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Abstract: In response to the increasing complexity and vulnerability of 

traditional authentication techniques, this paper proposes the Multiphase 

Zero-Trust Authentication Framework (MZTAF), which combines device-

level and user-level authentication to enhance security in zero-trust 

environments. Phase I leverages replicated key-based authentication to ensure 

fault tolerance and reduce the risk of device-level compromise. Phase II 

introduces homomorphic encryption for user authentication, securely 
verifying identity, context, and behaviour without exposing sensitive data. 

This multiphase authentication approach provides a robust, scalable, and 

privacy-preserving solution, offering continuous verification in dynamic 

environments. Experimental results demonstrate the framework's 

effectiveness, achieving a 94% success rate in device authentication and a 

95% success rate in user authentication, outperforming core mechanisms such 

as Replicated Key Authentication, Threat-Based ZTA with MITRE Mapping, 

Blockchain-Based Distributed Authentication, and MFA-ZTA at 89, 91, 92 

and 88% respectively. The framework also incorporates dynamic access 

control, adjusting permissions based on the outcomes of authentication 

phases, and ensuring flexible and granular access management. MZTAF 
offers a significant advancement in securing modern networks against 

emerging threats.  

 

Keywords: Device Authentication, Homomorphic Encryption, Replica Keys, 
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Introduction  

As cyber threats evolve and the digital landscape 
becomes increasingly interconnected, ensuring robust 

security has become a critical concern for organizations 
and individuals alike. Traditional models of 
authentication, which often rely on static credentials 
such as passwords, are no longer sufficient to protect 
sensitive systems and data (Harrison, 2023; Liu, 2024; 
Trott, 2024). These models are vulnerable to a wide 
range of attacks, including phishing, credential theft, 
and insider threats. The growing complexity of modern 
IT environments, where devices and users interact 
across diverse networks, further complicates security 
measures. This has led to the rise of Zero-Trust 
Architecture (ZTA) (Arenas et al., 2024; Bashir, 2024; 

Huber and Kandah, 2024). In a zero-trust environment, 
every device, user, and connection is treated as 

untrusted by default, requiring continuous and dynamic 
verification to ensure secure access to resources. 

To address the challenges posed by traditional security 
models and enhance the security of zero-trust 
environments, this paper introduces a novel multiphase 
zero-trust authentication framework that integrates two 
key authentication layers called device-level 
authentication through replicated key generation and user-
level authentication using homomorphic encryption 
techniques. The proposed framework is structured to 
sequentially authenticate devices and users. The device-
level verification must be completed successfully before 
initiating user-level authentication, thereby ensuring only 
verified devices proceed to access user-specific resources. 
This layered process aligns with zero-trust principles and 
enhances security granularity. The primary objective of 
MZTAF is to provide a more secure, resilient, and 
adaptable approach to authentication, combining the 
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strengths of decentralized verification and privacy-
preserving computations. The system adaptively grants 
access based on risk levels, providing flexibility and 

improved security over traditional static models. Based on 
the novelty criteria, the comparison of existing and 
proposed methods is presented in Table 1. 

 
Table 1: Comparison of existing models and techniques 

Model Key Features Limitations Novelty in Proposed Work 

Zero-trust architecture (Bashir, 
2024) 

Continuous verification of 
devices and users 

Lacks fault tolerance 
and may rely on 

centralized verification 

MZTAF introduces decentralized 
fault-tolerant verification and 

multiphase user-level 
authentication 

Replicated key-based 
authentication (Chaturvedi et al., 
2024; Lavanya and 
Saravanakumar, 2023) 

Replicates keys across 
nodes for fault tolerance 

Communication 
overhead, scalability 
issues 

Use replicated keys for fault 
tolerance and integrate 
homomorphic encryption for 
secure verification 

Homomorphic encryption 
(Akavia et al., 2025; Kerl et al., 
2025) 

Allows secure 
computations on 
encrypted data 

High computational 
overhead and 
complexity. 

Use homomorphic encryption for 
user-level verification, enabling 
privacy-preserving authentication 

Multi-factor authentication 
(MFA)(Dargaoui et al., 2025; 
Rawther and Sivaji, 2025) 

Combines multiple 
verification factors 

It can still be 
compromised by 
advanced attacks 

Enhances MFA by incorporating 
context-based and behavioral 
verification in a multiphase 
process 

Multiphase authentication(Ahn et 

al., 2024; Aswathy et al., 2023) 

Authentication is done in 
phases, verifying identity, 
context, and behaviour 

Complexity in 
implementation, 
computational cost 

Use a three-phase approach for 
user authentication, combining 
identity, context, and behaviour 
verification for increased security 

Decentralized authentication 
(Bast and Yeh, 2024; Bojič 
Burgos and Pustišek, 2024) 

Authentication is 
distributed across multiple 
nodes 

Complexity in 
management and 
synchronization of 
replicas 

Incorporates replicated key-based 
device authentication to ensure 
decentralized fault tolerance and 
scalability 

 

Materials and Methods 

The proposed Multiphase Zero-Trust Authentication 

Framework (MZTAF) was developed and tested in a 

controlled simulation environment to assess its 

effectiveness, performance, and scalability. The 

framework consists of two distinct but interconnected 

authentication phases: Device-level verification using 

replicated key authentication (Phase I) and user-level 

verification employing homomorphic encryption (Phase 

II). The whole setup was deployed in MATLAB R2021b 

on a virtual network test bed. The simulation model 

accommodated 50 virtual devices and 100 user profiles. 

