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Abstract: The integration of optical lens technologies with night vision has 

become necessary due to the increasing demand to enhance public safety and 

surveillance, particularly in vulnerable areas, public transportation, and 

airports. Due to vision clarity issues or the lack of thermal information, 

conventional single-modality systems often fail to detect concealed dangers. 

This research presents a multimodal image fusion architecture that integrates 

visible and infrared (IR) images to enhance hidden weapon detection, thereby 

mitigating these limitations. Whereas infrared images provide valuable heat 

signals that can penetrate clothing and reveal hidden objects depending on 

temperature gradients, visible photographs provide accurate spatial and 

textural information. In this article, an efficient VR-IR image integration 

model is proposed by merging distinct images acquired from different 

sensors:  Visible Images containing high spatial are merged with infrared 

images containing high thermal radiation information and low spatial 

resolution details. The proposed fusion algorithm harnesses the attributes of 

the Shearlet transform (NSST) and spectral residual details information. 

Furthermore, the proposed architecture yields improved visual and objective 

results compared to other fusion algorithms. The proposed method surpasses 

all current methods with the highest fusion rate of 0.9276, minimum 

information loss (0.0536), and shows artifact (0.0128), indicating nearly no 

extra noise or visual distortion. 
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Introduction 

Images are captured in almost every range of the 

Electromagnetic spectrum. The wavelength of the waves 

decides their level of penetration, absorption, and 

scattering rate. Based on this, different sensors are used to 

capture the information (Muñoz et al., 2025). The images 

captured through visible light sensors capture the 

reflected components of visible white light hence, the 

visible images have clearly defined boundaries of objects 

and an excellent contrast if the objects in the scene are 

well illuminated (Zhu and Zhang, 2025). On the other 

hand, the Infrared sensors capture relatively larger 

wavelengths which can penetrate one level deeper than 

the visible light. The higher wavelengths help capture the 

nocturnal features of the scene (Hadinejad et al., 2025). 

Since the images are captured through the radiation 

pattern emitted, various object boundaries are formed 

according to the temperature difference between different 

objects in the scene. This reveals the hidden object 

information but with low details (Khor et al., 2024a). 

Image fusion brings out the subtle aspects and details 

of an image to integrate them into a single image which 

may appeal to a certain set of observers for instance, it 

helps in better surveillance when multi-sensor images like 

Visible and Infrared images of the same scene are fused 

(Wang et al., 2024). Additionally, it also improves the 

contrast and overall luminance of the image which 
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facilitates in better perception of details. As an image is 

simply an array of pixel intensity values, a simple 

averaging operation also provides a fused version, but 

with a lot of lost details and artifacts (Jagalingam and 

Hegde, 2007). The primary goal is to transfer as much 

useful information as possible by manipulating the source 

images in a controlled and efficient manner, utilising 

various tools such as transforms or spatial filters (Dey and 

Aravind, 2024). These tools are used to separate the high-

frequency (edges and contours or detail) and low-

frequency (consistent or base) information. The purpose 

of this separation can be better understood if the general 

framework of image fusion is known firsthand. The 

general framework of an image fusion technique can be 

described in three steps (Dong and Wang, 2024): 
 

• Multi-scale decomposition (MSD) 

• Separate fusion of base and detail information 

• Final fusion or reconstruction 

 

Some additional measures can be taken within these 

three steps to further maximize the fusion rate. The first 

step of MSD is very important as it is used to decompose 

the input (source) images into finer and relatively coarser 

levels (Duan and Wang, 2021). The quality of 

decomposition and the effectiveness of the fusion 

mechanism used are both influenced by the MSD 

technique. For MSD either a transform or a spatial filter 

is used. By applying these transforms multiple scales of 

information are obtained as these transforms use 

orthonormal high-pass and low-pass filter banks to 

separate the information (Luo and Luo, 2023). The use of 

orthonormal filter banks helps in the exact reconstruction 

of the decomposed signal which is a vital step for 

transform-based decomposition (Veranyurt and Sakar, 

2023). In the case of spatial domain-based decomposition, 

the image is first low-pass filtered using an existing filter 

kernel or a customized low-pass FIR or IIR filter and then 

high-pass information is extracted by subtracting the low-

pass filtered image from the original image. 

