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Introduction

Abstract: The skin is the largest organ in the human body, covering an area
of around 20 square feet. Our skin keeps us safe from germs and the
environment, helps us regulate our body temperature, and gives us the ability
to feel touch, heat, and cold. More than 95 percent of all skin cancers are
caused by ultraviolet (UV) radiation. UV radiation is emitted by the sun,
although it is unrelated to sunshine or heat, as many people believe. The key
factor that causes skin cells to become cancer cells is exposure to UV
radiation. Overexposure to UV radiation causes almost all skin cancers
(about 99 percent of non-melanoma skin cancers and 95 percent of
melanoma). Sunburn has been shown to play a significant role in the
development of melanoma, the most dangerous of the three most common
types of skin cancer. According to research, UV rays can alter a gene that
suppresses tumours, increasing the risk of sun-damaged skin cells turning
into skin cancer. Melanoma is the worst form of skin cancer and one of the
most common cancers. Melanoma rates are quickly increasing, particularly
in young people and have increased in the previous 30 years, despite the fact
that cancer rates for other prevalent cancers have decreased. Melanoma is
highly treatable if found early. While late-stage melanoma treatments are
quickly improving, prevention and early detection remain the best treatment
options. Our study delves into the critical realm of skin cancer detection with
the aim of evaluating the efficacy of various cutting-edge machine learning
algorithms including Random Forest, Support Vector Machine, and CNN is
exploring skin cancer patterns. Through careful examination, utilizing
metrics like accuracy, precision, and recall, we highlight the superior
performance of SVC and CNN. Our research not only contributes to the
ongoing studies in skin cancer detection but also underscores the potential of
advanced computational strategies in augmenting preventive healthcare
strategies.

Keywords: Melanoma, Skin Cancer, Random Forest, Convolutional Neural
Network, Support Vector Machine, Decision Tree

Carcinoma (SCC),

melanoma, and Merkel

Skin cancer is characterised as the unchecked growth
of abnormal cells in the epidermis, the skin's top layer,
because of unrepaired DNA damage that results in
mutations. Skin tumours are created because of these
alterations, which allow skin cells to multiply quickly.
The most prevalent types of skin cancer (MCC) include
Basal Cell Carcinoma (BCC), Squamous Cell
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carcinoma. Skin tumours are a very common form of
tumour. In general, there are two types of tumour cells
in the skin: Malignant melanoma, which occurs
infrequently and is fatal; and nonmelanoma skin cancer,
which occurs frequently but is not fatal. Skin tumour
cells can occasionally be a sign of malignant melanoma.
It is the least prevalent and most deadly type of skin
tumour cells. This type of skin cancer is responsible for
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75% of deaths in the United States (Revathi and Chithra
2015). Around the world, 2 to 3 million people are
anticipated to receive a skin cancer diagnosis each year
(WHO, 2020). Moles are skin growths that are usually
brown or black in colour. Moles can appear alone or in
clusters anywhere on the skin. Moles form when skin
cells cluster together instead of spreading evenly across
the surface. Melanocytes are the cells that produce the
pigment that gives skin its natural colour. Moles can
darken after sun exposure, during adolescence, and
during pregnancy. Overexposure to the sun is linked to
the majority of skin malignancies. Certain factors can
raise the likelihood of acquiring skin cancer. These are
referred to as risk factors. The presence of one or more
risk factors does not guarantee that a person will develop
skin cancer. The sooner cancer is identified, the more
likely it is to be cured. However, if it is not recognised
early, it may spread to other parts of the body, causing
irreversible damage.

It's difficult for dermatologists to discern the difference
between a benign and a malignant mole, making it difficult
to come up with a suitable classification rule. Dermatologists
use a few strategies to improve categorization accuracy, such
as the ABCD rule (Atypical, Border, Colour, and Diameter),
although human knowledge is still essential (Franz et al.,
1994; Das et al., 2021). ML has the potential to help in
skin cancer early detection. For instance, deep
convolutional neural networks can assist in the creation of
a system for assessing skin images in order to detect skin
cancer (Saravana Kumar et al., 2021). Early identification
is essential for successful skin cancer therapy and better
outcomes. In order to save lives and minimise the
financial and physical demands on patients, automated
procedures that can identify the illness quickly are needed.
Professionals are capable of diagnosing cancer properly,
but due to their restricted availability, they are not always
available (Keeney et al., 2009). The aim of our work is to
analyse and comprehend the best out of five different

Table 1: Literature Survey

classification algorithms using a dermatologically attested
dataset (Schierbeck et al., 2019; Holger et al., 2018a). A
number of researches and implementations have been
carried out with respect of various types of cancer over the
years. The graph shown in Figure 1 indicates the number
of research papers and articles published in this field from
2012 up until the month of May in 2022 (Gutman et al.,
2016; Marchetti et al., 2018).

