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Abstract: Quantum annealing is a metaheuristic method aimed at finding
the global minimum of a pseudo-Boolean quadratic function. To solve a
problem by a quantum annealer, it must be restated as a QUBO (quadratic
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the pioneering gate based circuit model (Deutsch, 1989)
and the adiabatic quantum computing model proposed
about 25 years ago (Farhi et al., 2000, 2001). The circuit
model, which is based on the Heisenberg-Born picture of
quantum mechanics, embodies an evolution of the
system with discrete steps, that is achieved by applying
quantum gates that represent the unitary operators in
finite-dimensional spaces. In contrast to that, the

Introduction

Quantum Computing

Quantum Computing is a revolutionary computing
paradigm harnessing the unique principles of quantum
mechanics,  superposition, entanglement, unitary
evolution, and measurement, to process information.

Quantum computers do not aim for a replacement of
classical computers; rather, they can process information
in a way that classical computing simply cannot, thus
providing significant advantages over solving certain
problems that are beyond the capability of classical
computing.

From a practical viewpoint, there are two main
approaches in utilizing quantum effects for computing,
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adiabatic model follows the Schrodinger picture of
quantum mechanics that describes the evolution of a
quantum system in a continuous framework, through the
application of a Hermitian operator, which represents the
energy Hamiltonian of the system (Mahasinghe et al.,
2019). The aim of introducing the adiabatic framework
was to obtain efficient solutions to instances of NP-
complete problems, which had not shown much progress
in the gate model.
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Adiabatic Quantum Computing

Recall that adiabatic quantum computation (AQC)
was introduced specifically to handle NP problem
instances; it works by encoding an optimization problem
in the form of a cost function in a time-dependent
Hamiltonian. AQC incorporates the process of evolution
of the initial problem Hamiltonian, whose ground state is
easy to prepare, into a final Hamiltonian that encodes the
solution to the problem through the ground state (Albash
and Lidar, 2018). The Hamiltonian is guaranteed to
preserve the ground state-hence will provide the best
solution, if the evolution is carried out slowly enough.

Quantum Annealing

The sufficiently slow evolution of the energy
Hamiltonian in the adiabatic paradigm of computing
resembles the slow cooling of metals to achieve a stable,
low-energy state, which has been the motivation for the
well-known optimization heuristic simulated annealing
(SA). Inspired by SA, quantum annealing was introduced
in the early nineties (Apolloni et al., 1990) as its
quantum counterpart and was developed further. The
current state of annealing was formulated in Kadowaki
and Nishimori (1988). Later, following the footsteps of
the adiabatic algorithm, QA was seen as the practical
pathway to achieve the quantum speedup, and the
Canadian company D-wave systems started making
commercial quantum annealers that provide promising
solutions to many instances of NP problems. These
machines are seeking the ground state of the generic
Ising spin model, yet, from a computer science
perspective, it is more convenient to deal with the QUBO
model.

The conversion from Ising to QUBO is performed via
a simple transformation, and it is straightforward. QA
aims to surpass SA by leveraging special quantum
mechanical fluctuations such as quantum tunneling when
seeking for the global minima of an energy landscape,
where QA can escape from a local minima through the
energy barrier as depicted in Figure 1 (Rajak et al.,
2023).

Quantum annealing is generally more noise-tolerant
due to its ability to leverage environmental noise for
certain computations, whereas universal quantum
computing requires precise error correction to mitigate
the effect of noise (Kapit and Oganesyan, 2017; Dickson
et al., 2013). Also, QA is found to be resilient against
dephasing errors (Yarkoni et al., 2022). These reasons
have caused QA to draw the attention of the computer
science community. Where leading quantum companies
like IBM have only developed 1000+ error-corrected
qubit QPUs so far, D-wave has 5000+ qubit QPUs for
commercial usage.

Many optimization problems, such as traveling
salesperson (Martonak et al., 2004), job-shop scheduling
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(Carugno et al.,, 2022), isomorphism (Calude et al.,
2017), route planning (Hua et al., 2024), and graph
coloring (Dinneen et al., 2019), prime factorizing (Jiang
et al., 2018), and many other problems (Lucas, 2014),
were encoded and solved through QA, leading to the
solvability of real-life problems such as logistics
optimization, machine learning, and financial modeling,
route optimization.

A
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w

Y

spin configuration

Fig. 1: Thermal fluctuations vs quantum tunneling in a system
with local energy minima separated by an energy barrier

While classical optimization methods such as linear
programming, constraint programming, or metaheuristics
(simulated annealing) are widely used for combinatorial
problems, they typically operate directly on the original
problem formulation. Although approaches like
simulated annealing use QUBO, it is not essential in
classical methods. But in contrast, quantum annealing
requires a transformation to QUBO (or Ising) form,
which introduces unique challenges such as compact-
quadratization and embedding. This distinction
highlights the specialized role of QUBO as the standard
interface for quantum hardware, necessitating dedicated
preprocessing techniques not required in classical
optimization. This contrast leads to more focused and
dedicated studying in the annealing and QUBO realm,
separately from the traditional optimization approaches.

D-Wave Machines

D-Wave quantum annealers are specialized quantum
computers that draw optima or near-optima solutions to a
cost function with binary variables (Lanting et al., 2014;
Johnson et al., 2011). Using the theories of QA, it was
the first to be commercially introduced as a quantum
annealing device, with specialized hardware for solving
Ising / QUBO problems (Ding et al., 2024). D-wave
provides cloud access to its use of hardware
commercially through their Leap service.


http://192.168.1.15/data/13631/fig1.jpg
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The qubits in quantum annealers are arranged in a
particular way, which is called the network topology, and
it becomes a critical factor when programming these
devices. Earlier, D-wave used a Chimera graph for
network topology, and they enhanced qubit connectivity
by replacing it with Pegasus topology in their next-
generation quantum annealers. The quantum processor
unit uses a lattice that is divided into Pegasus unit cells,
where each cell contains eight qubits arranged in a
bipartite graph. This enhances the qubit connectivity by
increasing the degree of each qubit to 15 and introducing
odd couplers that connect qubits in adjacent rows or
columns (Boothby et al., 2020).

This inherent hardware design, with the use of
couplers, introduces a critical constraint to the utilization
of currently available quantum annealing devices, which
is the limitation of 2-body interactions. This happens to
be a key reason why QA requires quadratization of
higher-order terms in cost functions.

For the D-Wave quantum computer, the Hamiltonian
may be represented as follows (D-WaveSystems, 2024):

Initial Hamiltonian

» )0 (1)
+¥ (Z hie'? + Z Jz‘,j&i”&ﬁ”)
i i>]
Final Hamiltonian
where,
2
hi = & 21 (Gik + Qi) )
PO b ol LR 2 3)
v 0 otherwise

In Eq. 1 ,&S) denotes that Pauli z-gate is acting on
the ith qubit, and &g(f) is described similarly. The terms

¢, in Equation 2 come from the QUBO problem, which
can be expressed as the minimization of a quadratic
objective function f(z) = z7 Qx, where z is a n-vector
of binary variables and @ is an upper-triangular 1 x n
matrix:

4)

Accordingly, problems with terms above quadratic
cannot be encoded in the energy function, requiring
quadratization pre-processing for any higher-order
interaction.

z* = min, Zigj z;Q; j)Tj, where z; € {0,1}.

Quantum-Inspired Digital Annealing

Digital annealing is a computing paradigm inspired
by QA, which was aimed at minimizing the decoherence
and scaling issues encountered in QA. By incorporating
merits from both quantum and general-purpose
computing, Fujitsu (Aramon et al., 2019), in
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collaboration with the University of Toronto, developed
digital annealers. Naturally, digital annealers require
problems to be encoded in the form of QUBO.
Therefore, quadratization becomes an essential step in
solving cubic and higher-order problems using these
devices (Sao et al., 2019).

Another Annealing device developed by Hitachi is
the CMOS annealing machine. This is a similar
quantum-inspired device, requiring quadratization for
higher-order functions (Codognet, 2021).

Pseudo-Boolean Functions

Many real-world combinatorial  optimization
problems, decisions that tend to be inherently binary
(yes/no, on/off, selected/not selected). Pseudo-Boolean
functions (PBF) are ideal mathematical formulations for
such optimization problems of Boolean variables
expressed as multi-linear polynomials (Zielinski et al.,
2023). They are central to optimization problems used to
solve with the aforementioned solvers
(quantum/classical) due to their ability to model
cost/energy functions. In the case of QA, after
formulating a PBF, they are mapped to a Hamiltonian in
a matrix form, which should be in the Ising or QUBO
form so that it can be embedded in the quantum
hardware (Fernandez-Villaverde and Hull, 2023).

The formula for a Pseudo-Boolean function is
typically expressed as:

)

f(z1,22,...,20) = ZSQ{I,Z“.,n} cs Hz’eS Ti
where,

z; € {0, 1} are binary variables,

cg are coefficients associated with subsets S of the

set of variables {x1, s, - . -, T, }, and,

]_[iE s x; represents the product of all variables z; in
the subset S.

The degree of a pseudo-Boolean function is defined
as the size of the largest subset S for which the

coefficient c¢g i=0. Pseudo-Boolean functions are
important as their applicability lies in a wide variety of
domains other than optimization problems. It must be
noted that minimizing a pseudo-Boolean function is an
NP-hard problem (Boros and Gruber, 2014). As the
adiabatic model is specially designed to address the NP
problems, annealers have provided promising solutions
to this minimization problem.