There are many such methods to decompose the image 

both in the transform domain and spatial domain. Some 

such methods in the transform domain are Discrete Cosine 

Transform, Wavelets and their shift-invariant variants 

such as Shift Invariant Wavelet Transform (SIWT), Dual-

Tree Complex Wavelet Transform (DTCWT), Curvelets, 

Contourlets, Shearlets, etc. These transforms were 

developed in such order to obtain characteristics such as 

shift-invariance, multi-directional analysis capability 

faster computation speed, etc. Examples in the spatial 

domain are filters such as Average filter, Joint/Cross 

Bilateral filter, Gaussian filter, Bilateral filter, Guided 

filter, etc. These filters evolved in the same order to 

acquire better smoothing operation while preserving the 

edges and contours or preserving high-pass information 

(Bustos et al., 2023). 

In addition, the detail and base layers can be improved 

through some saliency detection tools or some other 

visibility enhancement technique. There exist broad 

ranges of these techniques which are investigated by 

researchers. Weights are generated using the salient object 

information which is extracted from the source images 

(Bhavana et al., 2022). These weights are obtained either 

by normalizing the saliency maps or by filtering the 

saliency maps repeatedly using an appropriate edge-

preserving filter. Those weights are then used to enhance 

the details. Finally, the base and detail layers can be 

merged using some appropriate fusion rule (Goyal et al., 

2021). There are some most popularly used fusion rules 

such as Choose max, choose min, Average fusion rule, 

Weighted average fusion rule, Fusion rule based on 

activity measurement, etc. The fusion rules are also called 

coefficient-selecting methods as they are used to select 

coefficients for the fused image out of multiple source 

images (Mahmoud, 2020).  

Apart from evaluation with the eyes, there are various 

mathematical tools available to evaluate the quality of the 

fusion process. These tools can be categorized into two 

parts: 

 

• No reference-based metrics 

• Reference-based metrics 

 

The no-reference-based methods do not require any 

image as a reference point to evaluate various properties 

of the fused image. On the other hand, reference-based 

metrics require reference images (Input source images) to 

evaluate the quality of the fused image. Earlier, no 

reference-based metrics like entropy, standard deviation, 

correlation, mutual information, and spatial frequency 

were quite popular, but nowadays, reference-based 

metrics like Qabf (Fusion rate) are defined as in Eq. 1: 
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strength and orientation preservation values, and 
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preservation parameters. ,

S

i jw and ,

T

i jw  are corresponding 

weights of source images S and T respectively and abfL  

(Loss of information) which can be calculated as in Eq. 3: 

 

1 ( )abf abf abfL Q N+= − +  (3) 

 

An excellent review of these metrics along with some 

other assessment metrics is given by Liu et al. (2012). 

Related Work 

Image fusion managed to flourish in the last two 

decades due to its inherent advantages. The main 

advantages can be outlined as follows: 

 

1. A compensation to the limits of various image-

capturing sensors 

2. Effective image content analysis due to added 

complementary information 

3. Wide areas of applications like surveillance, remote 

sensing, concealed weapon detection, medical 

diagnosis through multi-modality image fusion, etc 

4. Saving of storage space 

5. Cost-effective as compared to hardware changes 

 

Earlier, image fusion has been explored with some 

primitive state-of-the-art techniques like DCT, Laplace 

transform, Wavelets, etc. The main disadvantages 

encountered using those methods were the loss of 

information during Multi-scale Decomposition (MSD), 

shift-invariance, and limited directionality. However, 

these techniques are still used with some modifications to 

achieve better results. 

Nowadays, a shift of focus happened toward hybrid 

techniques. Hybrid domain techniques are a communion 

of transform domain and spatial domain techniques that 

exploit the advantages of both domains. Non-subsampled 

MSD and salient object information extraction are 

important parts of these techniques. In light of this, we 

will compare our method with some recently proposed 

techniques based on Discrete Cosine Harmonic Wavelet 

Transform (DCHWT) by Liu et al. (2012), Singular Value 

Decomposition (SVD) by Naidu (2011), Guided filter 

(GF) by Shreyamsha (2013), Discrete Cosine Transform 

(DCT) by Li et al.  (2013), Cross Bilateral filter (CBF) by 

Kaur et al. (2015), Saliency Detection 1 (SD1) by 

Shreyamsha (2015) Saliency Detection 2 (SD2) by 

Bavirisetti and Dhuli (2016), Anisotropic Diffusion (AD) 

by Bavirisetti et al. (2017), Fourth Order Partial 

Differential Equation (FPDE) by Zhan et al. (2017) and 

Fast filtering IF (FFIF) by Chen et al. (2019). 

Naidu (2011) have proposed and evaluated an 

innovative fusion technique based on Multi-Resolution 

Singular Value Decomposition (MSVD).  The 

performance of the algorithm is compared with the 

performance of a well-known wavelet-based picture 

fusion technique.  MSVD image fusion has been 

demonstrated to be practically as effective as wavelets.  

