, X, & Sun, B. (2018). Combining
Convolutional Neural Network and Support Vector
Machine for Gait-based Gender Recognition.
3477-3481.
https://doi.org/10.1109/cac.2018.8623118

Liu, Z., Alavi, A., Li, M., & Zhang, X. (2023). Self-
supervised contrastive learning for medical time
series: A systematic review. Sensors, 23(9), 4221.
https://doi.org/10.3390/s23094221

Marimon, X., Mengual, 1., Lopez-de-Celis, C., Portela,
A., Rodriguez-Sanz, J., Herraez, 1. A., & Pérez-
Bellmunt, A. (2024). Kinematic analysis of human
gait in healthy young adults using IMU sensors:
exploring relevant machine learning features for
clinical applications. Bioengineering, 11(2), 105.
https://doi.org/10.3390/bioengineering11020105

Mehmood, A., Amin, J., Sharif, M., Kadry, S., & Kim, J.
(2024). Stacked-gait: A human gait recognition
scheme based on stacked autoencoders. Plos One,
19(10), 0310887.
https://doi.org/10.1371/journal.pone.03 10887

Ming, Q., Miao, L., Zhou, Z., Song, J., & Pizurica, A.
(2024). Gradient calibration loss for fast and
accurate oriented bounding box regression. /[EEE
Transactions on Geoscience and Remote Sensing,
62, 1-15.
https://doi.org/10.1109/TGRS.2024.3367294

Narayan, V., Awasthi, S., Fatima, N., Faiz, M., &
Srivastava, S. (2023). Deep Learning Approaches
for Human Gait Recognition: A Review. 763-768.
https://doi.org/10.1109/ais¢56616.2023.10085665

Nguyen, K., Nguyen, V. V., Mai, N. T., Nguyen, A. H., &
Nguyen, A. V. (2023). Human Gait Analysis Using
Hybrid Convolutional Neural Networks. Journal of
Computer Science and Cybernetics, 39(2), 125-
142. https://doi.org/10.15625/1813-9663/18067

1808


https://doi.org/10.1109/ACCESS.2024.3378568
https://doi.org/10.1007/978-981-97-5594-3_7
https://doi.org/10.1109/ICCASIT62299.2024.10827917
https://doi.org/10.1109/ICCASIT62299.2024.10827917
https://doi.org/10.1016/j.procs.2022.01.135
https://doi.org/10.1016/j.jbiomech.2024.112116
https://doi.org/10.1109/access.2020.2967845
https://doi.org/10.3390/electronics14061104
https://doi.org/10.1016/j.jestch.2020.01.005
https://doi.org/10.1109/access.2021.3104464
https://doi.org/10.1049/iet-bmt.2020.0103
https://doi.org/10.2196/14059
https://doi.org/10.1016/0021-9290(82)90041-0
https://doi.org/10.1007/s11042-013-1574-x
https://doi.org/10.1016/j.patcog.2019.107069
https://doi.org/10.1016/j.sna.2024.115645
https://doi.org/10.1016/j.eswa.2024.124748
https://doi.org/10.1109/cac.2018.8623118
https://doi.org/10.3390/s23094221
https://doi.org/10.3390/bioengineering11020105
https://doi.org/10.1371/journal.pone.0310887
https://doi.org/10.1109/TGRS.2024.3367294
https://doi.org/10.1109/aisc56616.2023.10085665
https://doi.org/10.15625/1813-9663/18067

Urvashi et al. / Journal of Computer Science 2025, 21 (8): 1795.1810
DOI: 10.3844/jcssp.2025.1795.1810

Niyogi, & Adelson. (1994). Analyzing and recognizing
walking figures in XYT. Proceedings of IEEE
Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA.
https://doi.org/10.1109/cvpr.1994.323868

Parashar, A., Parashar, A., Ding, W., Shabaz, M., & Rida,
L. (2023). Data preprocessing and feature selection
techniques in gait recognition: A comparative study
of machine learning and deep learning approaches.
Pattern Recognition Letters, 172, 65-73.
https://doi.org/10.1016/j.patrec.2023.05.021

Peng, G., Li, R, Li, A., & Wang, Y. (2024). Synthesis
Pyramid Pooling: A Strong Pooling Method for
Gait Recognition in the Wild. [EEE Signal
Processing Letters, 31,3159-3163.
https://doi.org/10.1109/LSP.2024.3470749

Perry, J., & Burnfield, J. M. (2024). Phases of gait. Gait
Analysis, 9-16.