Each device and user profile was allocated predefined 

properties, such as identity parameters, contextual values 

(e.g., device type, location), and behavioral attributes 

(e.g., typing patterns). The profiles were randomly 

changed between sessions to verify the system's resilience 

against varied authentication conditions. Each verification 

phase produces a similarity score between 0 and 1. These 

scores are averaged over replicas and compared with 

thresholds of 0.8 for identity, 0.75 for context, and 0.7 for 

behavior. Decisions for access control are made based on 

the sum of these scores. Access in full is given if the 

average score is above 0.9. The system was tested on the 

accuracy of authentication, response time, failure rate, and 

scalability. Accuracy was assessed as the ratio of 

successful authentications to total tries. Response time 

measured the processing time from the challenge request 

to the decision. Scalability was ensured by varying the 

number of simultaneous requests from 100 to 500 and 

noting the impact on the performance measures. 

Phase I: Device-Level Authentication Using 

Replicated Key Generation 

Phase I focuses on device-level authentication using 

replicated keys, while Phase II implements user-level 

authentication with homomorphic encryption across 

multiple authentication phases. The outcomes are 

logged for traceability and anomaly detection. Profiles 

are homomorphically updated to reflect behavioural 

changes over time and tested in a virtual network 

environment with 100 iterations for both phases using 

MATLAB to simulate various authentication scenarios. 

Replay attacks are mitigated using nonce-based 

challenge-response mechanisms. Man-in-the-middle 

threats are addressed by ensuring mutual authentication 

between nodes. Additionally, the use of homomorphic 

encryption ensures that sensitive data remains 

concealed during transit and processing. 

The device-level authentication method (Farhat et al., 

2025; Goodness Hassan et al., 2025) ensures fault tolerance 

and anomaly detection through replication-based key 

generation and verification. The various derivations required 

for Phase-I architecture are presented in Fig. 1. 
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Fig. 1: Phase-I architecture: Device-level authentication with 

replicated nodes 
 

Figure 1 depicts the process and structure of device-level 
authentication under the proposed framework. The 
mechanism allows only authentic devices to make further 
communication possible by verifying their identities through 
replicated key-based consensus. One device initiates the 

authentication process by requesting the authentication 
system. The system initiates a challenge-response system to 
authenticate the device. The server generates a 128-bit 
random challenge. This challenge makes every attempt at 
authentication novel and immune to replay attacks. 

The challenge is XORed with the device's cryptographic 
key using a bitwise XOR operation to generate a cryptic 
response. It is a simple and fast encryption process. The same 
device key is duplicated at multiple secure nodes (replicas). 
Every node performs an independent XOR operation using 
the same challenge to calculate an expected response. The 
device gathers all the replica responses and compares them 

with its own encrypted response. A majority check is 
performed; if most of the responses are identical, the device 
is successfully authenticated. The ultimate decision (failure 
or success) is recorded, and regular re-verification is 
supported to maintain continued device trustworthiness. Any 
anomalous behavior during these time periods might initiate 
additional verification or access restriction. 

This decentralized method is more fault-tolerant. Even if 
some of the nodes are compromised or fail, if a consensus of 
the majority is established, authentication can still be carried 
out securely. A unique cryptographic key K is generated for 
each device. Let 'K' be represented as given in Eq. (1): 
 
𝑘 = [𝑘1, 𝑘2, … , 𝑘𝑛], 𝑘𝑖 ∈ {0,1}, 𝑛 = 128 (1) 
 

Where: ki is a binary digit in the key. This key is then 

replicated across ‘R’ nodes to form ‘R’ identical replicas  
𝑘1, 𝑘2, … , 𝑘𝑅. 

The device initiates authentication by sending a 
challenge ‘C’, a 128-bit random string as given in Eq. (2): 
 
𝑐 = [𝑐1, 𝑐2, . . , 𝑐𝑛], 𝑐𝑖 ∈ {0,1} (2) 
 

Each node computes an encrypted response E using a 
lightweight operation, such as XOR: 𝐸 = 𝐾 ⊕ 𝐶. The 
device verifies the response by comparing it with the 

expected outcome. 