The computational structure is fairly simple and may be 

suitable for real-time applications. In addition, in contrast 

to FFT, DCT, and wavelet, the basis vectors of MSVD are 

dataset-dependent and not predetermined. 

Wavelets' multiresolution and energy compaction 

have made it possible for image fusion to merge vital 

information from source images, such as edges and 

textures, into one without introducing any artifacts to 

improve context and situational awareness (Shreyamsha, 

2013). The wavelet transforms, being computationally 

expensive, are a representation of a convolution of the 

image in question by wavelet filter coefficients. The 

lifting-based wavelets have made calculations easier but 

at the cost of the performance and visual quality of the 

fused image.  An image fusion based on Discrete Cosine 

Harmonic Wavelet (DCHWT) is proposed to maintain the 

performance and visual quality of the fused image at the 

cost of fewer calculations.  The computational complexity 

of the proposed method is comparable to lifting-based 

wavelets and better than convolution-based wavelets. 

An efficient and fast image fusion method is 

introduced by Li et al. (2013), for fusing a large number 

of photos to generate a highly informative fused image.  

This method is based on the 2-scale decomposition of an 

image into a detail layer that records small-scale details 

and a base layer that has large-scale intensity variations. 

For the ultimate utilization of spatial consistency for the 

merging of the detail and base layers, a novel weighted 

average approach grounded on guided filtering is 

proposed (Kaur et al., 2015). Quality assessment 

measures for image fusion have been utilized to construct 

and research block DCT-based image fusion algorithms.  

Five designs for image fusion have been described, such 

as morphological DCT (MpDCT) derived from block 

DCT, subband DCT (SDCT), wavelet structure DCT 

(WSDCT), resizing DCT (RDCT), and feature DCT 

(FDCT).  The image fusion algorithm from WSDCT has 

been revealed to be more efficient. Employing the 

calculated weights derived from the detailed images 

obtained by extracting them from the source images based 

on CBF, Shreyamsha (2015) proposed a weighted average 

fusing method for source photos.  The performance of the 

method has been validated on some multisensor and 

multi-focus image pairs, and it has been visually and 

statistically compared to existing methods. It is found that 

for each performance measure, none of the methods has 

shown consistent performance.  In most cases, the 

proposed method has worked optimally compared to 

them. 

A new edge-preserving image fusion method for 

visible and infrared sensor images was introduced by 
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Bavirisetti and Dhuli (2016).  The original images are 

decomposed into approximation and detail layers by 

anisotropic diffusion.  Weighted linear superposition and 

the Karhunen-Loeve transform are applied to compute the 

final detail and approximation layers, respectively.  The 

final detail and approximation layers are linearly fused to 

produce a fused image. Petrovic measures are employed 

to test the performance of the proposed algorithm. 

A novel picture fusion method using fourth-order 

partial differential equations and principal component 

analysis is presented by Bavirisetti et al. (2017).  Every 

source image is initially processed using fourth-order 

partial differential equations to generate detail and 

approximation images.  Second, to find the optimal 

weights, detailed images are processed using principal 

component analysis. Third, these detailed images are 

combined using the help of suitable weights to create the 

final detailed image.  Fourth, an average operation on 

approximation images is applied to create the final 

approximation image.  Finally, the final approximation 

and detail images are merged to compute the resulting 

fused image. A picture fusion framework is proposed by 

Zhan et al. (2017) for different types of multimodal 

images with rapid spatial domain filtering.  Contrast and 

sharpness are first sensed using the picture gradient 

magnitude.  Then, the picture gradient magnitude is 

subjected to a rapid morphological closure process to 

close gaps. Third, a fast structure-preserving filter 

processes the weight map, which has been obtained from 

the multimodal image gradient magnitude. Finally, a 

weighted-sum rule is employed in constructing the fused 

image. The proposed method is faster than the fastest 

baseline algorithm by at most four times. 

 A fusion approach for cyber-physical systems is 

introduced by Chen et al. (2019). The MSMD-based 

technique is proposed as compared to the traditional 

approaches.  Multi-scale decomposition is employed first 

to obtain detailed layers and basic layers with reserved 

edges.  Secondly, rather than utilizing detailed layers as in 

the previous technique, multi-direction decomposition is 

employed to construct base layers. Subsequently, by 

choosing the maximum value based on the patch, a series 

of multidirectional base layers and detailed layers are 

created.  A discrete wavelet transforms and pixel 

alignment image fusion technique is proposed by 

Mahmoud (2020). It is mainly applied to the detection of 

hidden weapons. Picture   Wavelet (WT) and inverse 

wavelet transform (IWT) are employed in a data fusion 

approach that uses fusion dependence criteria for low-

complexity sensors in terms of correlation coefficients.  

