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Abstract: Lung cancer is one of the world's leading causes of morbidity and
mortality; improving patient outcomes requires an early and precise
diagnosis. Lesion and tumor segmentation remains a challenging task in CT
images due to their inherent imaging limitations, such as the small size of
nodules, heterogeneous textures, blurry boundaries, and adjacent structures,
leading to misclassification and difficulty in delineating boundaries. To
analyse the severity of lung cancer in CT images, the Auto Weight Dilated
Convolutional Ensemble Network (AWDCE-Net) was developed in this
article. To extract features of multi-scale lung pulmonary nodules, we created
the AD-Net, or auto-weight dilated convolution network. In particular, multi-
scale convolutional feature maps were employed by the Auto-weight Dilated
convolutional (AD) unit to collect the MA features' auto-weight scales. Using
a learnable set of parameters, the AD unit fused convolutional feature maps
in encoding layers. The AD unit is a helpful design for feature extraction
during the encoding process. We combined the advantages of the U-Net
network for both shallow and deep features with the AD unit. AWDCE-Net's
exceptional effectiveness in processing lung cancer CT images is
demonstrated by experimental evaluation on the IQ-OTH/NCCD dataset,
which yielded an accuracy of 99.12% and an F1-measure of 99.12%. With
accuracy and F1-score improvements of 2.18 and 1.51%, respectively, these
measurements show a significant improvement over popular models.

Keywords: Lung CT Image, Classification, Self-Refinement, Feature Fusion
Module

Introduction

In scientific research, medical diagnosis, and
treatment, medical imaging is essential. It gives
physicians useful diagnostic information by displaying
the patient's body structure and functions in an
understandable manner. As medical imaging technology
continues to advance (Lundervold and Lundervold, 2019),
it has become an essential tool for disease diagnosis and
the creation of individualized treatment regimens (Cheng
et al., 2016). Additionally, inter-observer variability may
have an adverse effect on the diagnostic consistency of
manual examination. Artificial intelligence is used by
Computer-Aided Diagnostic (CAD) systems to help
increase efficiency in order to handle such issues. Because
they can directly extract hierarchical features from the
input data, convolutional neural networks in particular
have shown excellent performance in picture
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classification. CNNs have been used more recently for
tumor classification, segmentation, and detection. One of
the primary benefits of these automated diagnostic
systems is that they provide quicker interpretations, which
lessens the workload for radiologists (Sluimer et al.,
2006). Additionally, transfer learning has shown promise.
By capturing global information and long-range
relationships, transformer-based architectures and
attention mechanisms have started to outperform
conventional CNN techniques. Nevertheless, their
implementation is computationally costly (Tharwat et al.,
2022; Bade and Dela, 2020).

Medical image classification plays a foundational role in
computer-aided diagnosis systems, enabling automated
disease detection, subtype differentiation, and clinical
decision support (Lundervold and Lundervold, 2019; Cheng
et al., 2016; Tharwat et al., 2022; Bade and Dela, 2020; Bray
et al., 2024; Siegel et al., 2022). It serves as a critical
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component in early-stage  screening, pathological
stratification, and outcome prediction across a wide range of
imaging modalities. Despite rapid advances driven by deep
learning, developing models that remain accurate and robust
under clinical conditions continues to pose significant
challenges. Medical images often suffer from three key
issues: Blurred or diffuse lesion boundaries that obscure
precise localization, heterogeneous textures and background
noise that reduce discriminative power, and variations in
resolution and scale that hinder cross-dataset generalization.

Deep learning has brought significant breakthroughs
in medical image classification, enabling more accurate
and automated disease recognition across a wide spectrum
of clinical scenarios such as colorectal cancer detection
(Adams et al., 2023), gastrointestinal lesion diagnosis
(Sluimer et al., 2006), and digital pathology analysis
(Gould et al., 2013). Among the many architectures
explored, Convolutional Neural Networks (CNNs) have
long served as the cornerstone due to their strong
inductive biases and hierarchical feature composition
(Ciello et al., 2017). These properties make CNNs
especially effective for capturing localized structures such
as edges, textures, and gland boundaries, which are
essential for recognizing most anatomical and
pathological patterns. As a result, CNN-based models like
ResNet (McDonald et al., 2015), DenseNet (Hanna et al.,
2018), and EfficientNet (De Margerie-Mellon and
Chassagnon, 2023) have been widely adopted in tasks
such as tumor grading and polyp classification.