Quadratic Unconstrained Binary Optimization

QUBO, formerly referred to as Unconstrained Binary
Quadratic Programming (UBQP), is the integral format
that modern annealers can work with. QUBO
demonstrates real-world relevance in many domains such
as portfolio optimization, scheduling, Max-Cut, etc.
(Glover, 1975; Kochenberger and Glover, 2006;
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Kochenberger et al., 2014). A QUBO can essentially be
viewed as a 2nd degree PBF in the context of
optimization. Its special feature is that a QUBO can
formulate a whole problem into a function, whether it's
unconstrained or not. The constraints are handled by
adding penalties and reformulating the problem to an
unconstrained version-still preserving the original
solution space-to act as the input to the quantum
annealer. When the degree of the function exceeds 2, the
problem is known as a Higher-Order Unconstrained
Binary Optimization (HUBO).

Quadratization

Quadratization is the process of transforming a
(pseudo-Boolean in this context) function, which may
include higher-order or linear terms, into a quadratic
function while preserving its minima and maxima,
generally at the expense of adding new auxiliary
(ancillary) variables. As discussed before, this is crucial
for quantum annealing because current hardware can
only handle quadratic terms due to its architectural
limitations. Quadratization is sometimes referred to with
different terminologies such as order reduction, locality
reduction, and degree reduction in literature. In the
context of quantum annealing, we deal with the
quadratization of HUBOs to convert them into QUBOs.

Given a pseudo-Boolean function f:B” — R as in
(1), where R denotes the set of reals, the following
minimization problem:

mingep» f(z) (6)

is to be reduced to a quadratic pseudo-Boolean
function g(z, w), where w € B™ is a set of auxiliary
(new) variables, such that the equality:

f(z) = minyepn g(z, w) (7

holds for all z € B". Then, such a g is the
quadratization of f (Boros and Gruber, 2014).

Although there exist a few quadratization approaches
that introduce zero auxiliary variables (Okada et al.,
2015), general methods always introduce new variables,
and the minimization of those variables is a challenging
task. In quantum annealing, each new variable requires
an extra qubit in quantum processors. In the case of the
D-Wave computer, the minor embedding step maps the
variables from the quadratic cost function to the QPU
topology (D-WaveConcepts, 2024). The number of
qubits that can be utilized for a problem remains a large
constraint due to the scarcity of qubits in the QPUs.
Moreover, quadratization with the minimum number of
auxiliary variables is itself shown to be an NP-hard
problem (Boros and Gruber, 2014).

Despite numerous quadratization methods, a
significant research gap exists in the systematic empirical
comparison and principled selection of these methods,
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leading to an uncritical reliance on a few classical
techniques in practical applications. This observation
seemed to particularly hinder the performance in
resource-constrained computing, such as quantum and
digital annealing.

We present a summary of most of the promising
quadratization methods through the Tables 1 and 2; we
have stated exact bounds where applicable. Note that
many of them remain theoretical as we are yet to see
proper usages of most of the following techniques about
to be discussed.

Quadratization and Properties

We introduce some of the properties of PBFs,
quadratization, and target QUBOs, and the desirable
outcomes we seek from general quadratization.

Submodularity

A desirable property for a target QUBO is being
submodular after quadratization (Boros and Gruber,
2014). But this property cannot be easily maintained
from a submodular higher-order function through the
conversion to quadratic form. The importance of
submodularity is that submodular functions are known to
be solved in polynomial time (Schrijver, 2000; Iwata et
al., 2001). It is sometimes considered the discrete
counterpart of convexity.

A submodular function on a finite set V' is a function
f:2¥ — R that assigns a real value to each subset of V.
It satisfies the submodularity property:

M +f2)zf¥nz)+fYUZ)

for all subsets Y, Z C V (Schrijver, 2000). A general
result to find if a function is submodular is given below.

A quadratic pseudo-Boolean function is submodular
if, and only if, all quadratic terms have non-positive
coefficients (Boros and Hammer, 2002).

Compact Quadratization

Compact quadratization refers to reducing the
number of auxiliary variables introduced during
quadratization. Compact quadratizations are steadily
studied, and they increase the efficiency of overall
optimization (Boros et al., 2020). A good quadratization
should minimize the number of auxiliary variables,
which increase the dimensionality of the problem, and
the number of quadratic terms that make the problem
harder to embed on quantum hardware.

Compared to submodularity (which is particularly
harder to maintain), reducing the auxiliary variable count
is highly desirable, and it is a constantly researched topic
in quadratization (Boros and Gruber, 2014). In our
review, we consider a few approaches that aim to
perform efficient compact quadratizations in the
upcoming sections.
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Symmetry

Symmetry plays an important role in quantum
computing, quantum information, and quantum
communication (Croke, 2015; Hashagen, 2018;
Mabhasinghe et al., 2015, 2014). A symmetric PBF's value
only depends on the Hamming weight of the input. In
other words, a function f is symmetric if it is invariant
under any permutation of the coordinates of its variables.
According to Anthony et al. (2016), a pseudo-Boolean
function f:{0,1}" — R is symmetric if there exists a
function £{0, 1, ..., } »> sucRthat:

f(@) =k (Z?:l “/’j) :

In simple terms, this implies that a symmetric
function depends solely on the number of ones in the
input.

®)

Review of Quadratization Techniques

This review examines both general quadratization
techniques applicable to arbitrary pseudo-Boolean
functions (PBFs) and specialized methods tailored to
structured functions or specific problem types. Except
for gadget-based techniques, most methods discussed are
applicable across domains that require second-degree
PBFs. Our selection includes both classical methods with
continued relevance in QA workflows and novel
approaches that aim to improve beyond traditional
techniques. We excluded minor variants and adaptations
(Rosenberg, PTR, NTR-based methods reused without
novelty) to maintain focus. For a comprehensive list of
quadratization techniques, we refer the reader to
Dattani's work (Dattani, 2019), which provides broad
coverage of known methods but offers only brief
technical descriptions of each. Our source collection
involved tools like Google Scholar and Consensus Al,
and citation tracing from key publications.

Unlike previous surveys that focus on mathematical
formulations (Louveaux and Buchheim, 2018; Dattani,
2019), in contrast, this review emphasizes the
motivations, usage trends, computational aspects in real-
life usage, and problem-specific applicability of selected
quadratization techniques. Rather than detailing each
method's derivation and application, the focus is on
synthesizing insights about how and why certain
techniques have been introduced and adopted in practice
and highlighting gaps in empirical evaluation and
methodological guidance. While observing the
computational applicability of them, the ultimate goal is
to support the identification of quadratization strategies
that can most effectively enhance QA performance.

So far, the literature on quadratization has primarily
focused on two main approaches: term-wise
quadratization, which handles individual positive and
negative monomials (terms) separately, and substitution-
based quadratization, which reformulates the entire
function by introducing constraints, if not a 'penalty’, to
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force quadratic relationships. While auxiliary variables
are typically needed, we also cover methods that aim to
reduce or eliminate them.

Comparison of Quadratization Methods

The quadratization methods reviewed in this work are
highly diverse, ranging from classical substitutions and
penalty-based formulations to more recent structure-
specific and preprocessing approaches. Due to their
differing applicability, goals, and mathematical
structures, a fully wunified comparison is not
straightforward. We can, however, broadly categorize
them as methods that introduce and do not introduce
auxiliary variables.

We present a broad grouping of these methods based
on their primary strategy:

Classical Substitution-based and term-wise methods
(Rosenberg, Ishikawa, Freedman)

e Recent advancements in classical approaches
(Compact positive monomial reduction - Boros et
al)

Structure-aware methods for symmetric functions
(Boros et al)

Algorithmic approaches (Local Structure reduction -
Schmidbauer et al, Direct quadratization in Ising
space - Mandal et al)

Preprocessing techniques for the reduction of
auxiliary variables (Integer programming - Verma et
al)

Methods that introduce no auxiliary variables
(Deduc-Reduc, Split-Reduc - Dattani et al)

Where applicable, one can compare these approaches
based on standard criteria, such as the number of
auxiliary  variables introduced, preservation of
submodularity, practical runtime, implementation notes,
problem sparsity or density after quadratization, and the
accuracy of the reduced problem as well as the optimized
answer.

Quadratization With Auxiliary Variables

In this section, we review some of the most common
and predominant types of quadratization techniques that
have been researched over a few decades. Based on a
couple of foundational methods, certain aspects have
been improved over time.

Early Works and Foundational Methods
Substitution-Based Methods

Rosenberg's Substitution Method (1975)

One of the earliest and highly recognized methods for
quadratization is Rosenberg's substitution, which falls
under reduction by substitution method. This method
substitutes auxiliary variables to replace higher-order
terms with equivalent quadratic expressions, while
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introducing a penalty term to enforce the actual values of
the original function. For example, consider a PBF as
follows:

f(a,b,¢) =abc+ab+c

The substitution will pick the product ab and replace
it with x for each occurrence of ab in the function, and
will add the penalty term M D(a,b,z). Here, M is
chosen to be a large positive number so that, whenever
zy & 2z and thus D(zyz) > 0, it is impossible for f to
take the minimum:

fla,b,c,z) = zc+ 2+ c+ MD(a,b, ) )
While z,y, z € B, it is defined that:
D(z,y,z) = vy — 2zz — 2yz + 32 (10)

The final result and the number of new variables
introduced will depend on which specific products one
chooses; thus, it will ultimately depend on the PBF itself.
It can be observed that by repeating the above technique,
any higher order PBF can be formulated to the quadratic
case (Rosenberg, 1975).

However, this method has several disadvantages. The
very large coefficient in the penalty term makes the
reformulations highly non-submodular, and it can
introduce up to (n—2) new variables, making it
somewhat inefficient to use. An important thing to notice
is that a single variable can be used across the entire
function instead of considering each monomial.