The coefficient with the highest correlation rate is selected 

as the fusion rule. The co-existing property is more 

prevalent as the correlation increases.  The proposed 

method keeps higher quality while its real-time reaction 

speed is 40% faster compared to similar existing 

algorithms.  It is superior to other algorithms in 

performance, with a better PSNR of more than 10% on 

average over similar algorithms. A new technique for 

detecting concealed firearms using DWT with the 

metaheuristic Harmony Search Algorithm and SVM 

classifier is proposed by Altaher et al.  (2020). It creates a 

blended image by applying the hybrid Hotline transform, 

coupled with the standard discrete wavelets transform 

first.  The optimal harmony is then determined by 

employing a heuristic search method. These are then 

grouped using K-means SVM to enhance classifiers for 

the discovery of hidden weapons. 
Another image combination method is based on 

saliency finding and two-scale stands for picture 
decomposition proposed by Naidu et al. (2020). The 

approach is lucrative since saliency-based methods have 
been widely applied to the combination of visible (VIS) 
and infrared images, where visible and infrared images 
can store point-by-point basis information and emphasize 
the salient points' location at the same time. Another 
approach to generating weight maps based on visual 

saliency is proposed. The GAN framework was 
introduced by Yang et al. (2021) to reconstruct high-
quality images from multi-source PMMWIs. The 
registration network is proposed for privacy issues and 
false alarm elimination, and the segmentation network 
employs multi-scale features to integrate global and local 

information in PMMWIs and visible images to acquire 
precise shape and position information in the images. The 
detection results of every individual frame are combined 
by a synthetic method. Based on experimental results, the 
proposed method has a fast detection rate, with 92.35 
accuracy and 90.3% recall. 

The Latent Low-Rank Method, an accurate image 

fusion technique for detecting hidden weapons or other 

objects under a person's clothing, was proposed by 

Bhavana et al. (2022). Salient features can be detected 

through latent low-rank representation. The rate of object 

detection is 94.6%.  Fusion performance is evaluated 

subjectively based on numerous parameters. A system 

based on deep learning that is able to detect and find 

concealed guns on thermal images for real-time 

monitoring is introduced by Veranyurt and Sakar (2023). 

The concealed gun within the given thermal image is 

detected and found by a deep learning-based architecture. 

With a 0.84 F1 measure on the test set, an optimized 

VGG19-based model yielded the top test set outcomes in 

detecting the concealed handgun. The second module of 

the system attained the highest mean average precision 

value of 0F.95 in detecting and recognizing the gun within 

approximately 10 milliseconds due to an enhanced Yolo-

V3 model. 

To enhance the detection of faint thermal signals and 

the automation of infrared image categorization by Khor 

et al. (2024b) by combined IR imaging and CNNs with 

transfer learning.  Real-time heat emissions from the 
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surface of human volunteers' garments were captured with 

a mid-wavelength infrared detector. Two image types, 

fuzzy-c-clustered and raw thermal images, were 

investigated in this regard. A holdout set was employed to 

provide receiver operating characteristic curves, showing 

that the models of raw and fuzzy-c clustered pictures had 

corresponding area-under-the-curves of 0.8934 and 

0.9681, respectively. 

Muñoz et al. (2025) introduced a two-step concealed 

handgun detection method. The approach initially 

identifies potential guns at the frame level and, 

subsequently, ensures that they belong to an identified 

person.  To ensure accurate and reliable detection, alarms 

are triggered only under specific conditions. 

Precautionary alerts are established in case a weapon is 

detected, but no person is present.  Wearable and mobile 

apps can be facilitated by an efficient method tailored for 

low-end embedded systems. Hands-free functionality is 

enabled by the deployment of the system on a chest-worn 

Android smartphone with a small thermal camera.  

Experimental results on our dataset show a mAP@50-95 

of 64.52%, validating the effectiveness of the method. 

Materials and Methods 

This section covers the details of the dataset, tools, and 

description of the proposed methodology. 

Dataset Description 

All the experiments have been performed on the "gun 

dataset," which is a challenging dataset captured in low-

light conditions. This dataset is used to demonstrate the 

use of image fusion for concealed weapon detection. This 

can be extended to various other applications like 

surveillance and security. 

The source images used are gray-scale images of size 

200*256 and format ".gif". The first glance at the pictures 

shows that they are noisy and have artifacts at some 

boundaries, as shown in Fig. 1. The luminance and 

contrast of these images are also very low (Yang et al., 

2021). The image fusion will probably help in increasing 

the detail as well as the luminance of the overall image. 
 