Ranjan, R., Ahmedt-Aristizabal, D., Armin, M. A., &
Kim, J. (2025). Computer Vision for Clinical Gait
Analysis: A Gait Abnormality Video Dataset. /EEE
Access, 13,45321-45339.
https://doi.org/10.1109/ACCESS.2025.3545787

Ray, A., Uddin, M. Z., Hasan, K., Melody, Z. R., Sarker,
P. K., & Ahad, M. A. R. (2024). Multi-Biometric
Feature Extraction from Multiple Pose Estimation
Algorithms for Cross-View Gait Recognition.
Sensors, 24(23), 7669.
https://doi.org/10.3390/s24237669

Rida, I. (2019). Towards Human Body-Part Learning for
Model-Free Gait Recognition. ArXiv:1904.01620.

Rida, I., Almaadeed, N., & Almaadeed, S. (2019).
Robust gait recognition: a comprehensive survey.
IET Biometrics, 8(1), 14-28.
https://doi.org/10.1049/iet-bmt.2018.5063

Roy, A., Sural, S., & Mukherjee, J. (2012). Gait
recognition using Pose Kinematics and Pose
Energy Image. Signal Processing, 92(3), 780-792.
https://doi.org/10.1016/j.sigpro.2011.09.022

Saha, U., Saha, S., Kabir, M. T., Fattah, S. A., & Saquib,
M. (2024). Decoding human activities: Analyzing
wearable accelerometer and gyroscope data for
activity recognition. [EEE Sensors Letters, 8(8), 1-
4. https://doi.org/10.1109/LSENS.2024.3423340

Sarkar, S., Phillips, P. J., Liu, Z., Vega, L. R., Grother, P.,
& Bowyer, K. W. (2005). The humanID gait
challenge problem: data sets, performance, and
analysis. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(2), 162-177.
https://doi.org/10.1109/tpami.2005.39

Sepas-Moghaddam, A., & Etemad, A. (2023). Deep Gait
Recognition: A Survey. [EEE Transactions on
Pattern Analysis and Machine Intelligence, 45(1),
264-284.
https://doi.org/10.1109/tpami.2022.3151865

Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T.,
& Yagi, Y. (2018). Multi-view large population gait
dataset and its performance evaluation for cross-

view gait recognition. /PSJ Trans. on Computer
Vision and Applications, 10(4), 1-14.

Tao, H., Zheng, Y., Wang, Y., Qiu, J., & Stojanovic, V.
(2024). Enhanced feature extraction YOLO
industrial small object detection algorithm based on
receptive-field attention and multi-scale features.
Measurement Science and Technology, 35(10),
105023.
https://doi.org/10.1088/1361-6501/ad633d

Umberger, B. R. (2010). Stance and swing phase costs in
human walking. Journal of The Royal Society
Interface, 7(50), 1329-1340.
https://doi.org/10.1098/rsif.2010.0084

Wan, C., Wang, L., & Phoha, V. V. (2019). A Survey on
Gait Recognition. ACM Computing Surveys, 51(5),
1-35. https://doi.org/10.1145/3230633

Wang, L., Tan, T., Ning, H., & Hu, W. (2003). Silhouette
analysis-based gait recognition for human
identification. [EEE Transactions on Pattern
Analysis and Machine Intelligence, 25(12), 1505-
1518.
https://doi.org/10.1109/tpami.2003.1251144

Xia, Y., Sun, H., Zhang, B., Xu, Y., & Ye, Q. (2024).
Prediction of freezing of gait based on self-
supervised pretraining via contrastive learning.
Biomedical Signal Processing and Control, 89,
105765.
https://doi.org/10.1016/j.bspc.2023.105765

Xu, D., Zhou, H., Quan, W., Jiang, X., Liang, M., Li, S.,
Ugbolue, U. C., Baker, J. S., Gusztav, F., Ma, X.,
Chen, L., & Gu, Y. (2024). A new method proposed
for realizing human gait pattern recognition:
Inspirations for the application of sports and
clinical gait analysis. Gait & Posture, 107, 293-
305.
https://doi.org/10.1016/j.gaitpost.2023.10.019

Yam, C.-Y., & Nixon, M. S. (2021). Model-based Gait
Recognition. Encyclopedia of Biometrics, 1082-
1088.