Despite this, Rosenberg's reduction method seems to
be the most used reduction method for many problems
solved with QA and other applications. After Rosenberg's
method, the most practically used methods will be
discussed in the following section of Term-wise
quadratization.

Term-wise Methods

Also referred to as Reduction by Minimum Selection,
these methods consider each monomial term and apply
quadratization for negative and positive monomials
separately using independent auxiliary variables.

Kolmogorov and Zabih's Method (2004)

This method introduced first and is suitable for
negative monomial quadratization in the context of graph
cut optimizations but is limited to degree 3 monomials
(Kolmogorov and Zabih, 2004).

Freedman and Drineas (2005) - Negative Monomial
Reduction (NTR)

Later introduced, Freedman's approach provides an
optimal quadratization for negative monomials requiring
only one auxiliary variable. Which is considered the
most ideal method for negative monomials to date.
According to Freedman and Drineas (2005), for a degree
n negative monomial,
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i Ty (1)
Gives the quadratization where y is the only added
auxiliary variable. This method is a direct improvement
on Kolmogorov and Zabih (2004)'s work, and has been
used extensively to date. This Negative Monomial
Reduction (NTR) reductions can be used to quadratize a
function while maintaining perfect submodularity if all
the monomials of the higher-order function are negative.

Ny(z) = minye{ﬂ,l}(n -1y —

Ishikawa's Method (2011) - Positive Monomial
Reduction (PTR)

This method provides a significant reduction in the
number of added new variables over the Rosenberg
(1975) method for positive monomials. It remains a
foundational technique for later improvements in
positive monomial reduction, specifically. According to
Ishikawa (2011), the quadratization of a degree n

positive monomial P, (z) is given as:

P, (x) = minyc o 1ym S i (cin(—|z| +26) — 1) +

Jﬂlli%l;ll (12)
where |z| =" z;, and m=[Z%t]|. The
coefficients c;, are defined as:
1, ifnisoddandi=m,
Cin =
’ 2, otherwise.
This quadratization method will add L”T’lj new

auxiliary variables and will have ('2’) positive quadratic
terms.

A downside of this method is that the reformulated
function is highly non-submodular due to the number of
positive terms. However, Ishikawa (2011) claims very
good computational results compared to Rosenberg.

In later sections, we can observe that there have been
improvements to this method for special cases of
functions (Boros et al. 2020) and an overall general
improvement with a logarithmic bound by Boros et al.
(2020).

Recent Advances in Quadratization

We observe that recent research on quadratization has
leaned towards Compact Quadratization and some
special cases of PBF, such as Symmetric Functions,
Parity Functions, Zero until k Functions, and Even/Odd
Support Functions, etc., especially by Anthony et al.
(2016); Boros et al. (2020). Preserving submodularity,
establishing tighter bounds, balancing computational
performance (Boros et al., 2020), and overall reducing the
variable count for general cases (Boros et al., 2020) have
been some other focuses. In the following section, we
will look at some of the significant and key findings from
the research about quadratization in special structures of
PBF.
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Zero-Until-k Functions

Boros et al. (2020) presents two lower bounds for
Zero-until-k functions. Through Theorem 2 and Theorem
3 in their paper, they prove that there exists a lower
bound of 2(2%) for almost all PBFs and another lower
bound of m > [log(k)] — 1 for all PBFs. The upper
bound for Zero-until-k functions is the same as for
general pseudo-Boolean functions, O(2%) as previously
established (Anthony et al., 2017).

Even(Odd) Support Functions

The lower bound [log(n)] —1 is proven for
Even(Odd) support Functions by Boros et al. (2020).
Again, the upper bound for this function class is the
same as previously established by Anthony et al. (2017),
which is O(2%).

Symmetric Functions
It was established by Anthony et al. (2016) that the

lower bound for the number of variables required to

quadratize symmetric functions is Q(y/n). Improving
upon that, Boros et al. (2020) states a quadratization in

their paper for symmetric functions using 2 Wn—i— 1]
auxiliary variables.

Theorem 1 (Boros et al., 2020)

Let f(z1,...,z,) be a symmetric pseudo-Boolean
function such that f(z) =r(|z|), with » : N — R and

r(k) =0 for k > n, by convention. Let I = [/n + 1],
and choose M € R such that M > |r(k)| for all k € Z.
Then,

|
g(:l:, Y, Z) = Zi:o j:}) T(Zl + J)yizj
2
+2M (1 - y) +2M (1 D E?
-1 . -1 . 2
+2M (|z\ - (l Yoty + ijojzj))
is a quadratization of f using 2[/n + 1] = O(y/n)

auxiliary variables y;, 2;,¢ = 0,...,[ — 1.

y

(13)

At Least k-out-of-n

Boros et al. (2020) proves that At least k-out-of-n
functions cannot be quadratized using less than
[log(k)] — 1 auxiliary variables, providing a lower
bound.

Theorem 2 (Boros et al., 2020)

For each integer 0 < k < n, the At Least k-out-of-n

function f-k admits a quadratization given by:

Gi(@,y,2) = 1 (Au(2,,2)) (Ak(z,9,2) — 1) + (1 — 2)(14)

315

where Ay(z,y,z) is a suitable auxiliary function.
This quadratization requires:

I = max{([log(k)], [log(r — k)]) < [og(n)]

auxiliary variables, consisting of y € {0, 1}"! and an
additional variable z € {0, 1}.
Exact k-out-of-n

For Exact k-out-of-n functions, a tighter lower bound
is given by:
Theorem 3 (Boros et al., 2020)
[log(k)] — 1 (15)

as stated in Boros et al. (2020). A quadratization for
the Exact k-out-of-n function is given by:

For each integer 0 < k < n, the function:

Gi(z,y,2) = }Ak(z,y,2) (Ar(z,y,2) — 1) (13)
is a quadratization of the Exact k-out-of-n function
f=r using:
I = max([log(k)], [log(n — £)1) < [log(n)]
auxiliary variables, consisting of y € {0,1}"! and an
additional variable z € {0, 1}.

Parity Functions

According to Corollary 4 in Boros et al. (2020), the
Parity function belongs to the class of Even (Odd)
support functions. Thus, its lower bound for the number
of auxiliary variables is given by:

[log(n)] — 1.

A quadratization technique for Parity functions has
been introduced in the same article, providing the
following upper bound:

Theorem 3 (Boros et al., 2020)

Let [ = [log(n)]. The Parity function r,(z) admits
the following quadratizations:

If niseven, the function :

, 2
g.(a,y) = (le| —n+2' = ¥ 2y~ 1) (16)
is a quadratization of ,(z).
If n is odd, the function:
2
go(;p,y) = (|;p| —n+2— Ei;i 2zyl) (17)

is a quadratization of 7, (z).

Both ge(z,y) and g,(z,y) use [log(n)| — 1 auxiliary
variables.
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All the above-discussed methods for quadratizing a
PBF have only been specifically proven for the special
structures. It remains an open question whether the lower
bound of a general (not necessarily symmetric)
quadratization is also logarithmic, and raises concerns
about computational performance due to the large
coefficients introduced by reformulations having a
logarithmic number of auxiliary variables (Boros et al.,
2020). Furthermore, there has been no proof for a better
upper bound for general pseudo-Boolean functions than
O(2%) (for Zero-until-k and Even(odd) support
functions) proposed by Anthony et al. (2017). Fig. 2
shows the connection between the special classes of
PBFs, which were studied by Boros et al. (2020).

) (

( Zero until k Symmetric j [Even (Odd) support)

At least k-out-of-n

Exact k-out-of-n Pa‘rity

Positive monomial
Fig. 2: Relation between the considered classes of functions
Logarithmic Bounds for Positive Monomials

Even though a satisfactory quadratization with only
one new auxiliary variable for negative monomials was
discovered early on, the case for positive monomials (not
necessarily symmetric) is surprisingly more challenging.
Traditionally, it required O(n) number of new variables
until Boros et al. (2020) claimed that they had found a
remarkable logarithmic upper bound for the number of
auxiliary variables. This finding was a significant step up

n=1

from Ishikawa's method, which required m = L 5 J
variables. Moreover, they have proven that the lower
bound for quadratizing a positive monomial is m =
[log(n)] —1 number of new variables that exactly
matches the upper bound. The bounds were derived from
zero until k and even (Odd) support functions. The
quadratization for the positive monomials has been
established as follows:

Theorem 5 (Boros et al., 2020)
Let ! = [log(n)]. Then:

-1 o4
i=1 2'y;

o(z,y) = %(|w|+zl—n—z )
x(w|+zl—n—zii 22%—1) 1o
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is a quadratization of the positive monomial:

Py(z) = [[i @i
using [log(n)] — 1 auxiliary variables.

This method could potentially increase the
computational efficiency in term-wise quadratizations
due to the lower number of auxiliary variables. However,
the challenge of using this method to quadratize an
arbitrary PBF most efficiently remains a task that
depends on the function itself.

Table 1 summarizes the values of the lower and upper
bounds described by the compact quadratization methods
discussed above. Note that these are not the only
quadratization methods proposed for specific problem
instances. The earlier discussed methods are noteworthy
and significant, as the cited authors have contributed
extensively to the study of quadratization.

In the following sections, we will explore some
noteworthy alternative quadratization techniques, not
necessarily covering broader classes, but approaches
quadratization through leveraging other structural
characteristics of PBFs.