Lung cancer is one of the most common and deadly
cancer diseases worldwide, with high morbidity and
mortality rates. Research on Cancer’s most recent
projections indicate that lung cancer is expected to be the
leading cancer type in 2022, with nearly 2.5 million new
diagnoses, representing 12.4% of all global cancer cases
(Bray et al., 2024). In its early stages, lung cancer often
has no obvious symptoms, and many patients are not
diagnosed until they develop late symptoms such as
persistent cough, chest pain, dyspnea, or weight loss,
resulting in a lower overall survival rate (Siegel et al.,
2022). Pulmonary nodules are one of the early signs of
lung cancer. Timely detection and monitoring of
pulmonary nodules is very important for early
identification of lung cancer. Imaging examinations can
help detect nodules in the lungs, making early diagnosis
possible, thereby significantly improving patient
prognosis and survival rates (Adams et al., 2023).

Lesion and tumor segmentation remains a challenging
task in CT images due to their shadowing and indistinct
tissue boundaries. CT is widely used for lung cancer
screening, allowing radiologists to assess the risk of lung
cancer by identifying and segmenting lung nodules
(Sluimer et al., 2006). First, segmenting lung nodules can
extract the morphological features of nodules and provide
a basis for judging whether the nodules are benign or
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malignant by determining whether the nodules have regular
shapes and clear boundaries. Moreover, as shown in Fig. 1,
various lung nodule types, such as solid, partially solid, and
calcified, exhibit distinct morphologies and characteristics,
highlighting the need for prompt and precise screening and
diagnosis (Gould et al., 2013). However, identifying lung
nodules on chest CT is a tedious and challenging task
(Ciello et al., 2017). Each chest CT image may contain
hundreds of slices, and radiologists must spend a lot of time
and energy to examine each set of images (McDonald et al.,
2015). As lung cancer screening advances, the number of
chest CT scans is expected to rise, which could lead to an
increase in diagnostic errors by radiologists due to the
higher workload (Hanna et al., 2018; De Margerie-Mellon
and Chassagnon, 2023).

A brief explanation of Lung cancer subtypes is given
below:

Adenocarcinoma: Making up to 40% of all cases,
adenocarcinoma is the most common histologic
subtype of non-small cell lung cancer (Adams et al.,
2023). Squamous Cell Carcinoma usually appears in
the central airway, such as the left or right bronchus, or
the central lung (Sluimer et al., 2006)

Large Cell Carcinoma: The third type of NSCLC, large
cell carcinoma, affects the outer parts of the lungs. It

only makes up about 10% of cases when compared to
other forms of NSCLC (Gould et al., 2013)

The overall flow diagram of the Ensemble model for
severity analysis of lung cancer is given in Figure 2.

Related Work

Early detection and treatment of lung cancer is critical
to saving lives. When malignant cells in one or both lungs
grow out of control, it can lead to lung cancer, a
potentially fatal condition that can spread to other organs
if left untreated. An efficient Computer-Aided Diagnostic
(CAD) system that can more accurately identify and
categorize lung cancer is therefore desperately needed.
This section will provide a thorough discussion of the
methodologies, tactics, techniques, and phases of lung
image processing used by different authors in the
literature to detect lung cancer.

Fully Convolutional Network (FCN) (Long et al.,
2015) pioneered a pixel-wise prediction architecture for
semantic segmentation. U-Net (Ronneberger et al., 2015)
introduced an encoder for capturing context and a decoder
that supports precise positioning, with the advantage of a
simple and efficient architecture that only requires a few
data points for training. Subsequently, the U-shaped
architecture was improved and applied to image
segmentation in various ways. UNet++ (Zhou et al., 2020)
Designed a new skip connection based on dense
connections for more flexible feature fusion. Attention U-
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Net (Nitha et al., 2024) introduces the Attention Gate
(AG) mechanism, which allows the model to focus on
specific local regions and suppress the influence of
irrelevant regions. Compared to the global attention
mechanism, it is more suitable for dense small object
segmentation.