The system aggregates verification results (Aleisa, 
2025) across ‘R’ nodes. Let ‘Vi’ represent the result from 
node ‘i’, where Vi = 1 for success and Vi = 0 for failure. A 
majority consensus is calculated as given in Eq. (3): 
 

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 =
∑ 𝑉𝑖𝑅

𝑖−1

𝑅
 (3) 

 
Where: ki is a binary digit in the key. This key is then 

replicated across ‘R’ nodes to form ‘R’ identical replicas  
𝑘1, 𝑘2, … , 𝑘𝑅 . Authentication is successful if the 
consensus value exceeds the threshold (e.g., 70%).  

Periodic checks are conducted to ensure device 

legitimacy during active sessions. Discrepancies trigger 
(Aleisa, 2025) access restrictions or additional checks. Fault 
tolerance is achieved as long as most replicas remain 
uncompromised. For a failure probability ‘p’, the probability 
of successful authentication is given in Eq. (4): 
 
𝑃𝑆𝑢𝑐𝑐𝑒𝑠𝑠 = ∑ (𝑅

𝑘
)(1 − 𝑝)𝑘  𝑝𝑅−𝑘𝑅

𝑘=[𝑅𝑇]  (4) 
 

Where:  (𝑅
𝑘

) is the binomial coefficient. 
The Phase-I algorithm is presented in Algorithm 1. 

 
Algorithm 1: Device-level authentication using 

replicated key generation (DLA-RKG) 

STEP-1: Initialize Device Key Generation 

a. Generate a unique cryptographic key K for the device. 
b. Replicate the key K across R secure nodes (key 

replicas). 
STEP-2: Device Authentication Request 

a. The device sends an authentication request to each of 
the R nodes. 

b. The request includes a challenge C (random data, e.g., 

timestamp, nonce). 
STEP-3: Encrypted Response from Nodes 

a. Each node i (1 ≤ i ≤ R) calculates an encrypted 
response E_i using its stored key replica STEP-4: K_i 

and the challenge C: 
E_i = XOR(K_i, C) 

b. Each node returns E_i to the device. 
STEP-5: Consensus Verification 

a. The device receives the responses E_1, E_2, ..., E_R 
from each node. 

b. For each node i, verify if E_i matches the expected 
result using the known key replica. 

c. Compute the consensus count C = number of valid 
responses (E_i matches). 

d. If C ≥ threshold * R, then the device is authenticated; 
otherwise, the device is denied. 

STEP-6: Continuous Device Monitoring and Re-
Verification 

a. Periodically, the system re-initiates the authentication 
process to verify the device's legitimacy. 

b. If discrepancies are found during any re-verification 
cycle, restrict access and trigger additional checks. 

Output: 
a. If authentication is successful (consensus achieved), 

grant access to the device. 
b. If authentication fails, log the event and deny access. 
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End Device-level authentication using replicated key 
generation (DLA-RKG) 

 
The algorithm for Phase I focuses on device 

authentication through the generation and replication of 

cryptographic keys across multiple nodes for verification. 

The process includes key generation, verification of 

responses from each replica, and the application of a 

consensus mechanism to decide whether access is granted. A 

unique cryptographic key is generated and replicated across 

multiple nodes (replicas) to ensure fault tolerance. The 

device's authenticity is verified by challenging each node and 

ensuring the responses from the nodes match the expected 

encrypted result. Consensus from most nodes is required to 

authenticate the device. The system re-verifies devices 

periodically to ensure continuous trust. 

Phase II: Multiphase Zero-Trust 

Authentication With Homomorphic Encryption 

Phase II extends the zero-trust architecture by 

introducing user-level authentication through 

homomorphic encryption. This allows for secure 
verification without exposing sensitive data. Phase II 

introduces three levels of verification (identity, context, 

and behavior). The system first checks if the identity 

matches, then verifies contextual data, and finally 

analyzes behavioral data. The results of all three phases 

are aggregated to provide an overall score that 

determines the user's access level. Phase-II architecture 

is depicted in Fig. 2. 

Figure 2 illustrates the multiphase user-level 
authentication system framework based on homomorphic 

encryption concepts. This framework is expected to 

authenticate not just the user's identity but also contextual 

and behavioral aspects, without exposing sensitive 

information. The information (identity, context, and 

behavioral characteristics) from the user is encrypted via a 

homomorphic encryption scheme. This makes operations 

possible on the encrypted information without decryption, 

keeping the process private during verification. 

Encrypted data is sent to multiple verification nodes. 

Each node holds and processes the data separately, 
allowing for distributed decision-making and 

minimization of dependence on a central figure. In 

Identity Verification, the system verifies whether the 

encrypted identity corresponds with the saved profile 

through similarity scoring. In Context Verification, 

Device type, location, or time-based information is 

matched with saved contextual profiles. In Behavior 

Verification, Behavioral characteristics like typing 

rhythm or app usage behavior are assessed for 

consistency. 