Table 1: Summary of lower and upper bounds for special function
classes used in quadratization

Function Lower bound Upper bound

Symmetric Q(v/m) forsome O(y/n) = 2[/n+1]
functions

Zerountilk (2 H ) for some 0(2%)
functions

[log(k)] — 1 for

all functions

Atleastk- [log(k)] —1  max([log(k)], [log(n —
out-of-n k)])

Even (Odd) [log(n)] — 1for O(2%)

support all functions

Exact k-out- [log(n)] —1  max([log(k)], [log(n —
of-n k)

Parity [log(n)| =1 [log(n)] -1

Positive 1 [log(n)] — 1 [log(n)] — 1

Algorithmic Quadratization Techniques

The following quadratization techniques take an
algorithmic approach by the design of structural
methodologies that can optimize specific problem
settings more efficiently and take a solver-friendly
manner.

Some of the authors have specifically considered QA
while developing these algorithms, (Schmidbauer et al.,
2024; Verma and Lewis, 2020; Mandal et al., 2020),
which is worthwhile to note. Practical experiments on
quadratization time (Schmidbauer et al, 2024)
comparing the existing and new algorithms have been
carried out, making a significant contribution to the field.
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Local Structure Reduction (LSR) Method

In the paper by Schmidbauer et al. (2024), a novel
method for quadratization, along with research on its
time complexity, is introduced. It has been acknowledged
in the paper that this transformation is crucial to do in a
computationally feasible time to practically use quantum
annealing hardware. The paper not only presents a new
algorithm but also provides a thorough analysis of its
performance, comparing it with a few other traditional
methods in terms of quadratization time. Which is a
highly noteworthy contribution. The authors propose
representing the PBF as a multi-graph, where nodes
represent variables, and edges represent interactions
between variables and monomials. The multiplicity of an
edge between two nodes indicates how many monomials
contain that particular pair of variables.

The traditional monomial-based reduction has 3
variants: Sparse, Medium, and Dense. The denser the
variable pair selection is, the more compact the QUBO
is.

1. Dense: Choosing the variable pair that appears most
often among all monomials.

2. Medium: Choosing the variable pair that appears
most often among all highest degree monomials.

3. Sparse: Choosing the first variable pair of a
monomial with the highest degree.

Algorithm 1 by Schmidbauer et al. (2024) follows
two main stages, and it is summarized as follows;

Stage 1: Graph-based Reduction: The algorithm starts
by constructing a graph representation of the PBF as said
above. We then iteratively select variable pairs with high
multiplicity and replace them with auxiliary variables,
updating the graph. This method uses a Percentile-based
selection strategy to choose which variable pairs to
reduce. This allows more control over the density of the
resulting QUBO. Having control over the density matters
as unnecessary interactions can slow down the annealing
process.

Stage 2: Independent Monomial-based Reduction
Where monomials that do not share variable pairs with
other monomials are handled separately afterward.

The authors provide runtime complexity and
experiment results analysis comparing monomial-based
term-wise methods and their LSR method. They tested
random PBF with degree 4 with varying densities. When
it comes to speed-up, they claim that at 39 variables in
the input function, the Dense selection type seemingly
required more than a day to quadratize a function on
traditional methods. While the new algorithm with ¢ =
1.0, which is comparable with dense selection, needed
about 10 seconds for the same input polynomial. Figure
3 shows the overall experiment's quadratization time
against the number of variables for degree 4 PBFs with
varying selection (Schmidbauer et al., 2024).

Algorithm 1: Local Structure Reduction (LSR)
(Schmidbauer et al., 2024)

Input: PBF f, percentile g (deg(f) > 2, q €[0,1])
Output: Quadratic PBF f’, penalty PBF p

l:h+1

2:p+ 0

33:G=(V,E),R «+ Gf = (Vf, Ef), Ry
Stage 1: Graph-based reduction

4: while G contains multi-edges (3,5 € V : 8(4,7) > 1)
do

5:{i,5} <—Choose_Random_E1ement(R(Bq))

6: f <Replace_Var_Pair(G, f, i, z;,yn)
7: G, R +Update_Graph_Data(G, R, i,j,h)
8:p  p+p(zi, zj,yn)
9:h< h+1
10: end while
Now we have Vi, j € V : B(i,5) <1
Stage 2: Independent monomial-based reduction
11: for m € f with deg(m) > 2 do
12: while deg(m) > 2 do
13: f,p +Multi_Reduce(f,p, m)

14: end while
15: end for

16: return f,p

17: procedure Update_Graph_Data(G, R, i, j, h)
18: Z «+ {z: (4,5,2) € E}
19: N {h}, Eremoved {}a Eaddea < {}
20: for z € Z do

21:fork € m, A k &= h do
22: N + N U {k}
23: ) Eremoved — Eremoved U {(ka 7:7 z)} u
{(k,35,2)}
24: Eadded — Eadded U {(k7 ha Z)}

25: end for
26: end for

27: M+ {(B(n,k) :n€ N,k € {i,j}}
28: F (E \ (Eremoved U Ei’j)) U Eadded
29: R +Update_R(G,R,N,M,i,5,h)
30: return G, R

31: end procedure
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Fig. 3: Time in seconds (log) (y-axis) for the quadratization of a deg(f) = 4 function f vs problem size (z-axis: Number of
variables). New LSR algorithm (top row) compared to the existing monomial-based (bottom row)

Quadratization in Ising Space

A method that offers significant improvements for
quantum annealing applications (and Ising model solvers
overall) has been developed by Mandal et al. (2020),
which can directly work in both QUBO and the Ising
space as well. Many combinatorial optimization
problems in real life, presented as HUBOs, are primarily
quadratized by approaches operating in the Binary
Space. These methods may not be the most ideal for
problems formulated with the Ising space. The Reason is,
there exists a necessity for a transformation process from
the Ising model to the QUBO model to apply
quadratization, which points to a major drawback where
a sparse problem in Ising space is not necessarily sparse
in Boolean space and vice versa (Mandal et al., 2020).

The authors offer 2 algorithms: a hash table-based
one and one using a bipartite graph (both greedy
approaches), which can quadratize any HOBO over
Boolean or Ising space. Algorithm 2 starts with a hash
table that keeps track of all variable pairs and their
corresponding expressions. The algorithm repeatedly
identifies the most frequently occurring pair and replaces
it with a new auxiliary variable in a greedy manner. This
process repeats and reduces the complexity of
expressions until only simple quadratic terms remain.
Finally, to impose the constraints between the auxiliary
variables and the quadratic terms, either Binary or Ising
polynomials are invoked.

The next algorithm, Algorithm 3 works by
constructing a dynamic weight bipartite graph where
LHS represents quadratic terms, and the RHS side
represents high-degree monomials. The connections
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between them indicate dependencies. The algorithm then
iteratively replaces the LHS vertex with the maximum
sum of edge weights with a new auxiliary variable and
updates the graph by introducing the quadratic terms
involving the new variable in the graph. This process
continues until all higher-order expressions are
simplified into quadratic terms.

Algorithm 2: HOBO to QUBO Transformation (Mandal et
al., 2020)

Input: A higher order binary optimization (HOBO) over
(21, 22, ..y 2n) € B" where B is either {—1,1} or {0, 1}.
Output: A QUBO equivalent to the given HOBO problem.

1: Sort the variables and create a data structure storing (key,
value) pairs where the key is the set of all quadratic terms in
HOBO and the value is the set of monomials of degree at
least 3.

2: while keys remain in the table do

3: Select the key with the most associated values and
replace it with a new variable.

4: Update the table by adding new keys and values for
the new variable.

5: Remove all degree-3 terms that involve the replaced
key.

6: Delete the key if all its values have been removed.

7: Store the new variable and its corresponding
quadratic term.

8: end while

9: Apply the appropriate quadratic transformation to ensure
correctness.

10: return the QUBO equivalent of the given HOBO
problem.
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Algorithm 3: HOBO to QUBO 2 (Mandal et al., 2020)

Input: A higher order binary optimization (HOBO) over
(215 22, -y 2) € B™ where Bis either {—1,1} or {0, 1}.
Output: A QUBO equivalent to the given HOBO problem.

1: Sort the indices of variables and construct a weighted
bipartite graph.

2: Assign all possible quadratic terms as left nodes and all
monomials in the HOBO as right nodes.

3: Create edges between left and right nodes if a monomial
contains the quadratic term.

4: Set edge weights as the degree of the monomial minus 1.
5: while there exists an edge in the graph do

6: Replace the quadratic term with the variable having
the largest sum of edge weights.

7: Remove all degree-3 terms that involved the quadratic
term.

8: Remove quadratic terms that no longer have edges.

9: Update the graph after adding quadratic terms
involving the new variable.

10: Store the variable and its corresponding quadratic
term in a mapping.
11: end while
12: Apply the quadratic polynomial transformation for each
auxiliary variable.

13: return The QUBO equivalent to the given HOBO
problem.

According to their experiment results, the algorithms
show an improvement in direct usage on Ising problems
than in the usage on transformed (to QUBO) problems.
This method is a significant improvement where
problems are formulated with the Ising model. The
elimination of the unnecessary transformation overhead
and saving the sparsity of the original problem should be
highlighted with respect to QA applications.

Integer Programming (IP) Approach to Minimize
Auxiliary Variable Count

A quadratization approach tailored for fourth-degree
pseudo-boolean polynomials has been presented by
Verma and Lewis (2020). They offer a preprocessing step
to minimize the number of introduced auxiliary variables
to the quadratized function based on exact integer
programming model. It is worthwhile to note that the
authors have taken QUBO formulations specifically used
in quantum annealers like D-Wave systems into account
while developing the approach.