ResUNet++ (Jha et al., 2019) introduced Atrous
Spatial Pyramidal Pooling and attention modules into the
network, allowing context information to be captured at
different scales and focusing on important areas of the
feature map. Meanwhile, the proposed attention
mechanism enables the model to focus more precisely on
characteristic regions of lung nodules, thereby achieving
higher segmentation accuracy in complex backgrounds.
Through these enhancements, the proposed model aims to
provide a more effective solution for lung nodule
segmentation tasks.
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Fig. 1: Multi-class lung cancer CT images
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Fig. 2:Ensemble framework for prediction and
classification of Lung cancer CT images
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In this study, a deep learning-based model is proposed
to solve the lung cancer classification problem. The model
combines multi-level features using parallel feature
learning, while the parallel operation of dilated and
deformable convolution layers effectively extracts
features with different scales and shape variations.
Specifically, dilated convolutions capture more contextual
information over an expanded area, while deformable
convolutions use dynamic receptive fields to adapt to
variations in the shape and size of objects. The parallel
integration of these two techniques enhances the model's
ability to detect both small and large lung nodules, thereby
optimizing classification performance. The success of the
model was tested on different datasets obtained from
public lung cancer datasets, IQ-OTH/NCCD, and LIDC-
IDRI. Using a variety of methods, these algorithms have
demonstrated good accuracy and sensitivity rates. These
investigations using a variety of Al and DL techniques
have significantly improved the diagnosis of lung cancer
and demonstrated encouraging outcomes in the areas of
early detection and classification.

Auto Weight Dilated Convolutional Ensemble Model

Lung cancer has a high mortality rate and is a fatal
disease. =~ Computed Tomography (CT) image
segmentation of the lung automatically is useful for the
patient's subsequent diagnosis and therapy. The overall
network structure framework is shown in Figure 1. The
input image to be segmented is processed in the model for
feature  extraction. The  Multi-Scale  Feature
Compensation Module (MFCM) integrates features
between adjacent encoders. The features at different
scales are extracted with pooling operations of different
sizes and dilated convolutions of different expansion
rates. The Subtraction Fusion Module (SFM) uses
attention mechanisms to focus on target features in both
channel and spatial dimensions. The feature differences
are employed to help target localization, reduce feature
redundancy, and enhance the robustness of the model.
Additionally, a branch is introduced on the encoding path
to extract the frequency domain features. The Wavelet
Attention Enhancement Module (WAEM) is designed.
The wavelet transform canbetter  capture local changes
and features. The wavelet transform extracts low-
frequency information by decomposing the signal into
different frequency sub-bands. The low-frequency
information extracted by the wavelet transform focuses
more on overall structures, while the features extracted by
max-pooling focus more on local features. By
concatenating the features from the two branches, the
diversity of features is enriched.

Figure 3 shows the suggested design for a multiclass
lung cancer classification system. The network is
primarily composed of the linear up-sampling, the AD
unit, the residual (Res) unit, the first and last convolution
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units, and other components. During the down-sampling
procedure (also called feature coding extraction), we
generate multi-scale feature maps using 8 AD units. In the
up-sampling stage (feature decoding), we combine the AD
unit, the Res unit, and a linear up-sampling layer to create
a primary decoding layer. After that, a convolution unit
generates the output of the network model. For multiclass
lung cancer classification, batch normalization and ReLU
functions are also integrated into each convolution unit,
AD unit, and Res unit.

We used two convolution units to reduce and then
increase the number of convolution kernels in the Res
Unit layer for the Res block shown in Figure 4(b), in order
to accomplish feature learning and feature map
reorganization.

AD-Net

We started with two convolution units (like the
Res unit) for the AD Unit layer in Fig. 4(a). The
network's feature extraction capabilities could be
enhanced by utilizing the two kinds of convolutions. As
shown in Fig. 5, we employed three neural networks
(Block-R1, Block-R2, and Block-R3) and three
alternative residual units in place of the AD unit in
order to more precisely evaluate its performance. In the
encoder step, every residual block is a dual-pathway
structure. The current channel depth settings are 256,
128, 64, and 32. The residual block is the most
important component in downsampling. In the decoder
stage, we upsample by connecting a convolutional and
a deconvolutional unit. The kernel size is 3x3x3, and
the stripe of the deconvolutional unit is 2x2x2.
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Fig. 3: An illustration of the proposed architecture for a multi-class lung cancer classification system

(A) AD unit

(B) Res Block

Input

Output

Addition

Leamable parameter a
Leamable parameter &

BatchNorm + ReLU + Convixlxl +
BatchNorm + ReL.U + Convlxlxl

BatchNorm + ReLU + Conv3x3x3 +
BatchNorm + ReLU + Conv3x3x3

BatchNorm + RelU +
Dilated Conv with dalation 2x2x2 and kemnel 3x3x3

BatchNorm + ReL.U +
Dilated Conv with dalation 3x3x3 and kemel 3x3x3

Fig. 4: Detailed architecture of the proposed Ensemble model (a) AD unit. (b) Res block unit