 
                          (a)                                   (b) 
 
Fig. 1: Source images (a) Visible image (b) IR image 
 

Tools 

The proposed method is based on Non-Subsampled 

Shearlet Transform (NSST) and Spectral residual 

saliency. The Shearlet transform is an extension of 

Wavelets. The basic transformation operations that can be 

applied to the matrices are scaling, rotation, translation, 

reflection, and shearing. These transformation operations, 

combined with filter kernels or certain analyzing 

functions, provide flexibility in the efficient analysis of 

images. In the Shearlet transform, an additional shearing 

function is applied along with the wavelet function, which 

already uses scaling and translation to get operations in 

multiple directions and hence achieve directionality. A 

normal horizontal shearing operation on a vector can be 

defined as shown in Eq. 4: 

 

,
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i

j
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 (4) 

 

Where the parameter s decides the amount of 

backward or forward shear. Similarly, the continuous 

Shearlet transform has a dilation function formed with the 

product of shear matrices with the parabolic scaling 

matrices. The Shearlet coefficients can be obtained as 

shown in Eq. 5: 

 

( )( , , ) , bstb s t x =      (5) 

 

Where, b>0 (scaling function),s,  s R  (shear 

parameter), 2t R  (translation parameter) and x is the 

signal whose Shearlet coefficients are obtained as . To 

obtain a discrete representation, the three parameters are 

sampled at appropriate levels for optimum reconstruction. 

NSST is used in this technique, for the decomposition of 

the image because it provides the flexibility of analysis of 

the image in multiple directions. The conventional 

transforms like wavelet transform did not provide this 

flexibility. The wavelet transform could help with 

analysis in only 3 directions viz. Vertical, Horizontal, and 

Diagonal. This in turn helped in the efficient extraction of 

details from multiple directions hence improving the 

fusion rate. 

Similarly, on the other hand, the spectral residual 

saliency provides salient information about objects by 

extracting spectral residue from the log spectrum of an 

image. In this method, first, the log spectrum of the 

image is obtained then the spectral residual is obtained 

by removing the statistically redundant information of 

the image. Then to create the object map, a 

thresholding operation is applied to the pixels by (Hou 

and Zhang 2007). 

Methods 

The general layout of the proposed method is: 

Step 1: Multiscale decomposition using Shearlet 

transform. 
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1. Source image A, (I A) decomposed to  1A

BI  (Base 

layer) and  1 2 3, , ,A A A NA

D D D DI I I I  (Details) using NSST. 

2. Source image B, ( )BI  decomposed to 1 B

BI  (Base layer) 

and 1 2 2, ,B B B

D D DI I I    (Details) using NSST. 

Step 2: If one level of decomposition is chosen then go 

to step 3 otherwise add all the detail images to form a 

unified detail frame as in Eq. 6: 

 

1

n

n
NX

D D

i

I I
=

=      (6) 

 

Step 3: Simultaneously, extract the salient information 

from the source images as ( ) ( )A A B BS I S I = = and. 

Note: Segmentation is an important part of the salient 

information extraction. 

Step 4: Normalize the saliency maps to generate 

weights for the strengthening of the boundary pixels as  

Bw = / ( ) / ( )A A A B B B A Bw S S S w S S S= + = + and. 

Step 5: Calculate the weighted detail layers with the 

help of generated weights and then fuse them using the 

Choose max fusion rule by using Eq. 7: 

 

( , )A B

D A D B DI maimum w I w I=  (7) 

 

Step 6: The fused base layer is obtained by adding the 

corresponding visible and IR base layers as in Equation 8: 

 
A B

B B BI I I= +  (8) 

 

Step 7: Calculate the Inverse Shearlet transform on the 

final base and detail layers to obtain the final fused image. 

After the final step fusion quality is evaluated using 

three metrics namely Fusion rate ( )
a b f

Q , Loss of 

information ( )acfL , and artifact measure (
a b f abfQ N . These 

parameters follow the equation. So, the values of all three 

parameters lie within 0 and 1 and it is obvious from the 

terminology that the value of ( )
a b f

Q should be close to 1 

(ideally 1) and the values of (
a b f abfQ N and should be close 

to zero (ideally 0). 

Figure 2 shows the block diagram of the proposed 

methodology that utilizes a multi-modal image fusion 

approach based on the Shearlet transform for concealed 

weapon detection in low-light conditions. Source visual 

and infrared images are decomposed into base and detail 

layers using NSST. Salient features are extracted and 

normalized to generate weight maps for boundary 

enhancement, followed by max-rule fusion of detail layers 

and additive fusion of base layers. The final fused image 

is reconstructed using the inverse Shearlet transform. 