The same authors Verma et al. (2021) present an
optimized transformation tested on cubic-to-quadratic
Max 3-SAT problems that reduces both the number of
auxiliary variables and the penalty coefficient M. The
core idea of this method is to use an Integer
programming approach to select the best quadratic
substitutions globally from the entire functions, rather
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than considering each term individually, which helps to
determine an optimal set of auxiliary variables to
minimize the problem size. Also, the lower bound of the
penalty Coefficient M is determined using the nonlinear
Constraint Programming. This work is an improvement
upon their previous work (Verma and Lewis, 2020). The
authors analyze Max 3-SAT problems, formulating at
most cubic terms under four cases:

1. No negations (x; V ; V &):

9(X) = +x; + o — 2w — ;T — T+

252k (19)
2. One negation (z; V x; V —&g):

9(X) =1 -z +zzp, + zjzp — TiTiTk (20)
3. Two negations (z; V —x; V —xy):

9(X) =1—zz), + zixjz8 (1)
4. Three negations (—z; V —z; V —ay):

9(X)=1—zzjzy (22)

The SAT problems are considered NP-Complete, and
if there exists a deterministic polynomial time algorithm
for solving SAT, every NP problem can be solved in
polynomial time. Therefore, the importance of
optimizing the SAT problem should be emphasized in the
computer science domain.

The following lemma proposed by the authors are
used to quadratize any max 3-SAT problems with
minimum additional variables and a minimized penalty
coefficient.

Lemma 1
In order to minimize the number of auxiliary

variables during the transformation, the quadratic

subterm z;z; will always be utilized if it dominates
concerning the frequency count in all the cubic terms in
which it appears, i.e.,

(f(zizj) > f(zizk))

V(ziz;) C (zizjzr)

& (f(zizj) > f(zjar))

such that (z;zjz;) C C, where f() represents the
function that counts the occurrence of each quadratic
subterm across all cubic terms and C' denotes the set of
cubic terms.

~Yyaik) @3

The authors aim to transform these cubic terms into
quadratic terms using a minimum number of auxiliary
variables by solving the integer program proposed in
Verma and Lewis (2020) and with the use of Lemma 1.
Then the lower bound on the penalty coefficient M is
identified using Equation 23. The summarized Algorithm
4 is given below.

Mpp = max (Vziz; = yij (34 aije,

The authors claim that computational experiments
using SATLIB datasets demonstrated that their approach
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achieved a near 100%.

Algorithm 4: Minimal QUBO for Max 3-SAT (Verma et al.,
2021)

procedure MinimalQUBO()
1: n < number of variables
2: m < number of clauses
3: S < set of all terms in the objective function
4: C < set of all cubic terms in the objective function

5. IP < integer program to identify the minimum
number of auxiliary variables after applying Lemma 1

6: LB < lower bound of penalty coefficient obtained
from Equation (1)

7:Y < set of auxiliary variables
8: top:
9: Convert each clause ¢ into a cubic penalty term
9(X)
10: Objective Function obj +— >_." | g(X);
11: loop:
12: if (Degree of term 4 in 0bj) == 3 then
13: C < C U (Term 4)
14: end if
15:Y « IP(C)
16: M* < LB(C,Y) using Equation (1)
17: Q < Transformed QUBO using sets C, Y and M*

18: Optimize @) using Path Relinking Tabu Search
routine

19: end procedure

Algebraic Quadratization Techniques

In contrast to the algorithmic approaches, the
following quadratization methods lean towards being
logical and algebraic. However, they still take a different
approach or seek to leverage special structural qualities
of the PBFs, as in previous methods. Especially in the
case where a function has a certain limited degree or a
limited number of wvariables present. Since a larger
number of real-world problems can map to a cubic or a
quartic setting within a function, the following methods
specialize in order reduction of such occurrences,
potentially gaining an advantage over arbitrary methods.

Variable Count-Based Quadratization

Dattani and Chau (2019) presents a specialized
compact quadratization approach for quadratizing any
function of exactly four variables with a minimal
overhead of auxiliary variable count. This method relies
on substitution and does not introduce penalty functions
or a term-wise quadratization. The method provides an
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exact quadratization framework specifically for functions
with four binary variables, claiming that the function can
be quadratized using only one auxiliary variable. This
approach exploits the structural properties of 4-variable
functions to achieve minimal auxiliary count while
preserving function equivalence. This can be considered
the most compact quadratization for functions in this
class. Several important things to note are that this
technique gives an exact quadratic reformulation without
approximation errors and shows more control over the
coefficient ranges compared to penalty-based techniques.

The methodology categorizes functions into four
cases depending on the coefficient configuration,
considering the ordering and the magnitude. For each of
these cases, the paper provides four different lemmas for

quadratizations. For a function of binary variables b; €
{0, 1} with real-valued coefficients a:

Q = 01234b1b2bsby + a123b1b2bs + 0124b1boby +

0134b1b3bs + a234b2b3b4 24
Lemma 2

Suppose aiazs > 0. If aj > —=4 for all 45k, or

—934 < gy <~ <0 < g < oz < g, OT
both  —oyags < o3 < — 4 < aygq < —aoe,  then
Equation 24 is perfectly quadratized by:
(3041234 + ik aijk) bo + auza Y, biby +
D kaij @igbib;

(25)

py <2a1234 + 2 i aijk) biba
Lemma 3

If @234 <0 and ag, <0, then Equation 24 is
perfectly quadratized by:

(Oé1234 (Zz bi — 3) + Zijk Qijk (Eleijk b — 2)) ba (26)
Lemma 4

If an234 > 0, 123 < —vaze, and — 8% < gy <
134 <0 < agsy, is
quadratized by:

then Equation 24 perfectly
o134 — > (Q12i + 01234)b; + Y, 0tizaba
+ 2 ik i jie1,2 Qijkbibj + Q1234bsby
- Zi:p,q,p,q:lﬂ or 3,4 Zj:r,s,r,s:3,4 or1,2 Qpgj — ai”) biba
(27)
Lemma 5
If o34 > 0, a3 < — 8% < gy < gy < gy <

0, and @93 + a1os < —avpo34, then Equation 24 is
perfectly quadratized by:

Q1234 — Zi(ami + 01234)bi
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+ 205 czaba + 30,5 cijebib; + aa234bsbs

_ Zi:p,q,p,q:1,2 or 3,4 Zj:r,s,r,s:3,4 orl,2 Qpgj — Oéirs) biba

28
— Y i 0a2i(br +b2) — > cuza(bs +bs — 1 — by;) (28)

—ai234(bs +bs — 1)b, (29)

One can broaden the applicability of this approach to
any kind of function (with 4 variable subsets), leveraging
bit-flipping techniques from Ishikawa (2011), which can
transform a function into a suitable form by utilizing
another 2 lemmas by Dattani and Chau (2019).

This technique does not seem suitable for larger
problems with more variables. Nonetheless, one can
apply this method if it is possible to decompose larger
functions into multiple 4-variable subsets, which in
return could introduce more complexity and redundancy.
There can be a function that can be overly complex to
decompose or nearly impossible. In such cases, it is far
more efficient to use another approach. If a function can
be decomposed with reasonable complexity or for small-
scale modular functions, this technique can be highly
effective. It can be particularly useful for Quantum
Annealing hardware for small problems due to the
extremely compact quadratization it provides. Citing
Dattani and Chau (2019), "Nevertheless, we do not rule
out the possibility that other quadratization formulas
involving only one auxiliary variable can exist: it may
just be that we have not yet found them.", shows great
potential for future research in quadratization for specific
structures like this.

Quadratization Without Auxiliary Variables

Deduc-Reduc (Deduction-Reduction) Method

The 'Deduc-reduc' method, which was proposed by
Tanburn et al. (2015), aims to eliminate the number of 4-
qubit and 3-qubit terms in the AQC Hamiltonian without
adding auxiliary qubits. This method is highly relevant,
especially for QA, as it inherently leverages structural
properties in physical problem Hamiltonians and applies
logical reductions and substitutions without any cost of
added auxiliary variables. Noticeably, it maintains the
exact ground state of the original problem as well unlike
approximation methods.

The methodology involves identifying variable

relationships like z1, z2 = 0 from higher-order terms like
2z1x2z3x4 and prior knowledge of functions such as
1 + 22 + 3 = 1, then simplifying by substitution and

adding penalty terms, resulting in quadratic (or lower)
terms. The general formula for the method is:

H'(z) = q(z)g(x) +r(z) + A(f(2) — 9(x))? (30)
Where:
e H(z)=gq(z)f(x)+r(x) is the  original

Hamiltonian.
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e f(z) = g(z) is a deduction that holds for all ground
states.
) is chosen such that |g(z)| < X for all states .

However, identifying deductions cannot always be
performed naturally using prior knowledge of the
problem; it must be brute-forced. Which in turn can
introduce exponential scaling (Dattani, 2019). But in
general, this method can technically be used in QUBO
problems according to Tanburn et al. (2015). If the
method can be implemented in a QA problem context, it
will avoid the formulation of denser Hamiltonians and
could be easily embedded onto the sparse connectivity of
hardware architectures like D-Wave's Chimera or
Pegasus graphs.

Split Reduction Method

The split-reduc method (Okada et al., 2015) offers an
alternative to deduc-reduc (Dattani, 2019), targeting
scenarios where logical deductions are not evident as
they are unlikely to appear in every general case. It is
good to note that this method has been proposed by the
authors specifically to leverage quantum annealing
hardware more efficiently. Split-reduction approaches the
quadratization by iteratively splitting the Hamiltonian
into multiple sub-Hamiltonians to reduce multiple qubit
terms. But this method will increase the number of
objective functions to find the solution to the original
problem. However, adding auxiliary qubits improves the
method. This flexibility allows for a trade-off between
resource efficiency and computational complexity.
Hybrid solvers, for example, D-wave systems, can
benefit from the Hamiltonians by handling them
separately. Depending on the problem and the hardware,
split-reduc provides greater flexibility to the usage of the
available quantum hardware.