165



L. Sandhya and K. Marimuthu / Journal of Computer Science 2026, 22 (1) 162.170

DOI: 10.3844/jcssp.2026.162.170

Norm

(RD) (R2) (R3)
Fig. 5: The different residual convolution blocks

Every convolutional and deconvolutional unit in this
step is connected to the convolutional or deconvolutional
units by batch normalization and ReLU activation
functions. Similarly, we set the channel depth of the
decoder stage to 32x64x128%256. The remaining blocks
allow a deep neural network to generate deeper layers
with more pronounced gradients when combined with the
network. As a result, gradient vanishing is a very
uncommon phenomenon that benefits from MAs' more
useful characteristics. The gradient propagation formula,
which can be defined in the convolutional layer, is
specified by Equation (1):

8, =" (0ut) (w,,)" 8., 0ut (1)

Gradient in Block-R1, Block-R2 and Block-R3 can be
defined as per Equation (2):

Outrl“1 = f (5, (OUtr1, ) +0ut,,, )
Out, = f(5,(f(5(out,))+Out,)) 2
Out,, = &,(F(5(f (0ut,5))+0y3))

Where f means the activation function, §,andd,
represent the first and second convolution calculations,
respectively.

Results and Discussion
Data Sets and Evaluation Indicators

Two datasets were used in this study, the 1Q-
OTH/NCCD lung cancer dataset and the Kaggle Chest CT
image dataset.

The 1Q-OTH/NCCD dataset contains CT scans of
lung cancer patients at different stages as well as
healthy individuals. There are 1197 CT images for 110
instances. Fifty-five of the cases were categorized as
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normal, forty as malignant, and fifteen as benign
(Alyasriy, 2020).

Kaggle Chest CT: Lung cancer CT scans can be found
in the Kaggle Chest CT dataset. The dataset is organized
into three folders: Training, test, and validation. There are
four types of CT scans: Normal, squamous cell
carcinoma, adenocarcinoma, and big cell carcinoma.
There are 1000 CT scans of the chest that show lung
cancer. These pictures are a publicly accessible dataset
that has been annotated by qualified radiologists. There
are 1000 cases, with normal being 215 CT scans,
Squamous Cell Carcinoma is 260, Large Cell Carcinoma
is 187, and Adenocarcinoma is 338 (Hany, 2024).

Evaluation Metrics

For a thorough quantitative study, the segmentation
model's performance was assessed using Accuracy,
Precision, Recall, and Specificity. In order to verify the
efficacy of our suggested approach, thorough comparisons
are made with both traditional and cutting-edge techniques.
These methods include UNet, AttUNet, VNet,
SwinUNETR, U2-Net, APAUNet, MGNet, and UNet++.

Performance of Proposed Methods

To validate the effectiveness of our proposed
method, comprehensive comparisons are performed
with both classical and state-of-the-art methods. This
paper compares the performance of our proposed
model, AWDCE-Net, to other leading lung cancer
classification methods. In terms of feature extraction
and segmentation accuracy, the precision, recall, F1-
score, and accuracy metrics of each model demonstrate
their differences. CNN-based models, such as SegNet,

ResUNet, UNet, and UNet++, have demonstrated
consistent  performance in  medical picture
segmentation and are widely used in real-world

applications. Table 1 displays the experimental results
of the 1Q-OTH/NCCD data set; Tables 2 display the
Kaggle Chest CT data set, respectively.

The confusion matrix of multi-class lung cancer CT
images of the IQ-OTH/NCCD dataset results of our
proposed method is given in Fig. 6, and the KAGGLE
CHEST CT data set is given in Fig. 7. The proposed method
outperforms other models in its ability to capture details and
global features, which helps segment lung nodules more
accurately. One may also observe that some methods exhibit
high recall but low precision, indicating that these models
tend to over-segment and generate excessive false positives.
This characteristic behavior is commonly observed,
particularly in images with imbalanced foreground-to-
background ratios and high similarity between target
structures and their adjacent tissues. Our approach
overcomes these limitations by integrating multi-scale
feature refinement with a multilevel attention mechanism,
enabling superior boundary awareness and enhanced
contextual understanding.
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Table 1: Experimental results of AWDCE-Net and Other models on the 1Q-OTH/NCCD Dataset

Models

Accuracy Precision Recall F1-measure
(%) (%) (%) (%)
U-Net 86.40 82.52 86.32 83.20
Att-U-Net 98.11 97.67 97.89 97.78
V-Net 97.85 98.81 97.60 97.45
SWIinUNETR 97.98 96.67 97.67 97.23
U2-Net 98.05 97.81 98.22 97.81
APAUNet 96.35 96.03 97.13 96.11
MGNet 98.40 98.0 98.56 98.1
UNet++ 98.89 98.67 98.78 98.78
Proposed Method (AWDCE-Net 99.12 99.18 99.14 99.19
Table 2: Experimental results of AWDCE-Net and Other models on the KAGGLE CHEST CT dataset
Models Accuracy Precision Recall F1-measure
(%) (%) (%) (%)