 

 
 

Fig. 2: Overall Architecture of Multiphase User-Level Authentication 
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For every verification level, nodes calculate similarity 

scores individually. They are compiled and compared 

with established thresholds to ascertain the legitimacy of 

the user at every stage. The results from all three phases 

of verification are collated. Depending on the aggregate 
score, dynamic access control is imposed: 

 

 High score → Full access 

 Medium score → Limited access 

 Low score → Access denied, or additional 

verification required 

 

Each authentication attempt is recorded. When 

authentication is successful, the user's encrypted profile 

can be updated to account for long-term changes in 

behavior or patterns of use. This architecture adds to user-
level authentication by adding contextual intelligence and 

behavior-based verification. It provides assurance that 

access isn't granted based only on who the user is, but also 

on how, where, and when they are trying to access, 

enhancing overall security posture. 

Homomorphic encryption enables operations on 

encrypted data (R. Geelen, 2025). For a plaintext m and 

encryption function E(⋅) as given in Eq. (5): 

 

𝐸(𝑚1) ⊕ 𝐸(𝑚2) = 𝐸(𝑚1 + 𝑚2) (5) 

 

This property is exploited for identity, context, and 
behaviour verification. This equation represents the 

additive homomorphic property. It states that when two 

encrypted values 𝐸(𝑚1)𝑎𝑛𝑑 𝐸(𝑚2)  are combined 

using an operation (such as XOR or addition, 

depending on the scheme), the result is equivalent to 

encrypting the sum of their corresponding plaintexts. 

This allows computations to be performed directly on 

encrypted data without revealing the underlying values. 

 

 E(m1): Encrypted value of the first message 

 E(m2): Encrypted value of the second message 

 ⊕: Operation supported by the homomorphic 

encryption scheme (often addition or XOR) 

 The result E(m1+m2) remains encrypted and can 

be decrypted later for verification 

 

This property is essential for privacy-preserving 

authentication because it enables identity, context, and 

behaviour checks without decryption. 

Encrypted user identity data E(UI) is distributed across 

‘R’ replicas. Each node computes a similarity score SI as 

given in Eq. (6): 
 

𝑆1 =
𝑀𝑎𝑡𝑐ℎ𝑒𝑠(E(UI),E′(UI)) 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠
 (6) 

 

Where: E(UI′) is the encrypted input from the user.   

Calculates the similarity score between the stored 

encrypted identity E(UI) and the user's input encrypted 

identity E′(UI): 
 
 𝑀𝑎𝑡𝑐ℎ𝑒𝑠() : Counts the number of encrypted 

attributes that match between the stored and input data 

 Total Attributes: Total number of identity-related 

fields being compared (e.g., name, ID number, role) 

 𝑆𝐼: The similarity score ranges from 0 to 1. A score of 

1 indicates a perfect match across all identity fields 
 

This ratio helps determine whether the identity 

submitted by the user aligns with the profile stored in the 

system. 

A majority consensus is required as given in Eq. (7): 
 

𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑑 ⟺
∑ 𝑆𝐼,𝑖

𝑅
𝑖=1

𝑅
≥ 𝑇𝐼 (7) 

 
Where: 𝑇𝐼 is the identity verification threshold. If the 

average similarity score across all replicas meets or 

exceeds the threshold TI, the identity is considered 

verified. Otherwise, access is denied, or further 

authentication is required. 

Contextual data, such as location and device type, 

encrypted as E(C), undergoes verification (Itodo and 

Ozer, 2024). Each replica computes a contextual score SC 

as shown in Eq. (8): 
 

𝑆𝑐 =
𝑀𝑎𝑡𝑐ℎ𝑒𝑠(E(C),E′(C)) 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠
  (8) 

 
A majority consensus ensures authenticity as derived 

in Eq. (9). This equation evaluates how closely the 

encrypted contextual information from the user matches 

the expected profile: 
 
 𝐸(𝐶): Stored encrypted contextual data (e.g., 

location, device ID) 

 𝐸′(𝐶): Encrypted context from the current user 

session 

 𝑆𝐶: Context similarity score, expressed as a fraction 

of matching attributes 
 

This score supports the detection of suspicious access 
patterns, such as logging in from a different region or an 

unknown device: 
 

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑠𝑑 ⟺
∑ 𝑆𝐶,𝑖

𝑅
𝑖=1

𝑅
≥ 𝑇𝐶 (9) 

 
This equation validates whether the context similarity 

score is sufficient to allow access: 
 
 𝑆𝐶,𝐼: Context score evaluated by the 𝑖𝑡ℎ verification 

node 

 𝑇𝐶: Threshold for context-based verification (e.g., 

0.75) 
 

If the average score across all verification nodes is 
greater than or equal to the threshold, the contextual data 
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is deemed legitimate. 