The split-reduc method relies on two cost functions
to guide the splitting process:

Cost Function C(H)

This function determines whether the Hamiltonian H
needs further splitting. It is defined as:

C(H) =n+ Y, R(order(t) — 2) < Q
Where:

€2))

n is the number of original qubits.

R is the ramp function, which gives the maximum
number of auxiliary qubits needed to reduce a term
t to quadratic order.

@ is the qubit capacity of the quantum device.

If C(H) < @, the Hamiltonian can be implemented
on the device without further splitting.

Cost Function Cy(x;)

This function determines which variable x; to split
next. It is defined as:
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Cr(z;) =3, I+ - R(order(t) — 2 + 1)] (32)

Where:

e I, . is an indicator function that is 1 if z; appears in
term ¢, and 0 otherwise.

e R(order(t) —2) is the maximum number of
auxiliary qubits needed to reduce term ¢ to quadratic
order.

The variable z; with the highest Cg(z;) is chosen for
splitting, as it appears in the most higher-order terms.

The authors provide theoretical calculations and
estimates for Ramsey number experiment, which, by
using their method (Okada et al., 2015), can greatly
reduce the runtime and minimize the extra qubit usage
compared to the original experiments run on quantum
annealers (Bian et al., 2013).

ELC Quadratization Method

Excludable Local Configurations quadratization
method first introduced by Ishikawa (2014) for reducing
higher-order terms in Markov Random Field (MRF) at
the cost of zero auxiliary variables. This method works
by identifying excludable local configurations in the
energy/cost function. An ELC is a specific assignment of

values to a subset of variables that cannot be part of the
global minimizer. By modifying the function to increase
the energy for these configurations, the higher-order
terms can be eliminated without affecting the global
minimum.

Below is the modification of the energy function to
eliminate higher-order terms:

B'(2) = B(2) + |ac| Tl (we: + (1 - w)(1 - )
Where: (33)

e FE(z) is the original energy function.

e a¢ is the coefficient of the higher-order term
involving the variables in clique C.

e u; is the value of the ELC for variable z;.

. '¢(ac) = |ac| HieC (uimi =+ (1 — u,)(l — :El)) is the
added term that increases the energy only when the
variables take the values specified by the ELC u.

A major drawback of this method is the fact that there
are no known methods to find an ELC; hence, even
Ishikawa (2014) uses a brute force approach, which can
scale exponentially with the number of variables. Since
ELCs do not always exist in every PBF so this method is
not suitable for any arbitrary case.

Table 2: Comparative Summary of Quadratization Techniques: Auxiliary Variable Bounds, Submodularity, Use-Case Suitability, and

Limitations
Method Auxiliary Variables Submodular Where It's Advantageous Limitations & Comments
(Bound)
Rosenberg Up to (n — 2) No General-purpose for arbitrary PBFs; Large penalty terms; not efficient for large
Substitution foundational and easy to implement problems; produces dense QUBOs

Negative monomials; optimal for

Useful for symmetric PBFs like exact-k,

Positive monomials; tighter bounds than

Freedman-Drineas 1 per term Yes
(NTR) preserving submodularity
Ishikawa (PTR) LEJ No Positive monomials

2
Symmetric |— \/7_1 + 1-| Depends
Functions parity, at-least-k
Logarithmic PTR  [log(n)] — 1 No

Ishikawa's

Faster in quadratizing; dedicated for

Suitable for native Ising Hamiltonians
(better than converting to QUBO); avoids

Local Structure Variable Depends
Reduction (LSR) QUBO
Ising-Space O(n) Depends
Quadratization
Boolean conversion
IP Optimization Empirically Depends

minimized (O(n))

Limited to negative monomials; not
applicable to general PBFs

Still non-submodular; may lead to
explosion in quadratic terms

Requires structure-specific handling; not
general-purpose

Submodularity not preserved; structural
assumptions needed

May be less impactful on smaller
problems

Greedy approach; still requires many
auxiliary variables in worst case

Minimize auxiliary variable overhead; very Only a pre-processing step; not tested on

successful in Max 3-SAT problems

general cases

Highly efficient for easily decomposable 4- Only applies to size-4 subsets; not

Advantageous when logical constraints are

Ideal when hardware constraints limit

4-variable Algebraic 1 Depends
Method variable functions
Deduc-Reduc 0 Depends
Method identifiable
Split-Reduc Method 0 (many sub- Depends

Hamiltonians) ancilla budget
ELC Method 0 Depends

Suitable for MRFs or sparse structured
PBFs

scalable

Requires deductive rules or brute-force;
not always available

Increases number of problems to solve;
can be computationally heavy depending
on resources

Needs forbidden config detection; brute-
force may be required
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Gadget-Based Quadratization and Gadgets

Classical  quadratization methods, such as
Rosenberg's substitution and Ishikawa's method, focus
on combinatorial optimization problems involving
pseudo-Boolean functions, where these techniques are
universal across various domains and solvers-classical
and quantum. Gadget-based quadratization methods offer
fundamentally different approaches that are specifically
suitable for quantum systems. They have been designed
to preserve quantum and physical properties such as the
energy spectrum that is native to quantum systems
(physics simulations, quantum chemistry, etc). These
quadratization methods operate within Ising space or
with the Pauli representation. The goal of these
techniques is to ensure the same ground state of the
higher-order function in the quadratic case. This goal is
approached by introducing auxiliary qubits and enforcing
constraints through energy penalties. The following
section will only introduce some of the techniques in the

literature. Dattani (2019) has done an in-depth
comparative analysis of the Hamiltonian-based
techniques as well as all the other classical

quadratization methods.

Perturbative Gadgets

Perturbative gadgets can approximate higher-order
interactions by the process of introducing auxiliary
qubits with specific energy penalties. These methods are
considered to be more efficient but may cause errors.
Several research on the usage of Perturbative gadgets has
been carried out (Chen, 2011; Kempe et al., 2006;
Oliveira and Terhal, 2005; Bravyi et al., 2008; Jordan
and Farhi, 2008; Cao et al., 2015).

(3 — 2) Gadgets

Transforming 3-local interactions into 2-local
interactions using auxiliary qubits and perturbative
expansions.

1-By-1 Gadgets

This approach steps-by-step reduces the order of the
formulated Hamiltonian, decreasing the locality, one
order at each step.

Subdivision Gadgets

Reducing higher-order terms by dividing them into
further smaller terms in a step.

Direct Gadgets

This method avoids iterative reduction and instead,
performs the quadratization in a single step.

Non-Perturbative Gadgets

Perturbative
ensure  exact

Unlike
gadgets

gadgets, Non-Perturbative
quadratization  without
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approximations. These methods require a relatively
higher number of auxiliary variables. But they are more
suitable for high-precision applications.

Ocko and Yoshida (2011); Subasi and Jarzynski
(2016); Nagaj (2010, 2012) have proposed a few
different techniques for different Hamiltonian forms.
Some of these techniques leverage additional resources
beyond qubits, such as qutrits and ququits.

Discussion
Computational Aspects
Computational Overhead

While quadratization facilitates compatibility with
current quantum hardware, it introduces computational
overhead, affecting the efficiency of solving and
transformation. Most research on quadratization focuses
on transformation techniques and their theoretical
properties, but only a few address the computational
impact of this transformation. While some studies have
compared their novel approaches to some traditional
methods (Schmidbauer et al., 2024), a comprehensive
comparison of computation overhead among the
prominent and most used techniques for different
problems is lacking.

One of those studies that examine computational
overhead in solvability after quadratization is Valiante et
al. (2021), which provides a detailed empirical
evaluation of the effects of locality reduction. The
following content of this chapter is based on this work.
Using the publicly available ~ Chook package, authors
generated degree-3 and degree-4 benchmark problems
and tested them on Microsoft Azure Quantum's k-local
solvers. They compared native k-local problems with
their quadratized 2-local versions.

Quadratization increased variable count by 3x for 3-
local and 6x for 4-local problems. Interestingly, density
slightly decreased post-reduction. However, the Time-to-
Solution (TTS) increased significantly-quadratized
problems often failed to solve even with a 5x timeout,
unlike the original k-local instances, which had 100%
success. Due to the inability to find a proper scaling, the
authors surmise that the higher the locality is, the higher
the overhead in solving the 2-local reductions will be.

They also found broader, less symmetric coupler
distributions in quadratized problems, increasing
coefficient variability and complicating the energy
landscape, making them harder for quantum annealers to
solve efficiently (Figure 4). The benchmark experiment
has been performed with two different values of the
parameter  timeout. The data show that solving the 2-
local versions of the problems is extremely difficult.
They were unable to do a scaling analysis as the majority
of the problems could not be solved.
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Schmidbauer et al. (2024) compares their LSR
method's computational time against standard term-wise
methods. They observed that their approach greatly
reduces the time taken to quadratize a certain function in
the tested scenarios. Unfortunately, this kind of
comparison regarding computational overhead is largely
lacking in this domain.

In  conclusion, the current state-of-the-art
quadratization methods introduce unnecessary, highly
increased overhead in the computational aspect of
solving the problem, hinting that newer quadratization
techniques should be studied that will overcome or
minimize this negative effect.
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Fig. 4: Fraction solved (top) and residuals (bottom) of 2-local
problems obtained by reducing k-local instances with k
= 3 and k = 4. The dashed line represents the reference
for the ideal cases.

Algorithm Implementations

There are a number of algorithmic implementations
made using different programming languages for the
automation of quadratization, with adjustable parameters
for the strength of quadratization.

Ocean

The leading quantum annealing company, D-Wave,
handles automatic quadratization for any HUBO
formulations through their make\_quadratic()
function from the dimod package provided by the
Ocean software. It takes a polynomial representation
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(HUBO), a strength parameter to control constraint
enforcement, and optionally a variable type (BINARY or
SPIN for Ising Model) and an existing Binary Quadratic
Model (BQM) to modify. According to the Ocean
software (D-WaveReformulation, 2024) documentations,
they have implemented two approaches based on
Reduction by Substitution and Reduction by Minimum
Selection.