Yin, T., Wang, J., Zhao, Y., Wang, H., Ma, Y., & Liu, M.
(2025). Fine-grained adaptive contrastive learning
for unsupervised feature extraction.
Neurocomputing, 618, 129014.
https://doi.org/10.1016/j.neucom.2024.129014

Yu, S., Chen, H., Reyes, E. B. G., & Poh, N. (2017).
GaitGAN: Invariant Gait Feature Extraction Using
Generative Adversarial Networks. 30-37.
https://doi.org/10.1109/cvprw.2017.80

Yu, Y., He, Y., Karimi, H. R., Gelman, L., & Cetin, A. E.
(2024). A two-stage importance-aware subgraph
convolutional network based on multi-source
sensors for cross-domain fault diagnosis. Neural
Networks, 179, 106518.
https://doi.org/10.1016/j.neunet.2024.106518

Zhang, C., Qi, H., Wang, S., Li, Y., & Lyu, S. (2024).
COMICS: End-to-End Bi-Grained Contrastive
Learning for Multi-Face Forgery Detection. [EEE
Transactions on Circuits and Systems for Video
Technology, 34(10), 10223-10236.
https://doi.org/10.1109/tcsvt.2024.3405563

1809


https://doi.org/10.1109/cvpr.1994.323868
https://doi.org/10.1016/j.patrec.2023.05.021
https://doi.org/10.1109/LSP.2024.3470749
https://doi.org/10.1109/ACCESS.2025.3545787
https://doi.org/10.3390/s24237669
https://doi.org/10.1049/iet-bmt.2018.5063
https://doi.org/10.1016/j.sigpro.2011.09.022
https://doi.org/10.1109/LSENS.2024.3423340
https://doi.org/10.1109/tpami.2005.39
https://doi.org/10.1109/tpami.2022.3151865
https://doi.org/10.1088/1361-6501/ad633d
https://doi.org/10.1098/rsif.2010.0084
https://doi.org/10.1145/3230633
https://doi.org/10.1109/tpami.2003.1251144
https://doi.org/10.1016/j.bspc.2023.105765
https://doi.org/10.1016/j.gaitpost.2023.10.019
https://doi.org/10.1016/j.neucom.2024.129014
https://doi.org/10.1109/cvprw.2017.80
https://doi.org/10.1016/j.neunet.2024.106518
https://doi.org/10.1109/tcsvt.2024.3405563

Urvashi et al. / Journal of Computer Science 2025, 21 (8): 1795.1810
DOI: 10.3844/jcssp.2025.1795.1810

Zhang, F., Li, R., & Liu, S. (2010). Contour extraction of Zhen, T., Kong, J., & Yan, L. (2020). Hybrid Deep-

gait recognition. Procedia Engineering, 7, 275-279. Learning Framework Based on Gaussian Fusion of
https://doi.org/10.1016/j.proeng.2010.11.044 Multiple Spatiotemporal Networks for Walking
Zhang, R., Ji, Y., Zhang, Y., & Passonneau, R. J. (2022). Gait Phase Recognition. Complexity, 2020, 1-17.

https://doi.org/10.1155/2020/8672431

Zheng, J., Liu, X., Liu, W,, He, L., Yan, C., & Mei, T.
(2022). Gait Recognition in the Wild with Dense
3D Representations and A Benchmark. 20228-

Contrastive data and learning for natural language
processing. Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational  Linguistics: Human Language

. . 20237.
Technologies: Tutorial Abstracts, 3947. https:/doi.org/10.1109/cvpr52688.2022.01959
https://doi.org/10.18653/v1/2022.naacl-tutorials.6 Zou, Q., Wang, Y., Wang, Q., Zhao, Y., & Li, Q. (2020).
Zhang, S., & Ran, N. (2024). Fine-grained and coarse- Deep Learning-Based Gait Recognition Using
grained contrastive learning for text classification. Smartphones in the Wild. IEEE Transactions on
Neurocomputing, 596, 128084. Information Forensics and Security, 15, 3197-
https://doi.org/10.1016/j.neucom.2024.128084 3212. https://doi.org/10.1109/tifs.2020.2985628

1810


https://doi.org/10.1016/j.proeng.2010.11.044
https://doi.org/10.18653/v1/2022.naacl-tutorials.6
https://doi.org/10.1016/j.neucom.2024.128084
https://doi.org/10.1155/2020/8672431
https://doi.org/10.1109/cvpr52688.2022.01959
https://doi.org/10.1109/tifs.2020.2985628