Behavioural attributes, such as typing patterns, are 

analysed. Encrypted behavioural data E(B) is compared 

to stored profiles. The similarity score SB is computed 

as given in Eq.  (10): 
 

𝑆𝐵 =
𝑀𝑎𝑡𝑐ℎ𝑒𝑠(E(B),E′(B)) 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠
 (10) 

 
Behavioural consensus ensures verification as given in 

Eq. (11). This score measures how well the user’s current 

behaviour matches their historical behavioural profile: 
 
 𝐸(𝐵): Stored encrypted behavioural data (e.g., 

typing speed, app usage) 

 𝐸′(𝐵): Encrypted data from the ongoing session 

 𝑆𝐵:  Behaviour similarity score between 0 and 1 
 

A lower score could indicate an imposter or an 
unusual behaviour pattern, triggering restricted access 

or additional checks. This equation checks whether the 

average behaviour score across all nodes meets the 

minimum threshold: 
 
 𝑆𝐵, 𝑖: Similarity score at the 𝑖𝑡ℎ node 

 𝑇𝐵: Predefined threshold for behavioural 

verification (e.g., 0.7) 
 

When the average similarity score is equal to or 

greater than the threshold, the user’s behaviour is 

accepted as genuine: 
 

𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑑 ⟺
∑ 𝑆𝐵,𝑖

𝑅
𝑖=1

𝑅
≥ 𝑇𝐵 (11) 

 
This equation calculates the overall authentication 

score by averaging the individual scores from the three 

verification stages: 
 
 S1: Final identity verification score 

 S2: Final context verification score 

 S3: Final behaviour verification score 
 

Each stage contributes equally to the final score. This 

score is then used to determine the access level. 

Aggregate scores from all phases determine access 

levels as given in Eq. (12): 
 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒_𝑆𝑐𝑜𝑟𝑒 =
𝑆1+𝑆2+𝑆3

3
 (12) 

 
Access is granted or restricted based on thresholds: 

 

 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑆𝑐𝑜𝑟𝑒 ≥
𝑆1+𝑆2+𝑆3

3 : Full Access 

 0.7 ≤ 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑆𝑐𝑜𝑟𝑒 ≤ 0.9: Limited Access 

 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑆𝑐𝑜𝑟𝑒 < 0.7: Restricted Access 

 

The phase-II algorithm applies homomorphic 

encryption across the main verification phases (identity, 

contextual, and behavioral). The Phase-II algorithm is 
presented in Algorithm 2. 

Algorithm 2: Multiphase zero-trust authentication with 
homomorphic encryption (MZTA-HE) 

STEP-1: Initialization Phase 
a. Encrypt user data U using homomorphic encryption 

(E(U)). 
b. Replicate the encrypted user data E(U) across R nodes for 
decentralized verification. 
c. Define thresholds for each authentication phase (identity, 
context, behavior). 
STEP-2: Identity Verification 
a. Encrypt the user’s identity attributes I using homomorphic 
encryption (E(I)). 

b. For each replica i (1 ≤ i ≤ R), calculate the similarity 
between the encrypted identity       STEP-3: E(U) and the 
user’s expected identity E(I): 
S_I_i = CalculateSimilarity(E(U), E(I)) 
c. Aggregate the similarity scores from all replicas: 
IdentityConsensus = Sum(S_I_1, S_I_2, ..., S_I_R) / R 
d. If IdentityConsensus ≥ Threshold_Identity, identity is 
verified; otherwise, deny access. 

STEP-4: Context Verification 
a. Encrypt contextual data (location, device type, etc.) C 
using homomorphic encryption (E(C)). 
b. For each replica i (1 ≤ i ≤ R), compare the encrypted 
context E(C) to the expected contextual data. 
S_C_i = CalculateSimilarity(E(U), E(C)) 
c. Aggregate the contextual similarity scores: 
ContextConsensus = Sum(S_C_1, S_C_2, ..., S_C_R) / R 
d. If ContextConsensus ≥ Threshold_Context, context is 

verified; otherwise, deny access. 
STEP-5:  Behavior Verification 
a. Encrypt the user’s behavioral attributes B (typing speed, 
app usage, etc.) using homomorphic encryption (E(B)). 
b. For each replica i (1 ≤ i ≤ R), compare the encrypted 
behavior E(B) to the expected behavioral data. 
S_B_i = CalculateSimilarity(E(U), E(B)) 
c. Aggregate the behavioral similarity scores: 

BehaviorConsensus = Sum(S_B_1, S_B_2, ..., S_B_R) / R 
d. If BehaviorConsensus ≥ Threshold_Behavior, behavior is 
verified; otherwise, deny access. 
STEP-6: Dynamic Access Control 
a. Calculate the aggregate score: 
AggregateScore = (IdentityConsensus + ContextConsensus + 
BehaviorConsensus) / 3 
b. Based on the aggregate score, decide the access level: 

- Full Access: If AggregateScore ≥ 0.9 
- Limited Access: If 0.7 ≤ AggregateScore < 0.9 
- Restricted Access: If AggregateScore < 0.7, request 

additional authentication 

STEP-7: Profile Update and Audit Logging 
a. If authentication is successful, update the encrypted 

user profile to reflect any changes in behavior or context. 
b. Log each phase's outcomes and anomalies for audit and 

future analysis. 