Comparative Analysis on Existing Works

Advancing technologies in the world today has led to
a splurge of technical advancements in medical diagnosis.
Skin cancer detection and classification is one such major

field which has evolved for the better with the

incorporation of technology. With different types of
Machine Learning (ML) and Deep Learning (DL)
algorithms available for object detection and image
segmentation, diagnosis of skin cancer at the preliminary
level can be complemented by using these algorithms.
Some of the existing works and research in this field are
listed in Table 1.
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Fig. 1: Published articles with the title skin cancer detection

S. No Dataset Used Methodologies Used Metrics used Interpretation of Results
Togacar et al. ISIC Cancer Dataset MobileNet V2 Model for Precision The dataset was restructured using the autoencoder
(2021) classification with Spiking Accuracy approach to improve usage. Two datasets were used to
Neural Network (SNN) F1-score train the MobileNetV2 model at first, and feature sets
Sensitivity were acquired to increase its effectiveness
Specificity
Thurnhofer- HAMZ10000 dataset - GooglLeNet F-Measure Plain Classifier
Hemsi and more than 10,000 Inception V3 Accuracy Most neural networks had decent training accuracy,
Dominguez images spread over 7 DenseNet201 Recall but DenseNet201 stands out from the competition by
(2021) different classes MobileNetV2 Precision correctly classifying 96% of the inputs.
Plain and Heirarchical Hierarchical Classifier
Clasifiers are used With more than 96% accuracy, DenseNet201 once
more produces the best results in the training set
Alizadeh and ISIC 2016 CNN Classification - Accuracy The ensemble model that has been suggested
Mahloojifar ISIC 2019 Model Proposed by Author  Average Precision combines CNN with feature extraction-based
(2021) PH2 (Batch Normalization) Specificity techniques to enhance classification performance
CNN Classification - Sensitivity

VGG19

Feature Extraction Based
Classification

Ensemble Method
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Table 1: Continued

Zhang et al. DermiS Digital

(2020a) Database, Dermquest
Database

Senan and PH2 Database

Jadhav (2021)

Garcia (2021) ISIC 2019

PH2 Database

7 Point Criteria
Evaluation Database
International Skin
Imaging
Collaboration (ISIC)
image archive

Khamparia et
al. (2021)

Arif et al.
(2022)

Interactive Atlas of
dermoscopy (EDRA),
International Skin
Imaging
Collaboration (ISIC)

Sreelatha et al. PH2 dataset

(2019)
Raza et al. Acral Melanoma and
(2022) Benign Data Set
Hasan et al. ISIC Dermascopic
(2019) Archive Database
Zhang et al. Dermquest
(2020b) DermlIS

Digital Database
Wen et al. ISIC Archive (various
(2022) years)
Himel et al. HAMZ10000, ISIC
(2024) 2019
Kassani and ISIC dataset

Kassani (2019)

WOA based CNN

Feature Extraction using
ABCD Rule - Extracting
features is used by means
of ABCD rule

ResNet50 Model - 50
convolutional layers

Transfer Learning

K-means

R-CNN

GFAC model

VGG16

Xception
InceptionResnetV2
DenseNet121
DenseNet169
DenseNet210

Basic CNN aglorithm

Optimized CNN

Vision Transformers
(ViTs), Hybrid CNN-
Transformer models,
Attention Mechanisms,
Explainable Al (XAl)
techniques (e.g., Grad-
CAM)

Lightweight CNN
architectures (e.g.,
MobileNetV3,
EfficientNet), Spiking
Neural Networks (SNNs),
Meta-learning
ResNet50

AlexNet

Xception

VGGNet16
VGGNet19

Sensitivity
Specificity
PPV

NPV
Accuracy

Specificity
Sensitivty
Accuracy

Precision
Recall
F1-score
Accuracy

Accuracy
Precision

Accuracy
Precision

Accuracy Precision
Recall

F1 score
Sensitivity,
Specificity

Recall
Specificity
F Measure
Precision

Accuracy Sensitivity

Accuracy, Precision,
Recall, F1-score,
AUC, Explainability
scores (e.g.,
localization
accuracy)