U-Net 87.63 82.11 86.34 83.34
Att-U-Net 88.11 87.67 87.67 87.78
V-Net 87.85 88.81 86.81 87.45
SWIinUNETR 87.98 86.67 88.91 87.23
U?-Net 88.05 87.81 88.25 87.56
APAUNet 91.35 91.03 91.81 91.11
MGNet 88.40 88.0 88.11 88.19
UNet++ 88.89 88.67 88.97 88.78
Proposed Method(AWDCE-Net 98.11 98.98 98.67 98.12

Ablation Experiment

In AWDCE-Net, some functional modules were created
and utilized in the network to enhance segmentation in order
to make up for the performance loss brought on by the
decrease in trainable parameters as a result of network light
weighting. In this work, the AD module modulates the
weight of each pixel by learning local and global
relationships between the primary phase (venous phase) and
the supplementary phases (non-contrast and arterial phases).
The Res block is used to establish global cross-modality
associations. This transformer adaptively extracts refined
tokens, facilitating more effective feature representation, and
the Fuzzy skip connection utilizes fuzzy processing to
formulate high-level semantic features and suppress
redundant background information, thereby obtaining high-
precision lung nodules segmentation results. Figure 8
displays the outcomes of the experiment. After the functional
modules are removed, Baseline serves as the network
framework's backbone model. Figure 8 shows that the
introduction of upgraded convolutional blocks led to varied
degrees of overall performance improvement on all three
datasets when compared to the backbone network Baseline.
Qualitative segmentation results for all comparison

approaches are shown in Figure 8. Visual examination shows
that for all three datasets, our suggested approach reliably
generates segmentation masks that nearly match the ground
truth annotations. Our solution outperforms current
approaches in border delineation in the Lung dataset,
especially when dealing with intricate morphological
structures with variable shapes. The majority of approaches,
on the other hand, have a tendency to provide fragmented
forecasts and deal with the over- or under-segmentation
problem.

24 [4] ]

True Label
Malignant
e

Fig. 6: Confusion matrix for IQ-OTH/NCCD dataset
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Fig. 8: Visual comparison of ablation experiments. (a)
The original CT image of the lung nodule, (b)
ground truth, (c) AWDCE-Net, (d) Baseline, ()
Baseline + R1, (f) Baseline + R2, (g) Baseline +
(R1+R2)

Grad-Cam Analysis

A Kkey interpretability tool in deep learning is
gradient-weighted class activation mapping, or Grad-
CAM, which makes it possible to visualize the areas of
an input image that most strongly influence the model's
predictions. Grad-CAM generates heatmaps that
clearly illustrate the model's focal regions by
calculating the gradients of a target class in relation to
the final convolutional layer. This approach guarantees
that the model's decision-making process is in line with
clinically significant aspects, promoting transparency
and reliability, which makes it especially useful for
medical imaging applications like lung cancer
diagnosis.  Grad-CAM  heatmaps  for  three
representative CT scan scenarios benign, malignant,
and normal are shown in Figure 9.
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Fig. 9: Grad-Cam Heat Maps for Lung Cancer CT Images

Conclusion

In this paper, we introduced a novel framework for
CT image analysis that combines attention-aware
aggregation modules with hierarchical feature fusion.
Our method's better capacity to capture discriminative
characteristics was demonstrated through extensive
testing on three public ling datasets, consistently
outperforming state-of-the-art techniques in both
quantitative and qualitative evaluations. The ablation
trials demonstrate how well the suggested modules
work to improve segmentation performance and feature
representation. These results demonstrate the potential
of our methodology for quantitative lesion analysis in
ultrasound imaging and clinical diagnosis. A feature
refinement module with dense connections was created
to mitigate the effects of image noise. It was then
applied to additional skip connection paths to
maximize feature details and enhance model
segmentation performance overall. AWDCE-Net has a
high reference value and performs well on a variety of
datasets when compared to other top network models
in the same field. Although the model has achieved
good performance, due to the low overall parameter
count of the model, there may be certain limitations in
segmentation ability. This approach has the potential to
improve early diagnosis of lung cancer, which is
important for improving patient outcomes and survival
rates. Scalability and viability for practical clinical
applications are guaranteed by its lightweight design.
To optimize its clinical impact, future work will
concentrate on improving the model, expanding its
application to different imaging modalities, and
evaluating  its  generalizability — across  other
demographics and datasets.
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