Output: 
a. If all phases pass their respective thresholds, grant the 

user access. 
b. If any phase fails, deny access and trigger additional 

authentication if needed. 
End: Multiphase zero-trust authentication with homomorphic 
encryption (MZTA-HE) 
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Hyperparameter Tuning for Both Phases 

Hyperparameter tuning is a critical step in 

optimizing the performance of the framework. For both 

Phase I and Phase II, several parameters were adjusted 

to optimize the system's performance, including the 

number of replicas, thresholds for consensus, and 

failure probabilities. Hyperparameter tuning in Table 2. 

In Phase I, the device authentication system was 
implemented using 2 to 5 replicas, with different 

consensus thresholds to evaluate system performance. In 

Phase II, the multiphase user-level authentication was 

implemented using 3 replicas for each phase. The 

thresholds for identity, context, and behavior verification 

were adjusted to evaluate the impact on success rates. The 

hyperparameter tuning (Zhu et al., 2024) results show 

how varying the number of replicas, consensus 

thresholds, and failure probabilities impacted the system's 

performance. The tuning process aims to balance security 

with performance efficiency. 

Number of Replicas (R): Increasing the number of 
replicas improved fault tolerance and security but 

introduced marginal delays due to additional computation 

for consensus verification. A higher number of replicas 

resulted in more robust anomaly detection. 

Consensus Threshold (T): Raising the consensus 

threshold improved security by requiring a higher 

agreement rate across nodes. However, this led to 

increased authentication failure rates as replicas 
became more stringent in verifying data. 

Failure Probability (P): A lower failure probability 

improved the system’s overall reliability but required 

higher computational overhead to ensure accuracy in 

verifying keys and data. 

Similarity Tolerance (ST): The tolerance for 

similarity directly influences the authentication 

process's sensitivity. A higher tolerance allowed easier 

verification but decreased security, while a lower 

tolerance improved accuracy and reliability. 

The experimentation demonstrated that the 
framework achieved robust performance in both 

phases, with success rates of 94% for Phase I and 95% 

for Phase II. Hyperparameter tuning allows 

optimization of system performance, balancing 

security and efficiency. The framework’s ability to 

continuously verify devices and users in a zero-trust 

environment ensures a scalable and adaptable security 

solution for modern networks. 

 
Table 2: Hyperparameter tuning for both phases 
Parameter Description Phase-I Phase-II. 

Number of replicas (R) The number of nodes storing replicated keys/ data. 2, 3, 5 3 

Consensus threshold (T) 
Percentage of agreement required for successful 
authentication 

70%, 80%, 90% 70%, 80%, 90% 

Failure probability (p) The probability that a replica fails to verify correctly. 0.01, 0.05 0.01, 0.05 

Threshold for identity 
verification (T_I) 

Minimum consensus required for behavioral 
verification 

70%, 80%, 90% 70%, 80%, 90% 

Similarity tolerance (ST) Tolerance level for similarity in verification phases. N/A 0.09 

Threshold for context 
verification (T_C). 

A minimum consensus is required for context 
verification. 

N/A 75%, 80%, 90% 

Threshold for behavioral 
verification (T_B) 

Minimum consensus required for behavioral 
verification 

N/A 60%, 70%, 80% 

Threshold for full access (T_F) 
The minimum aggregated score required to grant full 
access 

N/A 0.9 

 

Results and Discussion 

This section presents experimental results and 

compares the performance of Phase I and Phase II in 
terms of authentication success rates, response times, 

failure rates, and other key metrics. The success rate 

represents the percentage of authentication attempts that 

were successfully granted access. In Phase I, the system 

achieved a 94% success rate, indicating that the device-

level authentication mechanism was highly effective in 

verifying devices. In Phase II, the system's 95% success 

rate demonstrated that user-level authentication, using 

homomorphic encryption and multiphase verification, 

was slightly more robust due to the inclusion of 

additional contextual and behavioral verification. The 

success rate comparison is in Fig. 3. 

The accuracy has been compared with traditional 

benchmark models as given in Table 3.  

As given in Table 3, the model proposed by Huang 

(2024) adopts fault-tolerant device authentication using 

cryptographic key replication between nodes. While it 

improves the resilience of the system, its authentication 

rate is 89%, which marks limitations in dealing with 

dynamic and complicated environments. The work by 

Azad et al. (2024) incorporates threat intelligence 

mechanisms like the MITRE ATT&CK framework into 

zero-trust systems. 
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Fig. 3: Success rate comparison of the results of the two phases 
 

This model provides better situational awareness and 

response capabilities, leading to an increased accuracy of 

91%. The Distributed Authentication Mechanism (DAM) 
described by Rivera et al. (2024) uses decentralized 

verification to avoid single points of failure. The model 

attained an authentication accuracy of 92%, 

demonstrating its efficiency in distributed systems with 

reduced dependence on central authorities. 