Accuracy,
Sensitivity,
Specificity,
Computational
Efficiency (FLOPs,
inference time)
Accuracy

F-score

70% of the data came from the training set, while 10%
came from the validation set. Test sets were made
using the remaining 20% of the material. Compared to
the other ten approaches, the CNN/WOA method is
the most accurate. This is caused by the merger of the
CNN with the whale optimisation algorithm. When the
CNN is subjected to this optimisation strategy, it is
able to avoid the local minima. This results in a global
minimum for the BP problem in the CNN and
enhances the effectiveness of the suggested approach
The diagnosis of the images followed the accepted
procedures. TDS is 5.65 in the proposed system. The
exceptional resolution of the pictures allowed for an
849% accurate diagnosis

The model's generalisation on the target dataset was
enhanced, and the model's ability to identify the
melanoma class was increased, according to the meta-
learning experiment findings.

Based on the results, it is reasonable to draw the
conclusion that the proposed framework performs skin
lesion categorization more accurately than earlier
pretrained deep learning architectures

The modified K-means clustering performs group
image segmentation better than existing techniques.
The classification component receives these grouped
photographs and categorises them as benign and
malignant melanoma lesions

The proposed image segmentation technique has a
Disc Similarity Coefficient of 97.08, which is quite
high in comparison to any other current technique

On the acral melanoma dataset, the ensemble-based
method greatly beat all four individual models in
terms of accuracy. Dermoscopy images of benign nevi
and acral melanoma were categorised with 97.83%
sensitivity, 97.50% specificity, and 97.93% accuracy
using the suggested model

The experimental and evaluation part suggests that the
model can be utilised as a starting point for assisting
medical professionals in detecting skin cancer. By
gathering a few random images, any doctor can get
accurate results, but the traditional method takes too
long to accurately identify cases

The efficiency result for CNN was optimised using an
upgraded version of the whale optimisation technique.
To reduce the error between the network’s output and
the desired output, the optimum weights and biases in
the network are discovered using the optimisation
technique. Results demonstrated that the suggested
strategy provides the best success for skin cancer
diagnosis

Studies are increasingly exploring ViTs and hybrid
architectures to capture global and local features more
effectively. Attention mechanisms highlight crucial
regions in the images, improving diagnostic accuracy
and interpretability. XAl methods are being integrated
to provide dermatologists with insights into the
model's decision-making process, fostering trust and
clinical adoption

Research is focusing on developing more efficient and
resource-friendly models for real-time or mobile
applications. SNNs offer potential for low-power
inference. Meta-learning techniques aim to improve
generalization with limited data

With a classification accuracy of 92.08 percent and an
F-score of 92.74 percent, ResNet50 outperforms
AlexNet, Xception, VGGNet16, and VGGNet19
architectures in testing
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Motivation

In the early 20" century, skin cancer detection was
performed by diagnosing and identifying large
macroscopic features and lesions on the skin. This was a
very tedious process making it impossible for early
detection of skin cancer. However, with time, technology
evolved and techniques evolved for the better. Image
processing is a vast area and covers a number of
interesting and fascinating concepts under the field of
visualisation in Computer Science. The main motive of
this research is to contribute to the healthcare sector and
medical fraternity by comparing the different available
ML algorithms for image detection which would help in
the early detection of skin cancer. Most of the research
focuses on implementing and comparing two to three
image detection algorithms for the diagnosis of skin
cancer. However, in a fast-moving world, with technology
advancing rapidly, it’s essential to analyse and
comprehend the best out of all the available algorithms. In
order to draw comparisons and conclusions about one of
the most accurate, efficient and precise algorithms, the
authors of this paper have implemented and analysed
various parameters of five different classification
algorithms using a dermatologically attested dataset.

Dataset Selection and Visualisation

The proposed machine learning algorithms for the
diagnosis of skin cancer were trained using the ISIC 2017
dataset. The dataset HAM10000 (Human against Machine
with 10,000 training images) contains approximately
10015 photos of skin lesions was used to conduct the
preliminary analysis. Figure 2 depicts how skin cancer
affects people by taking age as an attribute. It was
observed that skin cancer was most prevalent in 45-year-
olds. Figure 3 depicts how skin cancer affects people by
taking gender as an attribute. It was found to be more
prevalent in men. Figure 4 portrays the age and gender of
skin cancer patients. Figures 5 and 6 outline how skin
cancer affects different locations in the body. Figure 7
depicts the seven most common types of skin cancer.