PyQUBO

A Python library, which allows users to create and
work with QUBO or Ising models. It's compatible with
D-Wave Ocean, hence it can be integrated with its
workflow. The compile() function will detect any
higher-order interactions and automatically reduce them
to quadratic terms. According to Zaman et al. (2021), the
quadratization technique used is the penalty-based
substitution method suggested by Rosenberg.

QUBOVert

Another Python library that supports formulating and
solving QUBO and Ising model problems. They handle
automatic quadratization through their to\_qubo()
function if it were applied to any problem with higher
order terms. Although the exact method is not provided
in their documentation, it's mentioned that quadratization
is done by adding auxiliary variables.

QUBO,jl

A library implemented with Julia for working with
QUBO and Ising models. ToQUBO.j 1 provides an
interface for automated quadratization. By leveraging
Julia's multiple dispatch paradigm, users are allowed to
implement their quadratization methods as well.
According to Xavier et al. (2023), currently, two methods
have been implemented, using PTR and NTR.

Critical Analysis

We have reviewed a broad selection of works other
than  specifically on  quadratization, including
approximately 35 papers on quantum and classical
problem solving (which utilized any kind of
quadratization in the process). Table 3 depicts the real-
world examples for research and each quadratization
approach that was chosen or referred to in the studies.
Although this is a non-exhaustive list, it captures the
essence of the usage ratio of different methods. Note that
some recent methods we covered from previous sections
are not available because we were unable to find any
usage. The search was carried out through the Google
Scholar search engine. This section is dedicated to
presenting insights by analyzing the wusage of
quadratization observed across these studies. The
problems in these studies belong to different domains
such as quantum physics, mathematics, chemistry,
scheduling, computing, and theoretical studies.
According to our selection criteria, we only chose
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problems where quadratization was needed as a part of
the problem-solving process.

Method Usage Trends

The evolution of quadratization techniques reveals a

shift from general-purpose transformations (e.g.,
Rosenberg's method, Ishikawa's, Freedman's
formulation) toward more problem-specific and

hardware-efficient methods (Mandal et al., 2020; Okada
et al., 2015). While we can gradually see the new
methods have been referred to by particularly newer
works like Bishwas et al. (2024) and Couzinié et al.
(2024), it is evident that traditional methods still
dominate the usage. (We will refer to Rosenberg (1975)'s
reduction method, Ishikawa (2011)'s PTR method, and
Freedman and Drineas (2005); Kolmogorov and Zabih
(2004)'s NTR method as the traditional methods.) Figure
5 depicts the methods that have been used to solve
problems where quadratization was needed and
performed.

Table 3: References to Quadratization Methods in Selected Papers
(Non-Exhaustive)

Quadratization Method

Penalty Based Rosenberg's
Method (Rosenberg, 1975)

Referenced Papers

Jiang et al. (2018); Chang et al.
(2019); Cruz-Santos et al. (2019);
Jones et al. (2020); Mahasinghe et
al. (2021); Arya et al. (2022);
Salehi et al. (2022); Mahasinghe
and Jayasinghe (2022); Mosca
and Verschoor (2022); Mato et al.
(2022); Domino et al. (2022); Jun
and Lee (2023a); Jun and Lee
(2023b); Fernandez-Villaverde
and Hull (2023); Sharma et al.
(2023); Gilbert et al. (2023);
Pichugina et al. (2024); Troy
(2024); Wronski and
Dzierzkowski (2024); Dobrynin et
al. (2024); Grange et al. (2024)
Li (2016); Cruz-Santos et al.
(2018); Sharma et al. (2023);
Fernandez-Villaverde and Hull
(2023); Pichugina et al. (2024);
Key and Freinberger (2024);
Dobrynin et al. (2024)

Mengoni et al. (2020);
Copenhaver et al. (2020);
Pelofske et al. (2022); Djidjev
(2023); Dukalski et al. (2023);
Uotila (2024); Uotila (2025)
Quadratization in Ising Space  Domino et al. (2022); Bishwas et
(Mandal et al., 2020) al. (2024)

Deduc-Reduc Method (Tanburn Couzinié et al. (2024)

etal., 2015)
PyQUBO
Qubovert

PTR & NTR (Ishikawa, 2011;
Freedman & Drineas, 2005)

dimod.make_quadratic()
(D-Wave, 2024)

Kaseb et al. (2024)
Chermoshentsev et al. (2021)

We observe that some papers did not perform actual
quadratization but instead suggested possible methods in
case quadratization was required. Additionally, we
noticed that in relatively recent papers, even when
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quadratization was not applied, alternative methods
beyond the traditional ones were considered. Figure 6
shows the overall proportions of methods referred to in
studies. As quadratization is often overlooked, observing
what methods researchers are aware of extracts useful
information for our particular study.

Rosenberg
17 (41.5%)

'. PTR
7 (17.1%)

41.5%

NTR

a 5 (12.2%)
e dimod.make_quadaratic
7 (17.1%)

. Deduc Reduc
1 (2.4%)

Gadgets
. 1 (2.4%)

17.1%

2.4%
2.4%
2.4%

:========i;

2.4%

Graph cut
12.2% 1 (2.4%)

17.1% )
Ising Space

1 (2.4%)

Qubovert

1 (2.4%)

Fig. 5: Overall actual usages of known quadratization from the
reviewed works

Rosenberg
21 (38.2%)

'. PTR
8 (14.5%)

38.2%

dimod.make_quadaratic
8 (14.5%)

14.5% NTR

. 6 (10.9%)

Ising Space
10.9% 3 (5.5%)
Gadgets
2 (3.6%)

14.5%

1.8%

-6% No method mentioned

1 (1.8%)

5.5%

10.9%

. Others
6 (10.9%)

Fig. 6: Overall mentions of known quadratization methods
from the reviewed works

Figure 5 shows that from 2018 to 2025, traditional
quadratization methods have remained dominant.
Despite the improved logarithmic bound presented by
Boros et al. (2020), we found no instances of its use in
the surveyed works. The Ocean software's

make\_quadratic function was commonly used, but
it relies on classic substitution and reduction techniques,
reinforcing the continued use of traditional approaches.
We also noted the use of other open-source tools in Julia
and Python, though they similarly default to well-
established methods.

Most studies do not justify their choice of
quadratization method. The only clear rationale we
observed was hardware compatibility, such as with D-
Wave's Pegasus topology (Fernandez-Villaverde and
Hull, 2023). This lack of justification may arise from
limited awareness of newer methods or a perception that
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quadratization is peripheral to the main research goals.
Only a few acknowledged the potential of more compact
techniques, but still none applied them. Some authors
even noted that expensive quadratization can negate
potential quantum advantage (Uotila, 2025). Out of 35
studies using only traditional methods, Figure 7
compares those that mentioned alternative techniques,
though without implementing them.

25
20
15

10

No mention

Has mentions

Fig. 7: Percentage of papers that acknowledged other existing
techniques than the traditional ones

This suggests that within the research community,
these fore-called traditional methods have become the de
facto standard for quadratization, often applied without
formal acknowledgment.

Domain-Specific Preferences

We were unable to extract clear insights on
quadratization method usage across different domains,
largely due to the lack of rationale provided for method
selection. This made it difficult to associate specific
methods with specific problem types.

That said, a few studies in quantum chemistry
avoided manual traditional methods by using automated
tools like Qubovert, make\_quadratic, or referring to
newer techniques such as deduc-reduc and Ising-space
quadratization (Copenhaver et al., 2020; Couzinié et al.,
2024; Chermoshentsev et al., 2021; Bishwas et al.,
2024). However, this data is insufficient to establish any
domain-specific trends. Most other studies in quantum
physics, mathematics, and computing continued to rely
on traditional methods.

Experimental vs Theoretical Usage

Table 4 compresses the usage of different
quadratization methods from the instances we analyzed
within theoretical and experimental studies. What we can
observe through this is that in practical works,
researchers have utilized automated tools for order
reduction needs, possibly due to the ecase of use and
convenience. We can see that non-traditional methods
have been considered in both scenarios. Many other
approaches could have been experimented with in
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theoretical studies, such as Split-Reduction and 4-
variable quadratization studies carried out by Okada et
al. (2015); Dattani (2019).

Table 4: Usage of quadratization methods in theoretical and
practical aspects

Practical Theoretical
PTR PTR

NTR NTR
Rosenberg Rosenberg
dimod.make_quadratic Ising Space
Deduc Reduc Gadgets
Qubovert -

PyQUBO -

DADK -

Ising Space -

Gadgets -

Symmetric Functions

Lack of Usage of Recent Approaches

As seen in the usage trends analyzed earlier, many
recent quadratization techniques, particularly those
leveraging structural properties or novel formulations-
remain unused in practical problem-solving. This raises
important questions about their performance across
different hardware platforms and problem types. Papers
rarely perform multiple experiments to evaluate
alternatives (Jones et al., 2020). It remains unclear
whether better results could have been achieved had
more recent approaches, such as those in Dattani and
Chau (2019); Verma and Lewis (2020), been tested.

Lack of Computational Comparisons and Practical

Implementations in Quadratization

There is a clear lack of systematic comparisons
across problem types, and few automated tools offer
support for multiple techniques. This scarcity can
discourage users who are less familiar with the
underlying mathematics. Given the commercial
availability of QA devices like D-Wave, accessible and

flexible implementations are essential for broader
adoption.
Several  studies (Mengoni et al., 2020;

Chermoshentsev et al., 2021; Kaseb et al., 2024) rely on
automatic quadratization via standard libraries, typically
using Minimum Selection or Substitution. However,
these default choices are not optimal for all problem
types, especially when the number of auxiliary variables
becomes a performance concern. Tools that support the
Ising model could benefit from integrating Ising-space
quadratization, which avoids the need for intermediate
QUBO transformation.