Fusion quality is assessed using Fusion Rate, Information 

Loss, and Artifact Measure, with optimal values targeting 

a high fusion rate and minimal loss/artifacts. 

A visible image and an infrared (IR) image form the 

initial input images employed in the process.  While the 

infrared image holds thermal data which can be utilized 

for finding out concealed objects, it often is not clear in 

terms of space. Conversely, the visible image possesses 

great spatial resolution and textural information. The 

proposed method initially employs a Non-Subsampled 

Shearlet Transform (NSST) to decompose every source 

image into a base layer, holding low-frequency 

information, and multiple detail layers, holding high-

frequency features such as contours and edges, in an 

attempt to integrate the strengths of both modalities. Due 

to its shift-invariance and ability to store directional 

information in an array of orientations, both of which are 

necessary for structural integrity during fusion, the NSST 

is particularly beneficial in this case. 

Simultaneously, the spectral residual method, which 

partitions the most prominent features of an image by 

discarding redundant spectral information from its log 

spectrum, is employed for developing the saliency maps 

of both input images. The pixel-wise weight maps 

obtained from normalizing these saliency maps assign 

more weight to the regions with more prominent visual or 

thermal information, thereby guiding the fusion process. 

By employing a weighted Choose-Max process, the detail 

layers from both modalities are combined, retaining at 

every pixel location the highest saliency weight-

normalized detail coefficient.  The most informative 

elements from both input sources are retained as a 

consequence. 

 

 
 
Fig. 2: Block diagram of the proposed methodology 
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A simpler additive fusion algorithm is applied for the 

base layers, where the base layers from the visible and 

infrared images are summed to form a single base.  The 

full fused image is reconstructed by recombining the 

fused base and detail layers through the inverse NSST. It 

is expected that this output will demonstrate better 

representation of hidden objects or weapons, better 

clarity, and better contrast. There are three measures 

employed to measure the performance of the fusion: 

Fusion Rate (Qavz), which estimates the extent to which 

the two source images are incorporated; Loss of 

Information (L), measuring the level of content lost in the 

process of fusion; and Artifact Measure (Na), indicating 

the level of unwanted distortions produced while 

performing the process. 

Results and Discussion 

This section covers the results that are carried out by 

the experiments of the proposed methodology and also 

shows the comparison with the existing techniques. 

Figure 3 shows the visual results for various 

techniques. The boxes highlight the parts to be 

observed. It is quite evident that techniques like 

DCHWT, GF, CBF, SD 1 and 2 introduce some 

artifacts as seen in the upper highlighting block. The 

results obtained from techniques like SVD, DCT, AD, 

and FPDE are hazy, and in fast-filtering IF and SD 2, 

the concealed weapon is almost invisible. The results 

that are carried out from the proposed method are very 

close to the characteristics of the input source images, 

because of this reason this technique provides better 

objective evaluation results. 

Table 1 demonstrates the comparative analysis of 

the proposed method with existing techniques. The 

proposed method surpasses all current methods with 

the highest fusion rate of 0.9276.  Although they 

perform well, methods such as CBF (0.9024), FFIF 

(0.8991), and DCHWT (0.8890) lag behind the 

proposed method by a slight margin.  Compared to 

other methods, SVD (0.6129) has the lowest fusion 

rate, indicating that it retains much less information. 

with the minimum information loss (0.0536). DCHWT 

(0.1107) and CBF (0.0953) also show good 

performance. The worst approach in this situation is 

SVD (0.3864) since it suffers from maximum 

information loss. The proposed method shows an 

artifact (0.0128), indicating nearly no extra noise or 

visual distortion.  SVD (0.0007) and DCHWT (0.0003) 

both show high artifact reduction ability. GF (0.0100) 

and CBF (0.0363) have relatively higher artifact 

values, meaning that they introduce more distortions.  

The efficiency of integrating information from 

visible and infrared source images into the fused image 

is quantified by the Fusion Rate. Higher fusion quality 

and better knowledge retention are reflected by a higher 

fusion rate (closer to 1).  As shown in Fig. 4, the 

proposed method surpasses all current methods with 

the highest fusion rate of 0.9276. Although they 

perform well, methods such as CBF (0.9024) and 

DCHWT (0.8890) lag behind the proposed method by 

a slight margin. Compared to other methods, SVD 

(0.6129) has the lowest fusion rate, indicating that it 

retains much less information. The proposed technique 

generates the most complete fused image by combining 

useful information from both sources in an optimal way. 