Analysis and Discussion of Algorithms

Decision Trees, Random Forests, Support Vector
Classifier, Gradient Boost Method, and CNN are the
methods that were used in this study. Although it can be
used to address classification and regression problems,
decision trees are most frequently utilised to address
classification problems (Taha Jijo and Abdulazeez, 2021).
Each leaf node in this tree-structured classifier
corresponds to the classification outcome, while internal
nodes indicate dataset attributes, branches correspond to
decision rules. The supervised learning approach is used
by the well-known machine learning algorithm Random
Forest. Its foundation is ensemble learning, a method for
combining several classifiers to take on a difficult task and

enhance the performance of the model. Classification and
regression issues can be solved using the Support Vector
Machine, or SVM, a popular Supervised Learning
technique. However, it is mostly utilised in Machine
Learning to address categorization issues (Tschandl,
2018; Hu et al., 2018). One popular boosting technique is
gradient boosting. Each prediction in gradient boosting
corrects the error of its predecessor. The training instance
weights are not changed, unlike Adaboost, and each
predictor is trained using the predecessor's residual errors
as labels. Convolutional Neural Networks (CNNs) are
feed-forward neural networks that process data in a grid-
like pattern to assess visual images. A ConvNet is another
name for it. Using a convolutional neural network, items in a
picture can be recognised and categorised (Andre et al.,
2017; Zhen et al., 2019).

Age of cancer patient
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Fig. 2: It can be observed that skin cancer was most prevalent
in 45-year-olds closely followed by 50-year-olds

gender of cancer patient

1000
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=X

Fig. 3: Graph depicting number of cases with respect to gender.
Skin cancer was found to be more prevalent in men
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Age & gender of cancer patient

Fig. 4: Figure depicting the age and gender of cancer patients
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Fig. 5: Depiction of distribution of Cancer patients based on location

2000

1500 4§

1000 4

500

back lower extremity trunk upper extremigbdomen face dhest

foot unknown neck scalp hand ear genital acral

Fig. 6: Figure depicting the distribution of skin cancer location

Decision Trees

Decision trees are seemingly the best intuitive
machine learning classification algorithms and give a
good passage into the applied side of things with regards
to image classification. Here in image classification, the
DT’s are easy to interpret and very reliable, since the "if-
then" rule-based hierarchy is represented by a tree with
leaves designating a class as benign or malignant and
branches using logical conjunction to produce a value. As
a result of these values, a set of guidelines for interpreting
instances of a certain class are generated (Luo et al.,
2021). One of the major advantages of DT’s is that they

are usually very fast to compute and there is no
assumption about data distribution. Basically, the decision
tree is just a set of decision rules which converts
continuous data, like the spectral information from a skin
image, into discrete skin cancer information, such as
malignant or benign class (Lakshminarayanan et al.,
2022). Each pixel will be assigned to a skin cancer class
if its spectral information fits the conditions that are
required according to DT. In DT we have different criteria
which can be used to make the tree. In this paper, we have
performed the DT for Gini Index and entropy on the skin
cancer image dataset. The workflow of the decision tree
algorithm is shown below in Figure 8.
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Fig. 7: Figure depicting the seven most common types of skin
cancer. Neves was found to be the most common type of
skin cancer

1 Calculate Gini index or 2 Select best attribute and
Entropy of every attributes add it o the tree.

| |
| starT | ——»{ Data Preprocessing

Detect and classify

| oo /

Fig. 8: Workflow diagram of decision tree algorithm

Random Forests

A technique for classification and regression called
Random Forest (RF) uses supervised learning.
Compared to other machine learning methods for
image classification, random forests provide a number
of advantages. It can use continuous and categorical
data sets, is non-parametric, is simple to parameterize,
is adept at handling outliers in training data, and is not
very sensitive to over-fitting. An ensemble model
called random forest is essentially a group of trees
(Dandu et al., 2021). It is said that the more trees there
are, the more robust a forest is. In the case of random
forests, several decision trees are created on randomly
selected data samples and the response is calculated
based on the outcome of all of the decision trees. For
finding the best outcome from the decision trees they
perform voting (Ngan Thanh et al., 2021). In other
words, if we have 1000 trees created on the skin cancer
image dataset and among 1000, we have 800 which

predict that a particular pixel is malignant and the rest
200 which predict benign (Murugan et al., 2021; Babu
and Peter, 2021). So, the predicted output will be
malignant as we can see that the majority predict
malignant. The workflow of the Random Forest
algorithm is shown below in Figure 9.