Based on these approaches, the Proposed Model – 

Phase I integrates replicated key authentication with 

consensus methods between numerous nodes. This 

configuration ensures that even if a portion of the nodes is 

compromised, the system will still be secure. It illustrates 

an impressive accuracy of 94%, which reflects its 

enhanced fault tolerance and verification reliability 
compared to previous models. Stepping forward, the 

Proposed Model – Phase II presents a user-level 

authentication strategy that examines identity, contextual 

characteristics, and conduct patterns. Through conducting 

these checks securely and without revealing sensitive 

information, the system achieves an authentication 

accuracy of 95%. Not only does this phase outperform 

Phase I, but it also offers a more inclusive and adaptive 

verification process.  

Similarly, the failure rate represents the percentage of 

authentication attempts that were denied due to failed 

verification. Phase I recorded a 6% failure rate, while 

Phase II experienced a 5% failure rate, showing that the 

more complex user-level authentication process had 

slightly better overall performance. Response time 

measures the time it takes for the system to authenticate a 

device or user. Phase I, being a simpler system based on 

key replication, achieved an average response time of 0 

seconds due to its efficient structure. Phase II, which 

included more complex operations like homomorphic 

encryption and multiphase verification, had a response 

time of 0.02 seconds, which is still fast but slightly higher 

due to the computational overhead involved in the 

encryption and decryption processes. Although 

homomorphic encryption enhances privacy, it introduces 

computation latency. Our simulations showed an average 

processing overhead of 0.02 seconds per authentication 

request, which is acceptable for medium-scale enterprise 

systems. Optimization techniques such as batching and 

partial encryption were employed to improve efficiency. 

The time taken for the verification process in Fig. 4 

depends on the number of replicas and the complexity of 

the verification operations. Phase I, which uses a simple 

consensus-based verification mechanism across a few 

replicas, had a verification time of 0.01 seconds. In 
contrast, Phase II had a slightly longer verification time of 

0.03 seconds due to the three-phase authentication process 

(identity, context, and behavior) and homomorphic 

encryption. Phase II is divided into three phases of 

authentication: Identity, context, and behavior 

verification. The system performed differently across 

these phases, with identity verification showing the 

highest success rate at 97%, followed by context 

verification at 94%, and behavior verification at 91% as 

in Table 4. The results indicate that context and behavior 

verification are more prone to errors due to the 
complexities of analyzing encrypted behavioral patterns 

and context data. 

In Phase I, the consensus agreement rate was 92%, 

with at least 70% of the nodes agreeing on successful 

authentication. Phase II, being more complex, had a 90% 

consensus agreement rate, which is slightly lower due to 

the involvement of multiple replicas and encryption 

checks across multiple phases. In Phase I, the system 

granted full access in 94% of cases, while restricted access 

was rarely required. In phase II, full access was granted 

94% of the time, limited access to 25%, and restricted 

access was required in 5% of cases, particularly when 
discrepancies were found in the behavioral verification 

phase, as in Table 5. 
 
Table 3: Result Comparison with benchmark models 

Model / Framework Description Authentication Accuracy (%) 

(Huang, 2024) Fault-tolerant device authentication via key replication 
across nodes 

89% 

(Azad et al., 2024) zero-trust models with threat knowledge-based, like the 
MITRE ATT&CK framework 

91% 

(Rivera et al., 2024) Distributed Authentication Mechanism (DAM) 92% 
Proposed Model - Phase I Device-level authentication using replicated keys and a 

consensus mechanism 
94% 

Proposed Model - Phase II User-level authentication with homomorphic encryption 
(identity, context, behaviour) 

95% 

94%

95%

94%

94%

95%

95%

96%

Phase-I Phase-II

Success Rate

Success Rate
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Fig. 4: Response time per authentication comparison (phase-I: 0.05; phase-II: 0.02) 

 
Table 4: Phase-II authentication success rate of different 

phases of verification 

Phase-II Authentication Phase Success Rate (%) 

Identity Verification 97% 

Context Verification 94% 
Behavior Verification 91% 

 
 

Table 6 indicates failures as broken down into causes 
based on the verification phase. Most failures occurred in 
the behavioral verification phase at 65%, followed by 

identity verification (20%), and context verification 
(15%). This highlights the challenges of verifying 
behavioral attributes, which are inherently more complex 
and harder to analyze securely, especially when 
encrypted. To evaluate the effectiveness of our model, it 
was compared with traditional MFA and single-phase 
ZTA methods. Our framework showed a 7% higher 
success rate in user verification and 12% better fault 
tolerance under simulated attack conditions. 

In both phases, the security risk assessment was based 
on the number of failed authentications or discrepancies 
detected during re-verification. For Phase I, the risk of 

security breaches was low, with an average security risk 
of 6% due to device-level failures. In Phase II, the security 
risk was slightly higher at 9%, as discrepancies in 
behavioral data and context-based verification 

contributed to occasional failures. Phase I, being simpler, 
achieved faster response times and higher consensus 
agreement rates. This is due to its reliance on replicated 

key verification and the absence of computationally 
intensive operations like encryption. 
 