 

 

 

Fig. 3: Image fusion results using First row (Left to right): 

DCHWT, SVD, GF, second row (Left to right): DCT, 

CBF, Saliency detection 1, third row (Left to right): 

Saliency detection 2, Anisotropic diffusion, FPDE, fourth 

row (Left to right): Fast filtering IF, Proposed method 

 

 

 

Fig. 4: Fusion rate comparison of the Proposed model with 

existing techniques 
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Table 1: Comparative Analysis of Proposed Method with 

Existing Techniques 

Techniques Fusion Rate Loss of 

Information 

Artifact 

Amount 

DCHWT 0.8890 0.1107 0.0003 

SVD 0.6129 0.3864 0.0007 

GF 0.75 0.2400 0.0100 

DCT 08413 0.1561 0.0026 

CBF 0.9024 0.0953 0.0363 

SD1 0.7396 0.2600 0.0004 

SD2 0.8588 0.1367 0.0045 

AD 0.7736 0.2236 0.0001 

FPDE 0.7704 0.2291 0.0005 

FFIF 0.8991 0.0993 0.0016 

Proposed 0.9276 0.0596 0.0128 

 

The Loss of Information metric measures the quantity 

of original data lost in the fusion process. Most of the 

original information is preserved when the values are low 

(closer to 0). Almost all-important information is 

maintained by the proposed method as shown in Fig. 5, 

which shows the minimum information loss (0.0536). 

DCHWT (0.1107) and CBF (0.0953) also show good 

performance. The worst approach in this situation is SVD 

(0.3864) since it suffers from maximum information loss. 

Again, the proposed method avoids information loss 

throughout fusion, making it superior. 

The quantity of unwanted distortions or noise added 

during the fusion process is quantified by the artifact 

amount. For clean and realistic photos, lower artifact 

values (closer to 0) are optimal. As shown in Fig. 6, the 

proposed method shows artifact (0.0128), indicating 

nearly no extra noise or visual distortion.  SVD (0.0007) 

and DCHWT (0.0003) both show high artifact reduction 

ability. GF (0.0100) and CBF (0.0363) have relatively 

higher artifact values, meaning that they introduce more 

distortions. 

Computational Considerations and Limitations 

The Non-Subsampled Shearlet Transform (NSST) and 

the extraction of spectral residual saliency are the two 

dominant parameters that influence the computing 

efficiency of the proposed fusion framework.  Even 

though NSST provides shift-invariant and multi-

directional analysis, its application of directional filtering 

on many scales and the absence of subsampling increase 

its computational cost over basic wavelet or pyramid-

based transform. However, the parallelizable operations 

of the algorithm do make it suitable for CPU versions with 

optimization or GPU acceleration.  Running two 200x256 

visible and infrared images using MATLAB to combine 

them takes approximately 2.1 seconds on average per set 

of images on a standard i5 processor with 8GB RAM.  For 

offline surveillance analysis, this is acceptable, but for 

real-time use, it may have to be optimized. The spectral 

residual method is light on computations in terms of 

saliency extraction, involving only an inverse Fourier 

transform and a log-spectrum calculation.  It is a good 

choice for real-time attention modelling due to its 

simplicity, which ensures that it does not significantly add 

to the runtime. 

In addition, in processing high-resolution images or 

video streams, memory overhead associated with NSST 

can increase dramatically as the number of directional 

components or levels of decomposition increases.  Due to 

this, finding a balance for the depth of decomposition with 

real-time constraints is essential.  Scalability is also a 

concern; while the present system works decently on 

smaller image files, it would require additional memory 

management and parallelization strategies for larger data 

sets or batch processing of multiple camera feeds. 

Latency constraints and technological boundaries also 

need to be considered in practical applications such as 

intelligent traffic monitoring or airport surveillance.  As 

an instance, application of this method to edge devices or 

embedded platforms would require utilization of model 

compression algorithms or light-weight approximations.  

In addition, fidelity of saliency map production and fusion 

can be affected by variations in ambient lighting, 

occlusion, and atmospheric noise between scenes. Thus, 

one of the most important directions for future growth is 

robustness against a range of environmental conditions. 
 

 
 

Fig. 5: Loss of information comparison of the Proposed model 

with existing techniques 
 

 
 
Fig. 6: Artifact comparison of the proposed model with existing 

techniques 
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Despite these advantages, the proposed method has 

some disadvantages. To date, it is dependent on input 

visible and infrared images being pre-registered; 

misalignment between modalities may decrease the 

precision of the fusion.  Additionally, shear direction 

selection and decomposition levels in NSST affect 

runtime and quality of results, and optimal tuning for 

different datasets would be required. Also, the solution is 

not adaptive; rather than applying learning-based 

decision-making mechanisms, it utilizes fixed principles 

(choose-max and additive fusion), which could limit 

performance in noisy or extremely dynamic 

environments. To enhance fusion robustness and 

generalizability to a range of surveillance environments, 

future research will focus on real-time deployment using 

GPU-based acceleration and the integration of learning-

based adaptive weighting mechanisms. 