Support Vector Classifier

Support Vector Machine (SVM) and Support Vector
Classifier (SVC) are basically the same if the hyper-
plane that we are using for classification in SVM is in
linear condition, then the condition is SVC (Babu and
Peter, 2021; Balasubramaniam, 2021). The main
objective of the SVC is to fit the training data which is
provided and use it to return the best fit hyper-plane
that divides the training data. After obtaining the
hyper-plane we can then feed the testing dataset into
the classifier to obtain output and find different
performance measures like recall and precision (Ansari
and Sarode, 2017; Balasubramaniam, 2021). It tries to
find a Maximum Marginal Hyper-Plane (MMH) that
best divides the dataset into classes i.e., malignant or
benign. Some of the key parameters in SVC are
Gamma, ¢, and kernel. Here the main hyper-parameter
is kernel. It maps the observations into some feature
space. Types of Kernels are Linear, Radial Basis
Function (RBF), and Polynomial Kernel (poly). The
choice of the kernel and their hyper-parameters greatly
affect the separability of the classes and the
performance of the algorithm (Hekler et al., 2019; Han
and Zheng, 2020). C parameter adds a penalty for each
misclassified data point. It is directly proportional to
the distance to the decision boundary. Gamma
parameter controls the distance of influence of a single
training point. The workflow of the SVC algorithm is
shown below in Figure 10.

|:> Training Training | Training
Sample 1 Sample 2 Sample n
Training Set l l l
Training Training | ,....... Training
Sample 1 Sample 1 Sample 1

Test Set

AT T
'\x__\ ofing /

Fig. 9: Workflow diagram of random forest algorithm
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Fig. 10: Workflow diagram of SVC algorithm

Gradient Boost Method

Gradient Boost Method (GBM) is one of the ML
algorithms used for classification and regression. It is one
of the ensemble techniques used for the purpose of
classification and has been quite popular because of its
ease of use and flexibility. The main essence of this
algorithm is the fact that weak learners can be boosted to
become better at the training and learning phase (Tschandl
et al., 2019). One of the first boosting algorithms was
AdaBoost which was later modified and improvised with
by wvarious scientists and researchers for further
developments. This technique focuses on the two or more
derivatives of the same function being used and is an
interactive functional gradient algorithm that aims to
reduce the loss of the function by selecting one which
possesses a negative gradient or a weak hypothesis
(Alkhushayni et al., 2022; Brinker et al., 2018). The three
main components of this algorithm are - loss function,
weak learner, and the additive model. With regards to the
image dataset used for this research, the algorithm works
by adding trees repeatedly by splitting and dividing the
characteristics. With every new iteration, the new set of
rules are merged and this decreases the loss function
(Javaid et al., 2020). Usually, the second order derivative
is utilised for achieving the loss function. The diagram
given in Figure 11 elaborates on the workflow of this
algorithm.

| 1. Generating
and extracting
features

Y

4, Evaluating the
function using

2. Choosing the
population of
test set values

A

3. Training the \ ¢ |
function for GBM

Training Set of
Images

Y

Dataset
.
Start "|Preprocessing

Testing Set of
Images

GBM Decision
Function

A 4

Detect and
Classify the skin
lesion

h 4

Stop

Fig. 11: Workflow diagram of GBM algorithm
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Fig. 12: Workflow diagram of CNN algorithm

Convolutional Neural Network (CNN)

The CNN algorithm contributes to the uniqueness
of CNN when compared to most of the ML algorithms
as it focuses on processing information and data the
same way that the human brain does (Rezaoana et al.,
2020). This algorithm revolves around the feature
extraction technique wherein suitable characteristics
are extracted from the image based on which certain
patterns are drawn. Convolution, in image processing,
literally translates to the wuse of point-based
multiplication between functions where one function
represents the image pixel matrix and the other
represents the filter being used (Malladi et al., 2021).
In this algorithm, there are many convolutional layers
which extract features from the images in the dataset
which are finally utilised for acquiring the required
output. The main steps involved in CNN for the
classification and detection of cancerous skin lesions
include preparing the image dataset of 1SIC skin cancer
for training. Following this, the data is then split into
training and test data using the 80-20 rule. Labels and
features are assigned using the neural networks. The
CNN model is then trained and compiled for around
twenty to thirty epochs or until a good accuracy is
achieved (Sedigh et al., 2019). The score and accuracy
of the model is then computed and the model is

Table 2: Performance metrics of different algorithms

validated using test images. The workflow of the
diagram is given as shown in Figure 12.