Quadratization Techniques in Real-Life

From the previous observations, we will now analyze
the real-world applicability, a comparative evaluation,
and the efficiency of the discussed methods.
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Out of the work that has been reviewed, we
categorize only the following to have actual adequate
usages in real-life problem-solving cases ;

¢ Rosenberg's Substitution
¢ NTR - Freedman & Drineas
PTR - Ishikawa

The above methods have proven to be useful,
although with questionable impact on the performance.
General applicability justifies their wide usage. Note that
the Make Quadratic method is omitted since it uses the
above 3 methods under the abstractions.

Even though Rosenberg (1975)'s method provides
clear quadratization, Ishikawa (2011) claims that due to
the large coefficient M, the method becomes impractical
to use in real cases. Even though there is no better bound
for the number of introduced variables in term-wise
methods such as Ishikawa's PTR, with the combination
of NTR, and because of smaller coefficients (quantum
annealers' limited hardware precision to specify the
values of Ising model parameters desires this), the claim
is that the substitution methods could be outperformed.
Verma et al. (2021)'s preprocessing techniques to
minimize the coefficient and the number of auxiliary
variables introduced could potentially lead the
Rosenberg's substitution to outperform its traditional
form. But we have yet to see any proper generalized
application for this (besides Max 3-SAT instances).

While some studies prove that term-wise methods are
applicable in real quantum calculations, such as prime
factorization (Jiang et al., 2018), the minimum multi-cut
problem (Cruz-Santos et al., 2019), eigenvalue problem
(Jun and Lee, 2023b) in relatively smaller-scale with the
correct bounds, some (Key and Freinberger, 2024;
Copenhaver et al, 2020) raise a problem of
quadratization affecting the quality of the solution due to
the decrease in problem sparsity. Ultimately, limiting the
scale of solvable problems is a major downside of these
traditional methods.

The same observation can be seen with Rosenberg's
method as well. Studies in quantum annealing, like the
discrete logarithm problem (Mahasinghe and Jayasinghe,
2022), NP problems (Mahasinghe et al., 2021), Machine-
Learning (Troy, 2024), music composition (Arya et al.,
2022), molecular unfolding (Mato et al., 2022), etc., have
chosen Rosenberg due to its algorithmic convenience,
and have even raised concerns about the growing
variable count as well. While the methods work with
smaller-scale problems, the performance loss increases
rapidly with the increasing degree. Gilbert et al. (2023)
claims that these processing steps multiply the required
physical qubits by 581% for 4th degree problems in D-
Wave systems. Jones et al. (2020) refers to the
Rosenberg method as the 'most general but worst scaling
method'. These scaling problems could potentially be
addressed by the non-general methods that are mentioned
below.
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Negative Term Reduction introduced by Freedman
and Drineas (2005) remains the best technique to be
performed on negative monomials, which also preserves
the submodularity. Also, we found no example for the
usage of the 'better' logarithmic bound PTR reduction
method over Ishikawa's, hinting that we currently have
no proper solid claims for the comparative effectiveness
of the substitution and term-wise methods. As a
summary, the advancement of substitution remains
limitedly tested, and the term-wise advancements remain
theoretical.

We see a concerning drop in quality after
quadratization of larger-scale problems. This even led to
researchers proposing Higher-Order Ising solver models
as well (Bybee et al., 2023). At this current stage,
quantum annealing would become infeasible for natural
higher-order problem solving due to this bottleneck.

We observe the following methods as promising
alternatives or improvements, but underutilized
approaches that could potentially address the above
issues in scaling. They have not yet gained much
attention to provide enough data to determine their
efficiency in real use cases.

¢ Ising Space Quadratization
Deduc-Reduc

Split-Reduc

Local Structure Reduction (LSR)
4-Variable Function Quadratization

All the above-mentioned methods are promising
candidates for specialized quantum annealing scenarios.
Support for Ising problems, elimination of auxiliary
variables, and fast optimized quadratization are highly
useful in resource-sensitive workflows.

However, Couzinié et al. (2024) showed that by using
the deduc-reduc method, they were not able to
completely quadratize the problem, thus making it
unable to be directly run on quantum hardware. This
depicts that while these new methods are promising in
certain aspects, they might ultimately fail to deliver
satisfying results by themselves. Unfortunately for the
rest of the aforementioned methods, we could find no
applications.

In comparison to deduc-reduc, split-reduc provides
greater versatility but at the cost of increased
computational overhead with the generation of multiple
separate Hamiltonians. Deduc-reduc is more efficient
with problems that have inherent variable relationships.
Split-reduc is far more suitable for problems lacking
such structures, making it a complementary approach. It
would be nice to see actual benchmarking results to
solidify these insights.

As the authors claim (Mandal et al., 2020), the most
optimal method that should be chosen for Ising problems
would be their approach. However, the majority of the
practical experiments are carried out in the QUBO if not
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binary domain. Still, case studies exist (Xia et al., 2017)
that converted Ising problems to the binary domain,
resulting in an exponential number of auxiliary variables
through the Rosenberg method. A future direction would
be to re-evaluate these using the Ising quadratization
method.

The LSR method is suitable for larger-scale problems
over standard methods due to its lower computational
overhead. While it achieves comparable results in terms
of new variables to state-of-the-art methods, it can be
made more flexible and can handle quadratizing larger
problems. This work by Schmidbauer et al. (2024) is one
of the rarest studies that ran actual comparative
experiments on methods.

Since these methods carry more limitations than the
general-purpose ones, they can be combined and used in
a hybrid manner that will provide more optimal results.

Recent Advancements that Influence the Effectiveness of

Quadratization

Some recent breakthroughs in quantum computing
bear an influence on the effectiveness and the
requirement of quadratization. For example, D-Wave has
announced their latest 'Advantage2' Quantum Computer
(D-Wave Systems Inc., 2024) with 4400+ qubits with a
newer qubit connectivity topology 'Zephyr'. Zephyr is a
significant advancement over their previous topologies,
Pegasus and Chimera. It features qubits of degree 20 and

native Ky and Kg, 8 subgraphs (Boothby et al., 2021).
This breakthrough may reduce the need to apply
heuristics for the selection of optimal quadratization, and
the traditional methods could be more applicable in
general case scenarios due to the higher qubit count and
a better coupling technology (Volpe et al., 2025)

Another approach to solving optimization problems
is the Quantum Approximate Optimization Algorithm
(QAOA) (Farhi et al., 2014; Bennett et al., 2024). This
leverages the universal gate-based model and is
continuously being developed with hybrid variational
algorithms. This way of optimization vastly reduces the
need for quadratization, as QAOA natively supports
higher-order functions (Campbell and Dahl, 2022).

Conclusion

This survey has reviewed the landscape of
quadratization methods used in converting higher-order
pseudo-Boolean functions into quadratic form, a crucial
step for enabling optimization via quantum annealing
and many other applications. We examined both
traditional and modern techniques, including general-
purpose reductions, structure-specific methods, and pre-
processing for compact quadratizations with provable
variable bounds. While advances have been made, a
clear gap remains between the rich body of introduced
novel methods and their practical deployment.
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A key observation from our Critical Analysis is that
despite the numerous array of quadratization methods
proposed over the decades, most practical works still rely
on a small handful of classical techniques, especially
Rosenberg's, Ishikawa's, and Freedman's methods, often
without any stated justification. This uncritical selection
could be deemed problematic, particularly in quantum
applications where inefficient quadratizations can
severely hinder performance due to limited qubit counts
and embedding challenges. Furthermore, our analysis
revealed that researchers seldom compare multiple
methods for the same problem, and virtually no
empirical rationale is found to address the choice of one
method over another.

This lack of methodological rigor underlines the need
for a unified framework for quadratization method
selection. Such a framework should consider structural
properties of the pseudo-Boolean function (symmetry,

submodularity, variable count, order), hardware
constraints, and performance trade-offs. Our future work
aims to address this gap through systematic

experimentation on known and new problem instances
using underexplored quadratization techniques. This
would not only allow comparative benchmarking but
could also uncover context-specific heuristics or rules-
of-thumb.

We also propose the potential in using Al to assist the
quadratization process, not to replace existing methods
(as there exists no large datasets of problem-
quadratization-performance to train on) but to help guide
their selection or tuning. While still in early stages, Al
could support tasks like identifying function structure or
recommending suitable methods based on prior
examples. As a future direction, quantum annealing can
also be incorporated with solving continuous functions
through Integer programming and discretizations, which
would be highly beneficial, other than solving
combinatorial ~ optimizations.  Another  promising
direction would be to combine these methods and use
them in a planned hybrid manner in a way that the
methods complement each other's weaknesses. From a
mathematical perspective, more compact and efficient
quadratization techniques are in dire need. Although this
direction might not seem easily tackled, we still have not
overcome the bottleneck caused by this transformation.

Finally, current software tools (such as D-Wave's
Ocean SDK) default to legacy methods and do not yet
incorporate compact or structure-aware quadratizations.
Enhancing these tools to support a broader range of
methods, as well as pre-processing steps that could
reduce the resulting function complexity, would be a
significant step forward in making quantum annealing
more and accessible.

In conclusion, quadratization remains a bottleneck in
realizing the full potential of quantum annealing. To
bridge the gap between theory and practice, a data-driven
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approach is necessary-one that acknowledges the
diversity of methods available and selects or designs
them accordingly.
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