Subsequent studies will attempt to integrate dynamic 

parameter selection processes, where the number of 

scales, shearing parameters, and fusion weights are 

dynamically tuned based on scene complexity or saliency 

detection confidence levels, to mitigate these problems.  

There can be further reduction in dependence on manually 

designed thresholds and fusion logic by using machine 

learning models for saliency prediction and fusion rule 

optimization. Ultimately, these improvements will 

contribute to the development of a fusion system that is 

more scalable, real-time capable, and context-aware, and 

fit for large-scale deployment in security-critical 

applications. 

Implications 

The suggested fusion technique, which makes use of 

spectral residual saliency and Non-Subsampled Sharlet 

Transform, has direct implications for improving the 

accuracy and dependability of surveillance systems, 

particularly in dimly lit or obscured areas like airports, 

high-security zones, and public transportation hubs. The 

technique may greatly enhance concealed weapon 

detection capabilities by skill fully integrating thermal 

and visual spectrum data, which will enhance public 

safety and threat prevention. Additionally, the framework 

can be expanded to other crucial areas, such as military 

reconnaissance, wildlife monitoring, and autonomous 

driving in nighttime or foggy settings. For even more 

automation and accuracy, its modular design enables 

integration with deep learning models. The creation of low-

cost, real-time, embedded image fusion systems that may be 

deployed on edge devices is made possible by this study. 

Moreover, the versatility of this fusion strategy allows 

it to be integrated into Internet of Things (IoT)-based 

security systems and multi-sensor platforms, wherein 

real-time visual understanding is critical.  Data fusion 

among several imaging modalities may enable proactive 

surveillance, intelligent alarm systems, and enhanced 

situational awareness as smart cities evolve. This method 

may be adapted for application in medicine to integrate 

multi-modal medical images, e.g., visible light and 

infrared thermography, to enhance screening and 

diagnosis in resource-constrained environments. 

Furthermore, the proposed methodology provides the 

core framework for academic research and development 

in computer vision and computational imaging.  It 

provides an imitable and scalable template for future 

advancement by combining modern saliency modelling 

and performance-based evaluation metrics with 

conventional signal processing methods (like NSST). 

This study may be employed as a pedagogical case study 

in schools by instructors and students who are interested 

in transform-domain image fusion and its potential uses. 

The application of intelligent, self-optimizing fusion 

models on embedded devices such as drones, intelligent 

security cameras, and mobile phones becomes not just 

possible but also vital as AI and edge computing 

capacities continue to evolve.  Thus, the broader 

implications of this study extend far beyond the detection 

of hidden weapons; it also addresses the growing 

requirement for intelligent, context-sensitive vision 

systems across multiple industries, such as environmental 

monitoring and security. 

Conclusion 

In this article, a new paradigm based on NSST for the 

fusion of a challenging multi-sensor dataset for concealed 

weapon detection is proposed. Due to the well-known fact 

that the NSST coefficients exhibit the dependencies 

relationship of inter-direction, interscale, and also 

between the neighbors, an efficient image fusion 

algorithm is proposed. This is necessary as an image has 

region boundaries or contours, not restricted to any 

particular direction. The use of spectral saliency detection 

further facilitated in transfer of necessary target 

information from the source images. This technique is 

tested on various multi-sensor image pairs. The results for 

this particular dataset are compared with various primitive 

and recently proposed, high-performance techniques, and 

it has been found that it presents better results in terms of 

objective and subjective evaluation. Experimental 

analysis explicitly indicates that the proposed technique 

can address the issue of mismatch between subjective and 

objective analysis. However, the problem of 

computational complexity is also resolved by the 

proposed method. The proposed method surpasses all 

current methods with the highest fusion rate of 0.9276, 

minimum information loss (0.0536), and shows artifact 

(0.0128), indicating nearly no extra noise or visual 

distortion. Among all the methods that are discussed, the 

proposed method is most effective as it achieves the ideal 
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balance among controlled artifacts, minimal information 

loss, and optimal information fusion. In our Upcoming 

work, we will devise more efficient integration strategies 

to further enhance the efficacy of the algorithm 

performance. The primary motive is to promote image 

integration techniques in remote sensing and surveillance 

applications, along with addressing the critical issues of 

data pre-processing and image alignment probes as well. 
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