Results

In this paper, we have used CNN with the help of
Keras and TensorFlow in python, for training our model
for skin cancer detection. We have compared these
models with the help of performance measures like
accuracy, precision, recall, and F1 score as shown in
Table 2.

First, we have performed image pre-processing to
improve the quality of the image so that the model can
be better analysed. So, the images are resized and
segmented using Image Thresholding Techniques. Our
evaluation encompassed classical machine learning
algorithms alongside CNN. Using the scikit-learn
library, we instantiated Decision Tree Models with
both Gini index and Entropy criteria, a Random Forest
Model, an SVM model, and a Gradient Boosting
Machine (GBM) model, calculating their respective
performance metrics. As indicated in Table T1, the
Decision Tree model yielded accuracies of 66 and 70%
for Gini Index and Entropy, respectively, while the
Random Forest model achieved 79% accuracy.
Surprisingly, our CNN implementation, comprising six
layers, yielded an accuracy of 80.5% on the testing
dataset, slightly lower than the SVM model. However,
a deeper examination revealed that the SVC model
exhibited a recall score of 0, suggesting it incorrectly
classified all testing images as benign. This highlights
a limitation of the SVC model in handling class
imbalance. Going ahead, our findings raise important
questions about why CNNs could be superior to
conventional machine learning models in the detection
of skin cancer. More research is necessary to determine
if CNNs are inherently able to identify minute
characteristics that are suggestive of skin cancer
pathology that other models could miss. This
investigation is crucial to expanding our knowledge of
CNNs' applications in medical image processing and
their possible influence on raising skin cancer
diagnosis accuracy.

Model Class Accuracy Precision Recall F1 score
Decision tree Gini Index Benign 0.66 0.81 0.75 0.78
Malignant 0.21 0.26 0.23
Entropy Benign 0.7 0.82 0.81 0.81
Malignant 0.25 0.26 0.26
Random forest Benign 0.79 0.81 0.96 0.88
Malignant 0.32 0.08 0.12
SvC Benign 0.81 0.81 1 0.89
Malignant 0 0 0
GBM Benign 0.75 0.82 0.88 0.85
Malignant 0.31 0.21 0.25
CNN 0.805 0.78 0.8 0.79
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Conclusion

We can infer that the categorization accuracy is a poor
metric to use with this dataset due to class imbalance.
Here we are more concerned about not allowing our
predictions to have any false negatives, the correct metric
which should be used here should be recall. The recall of
the SVC model is 0 since it declared all the testing images
benign. Hence, SVC is a very poor model. While the CNN
model, on the other hand, has a good recall of 0.8. Thus,
the CNN model is reasonably good. Hence, we can
conclude that the CNN model works better than classical
Machine learning algorithms for the detection of
Melanoma in Skin Lesions.

Future Scope

Considering the endless possibilities of algorithms
and techniques which can be reinvented for increased
accuracy and efficiency in the models being curated,
skin cancer detection is surely an area offering extensive
research scope. Skin cancer is one of the most prevalent
types of cancer across the globe and its early diagnosis
can help save millions of lives of people. The techniques
and ML algorithms elaborated and implemented in this
paper focuses on the models and software side of
diagnosis (Adegun and Viriri, 2021; Kaur et al., 2021).
There are many techniques and strategies which can be
further researched upon which revolve around the use of
sensory equipment and tools to detect and diagnose skin
cancer and lesions. With respect to the CNN models,
different types of architectures of neural networks can be
further researched upon including those of AlexNet,
ResNet, ImageNet, etc. to compare and contrast the
accuracy and precision of classification and detection
results obtained from each of them (Saba, 2021; Vinod
and Thomas, 2021;). Furthermore, models which can
assess and detect cancer based on text-based attribute
dataset can also be extended to make skin cancer
detection and early diagnosis a versatile and flexible
domain.
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