Table 5: The control outcomes during phase-II execution 

Phase Full Access 
(%) 

Limited 
Access (%) 

Restricted 
Access (%) 

Phase-I 94% 6% 0% 
Phase-II 94% 25% 5% 

 

 
Table 6: Failure rate assessment in the phase-II authentication 

phase 

Phase-II Authentication Phase Failure Rate (%) 

Identity verification 20% 
Context Verification  15% 

Behavior Verification 65% 

97%

94%

91%

88%

90%

92%

94%

96%

98%

Identity
Verification

Context
Verification

Behavior
Verification

Success Rate (%)

Success Rate (%)

94% 94%

6%

25%

0%

5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Phase-I Phase-II

Control Outcomes 

Full Access (%)

Limited Access (%)

Restricted Access (%)
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Phase II, with its homomorphic encryption and 

multiphase authentication process, introduced slightly 

higher response times and verification delays but 

achieved a higher overall success rate due to its 

multifaceted approach. Both phases demonstrated high 

levels of security, with Phase II showing a marginally 
higher failure rate due to the complexity of behavioral 

and contextual verification. However, Phase II also 

demonstrated stronger security against sophisticated 

attacks because of its multiphase, adaptive approach. 

Phase I was highly scalable, with a minimal increase in 

time delays even as the number of replicas increased. 

Phase II showed moderate scalability, with a slight 

increase in response times as the complexity of 

verification operations grew. To validate the 
effectiveness of the proposed Multiphase Zero-Trust 

Authentication Framework (MZTAF), an extensive 

comparison was carried out with leading zero-trust 

authentication models recently proposed in the 

literature, as shown in Table 7. The comparison 

covered multiple evaluation criteria, including 

authentication accuracy, average response time, 

scalability under network load, and tolerance to node 

failures. The proposed MZTAF framework consistently 

outperforms existing models across key performance 

indicators. 
Authentication Accuracy: MZTAF achieves 94% 

accuracy in device-level verification and 95% in user-

level authentication. This is notably higher than other 

models, which range between 88% and 92%. The 

enhanced accuracy is due to the layered verification 

process combining identity, contextual, and behavioural 

checks. 

Response Time: Despite involving multiphase 

verification and encrypted computations, MZTAF 

maintains a low average response time of 0.02 seconds. 

This is due to the lightweight XOR-based operations in 

Phase I and the use of optimized homomorphic functions 
in Phase II. 

Fault Tolerance: Using key replication and consensus 

mechanisms, the framework remains resilient even when 

some nodes are compromised. 

 

Table 7: Comparative Analysis of Zero-Trust Authentication Frameworks 
Framework Core Mechanism Authentication 

Accuracy 

Average Response 
Time (s) 

Fault 
Tolerance 

Scalability 

(Huang, 2024) Replicated Key 
Authentication 

89% 0.05 Moderate Moderate 

(Azad et al., 2024) Threat-Based ZTA with 
MITRE Mapping 

91% 0.06 Low Limited 

(Rivera et al., 
2024) 

Blockchain-Based 
Distributed Authentication 

92% 0.08 High Moderate 

MFA-ZTA 
(Dargaoui et al., 
2025) 

Multi-Factor + Location + 
Token 

88% 0.04 Low Limited 

MZTAF 

(Proposed) 

Replicated Key + 

Homomorphic User 
Verification 

94% (Phase I) / 

95% (Phase II) 

0.02 High High 

 

Compared to blockchain-based models, which provide 

high fault tolerance but incur latency, MZTAF balances 

both speed and resilience. 

Scalability: The architecture was tested with increased 

node counts and authentication requests. Results show 

stable performance, indicating the framework's ability to 

scale efficiently in dynamic environments such as 

enterprise networks or cloud-based infrastructures. 

The comparative analysis confirms that MZTAF 

offers superior performance in terms of security, 

adaptability, and efficiency. It bridges the limitations of 

single-factor and centralized models by adopting a 

layered, decentralized verification strategy that is both 

robust and scalable. 

20%
15%

65%

0%

10%

20%

30%

40%

50%

60%

70%

Identity
verification

Context
Verification

Behavior
Verification

Failure Rate

Failure Rate (%)
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Conclusion 

The development of secure and scalable authentication 

systems is essential for safeguarding digital resources in 

an increasingly complex and distributed world. 
Traditional authentication models, which rely on 

passwords, tokens, or biometric data, have proven to be 

vulnerable to various forms of attack. These systems often 
struggle to provide robust security in dynamic 

environments where both devices and users may change 

their access patterns or may be subject to advanced cyber 

threats. The Multiphase Zero-Trust Authentication 
Framework (MZTAF), as presented in this research, 

offers a comprehensive solution to these challenges by 

integrating decentralized-level authentication and 
privacy-preserving user-level authentication through 

homomorphic encryption. While this study focused on a 

simulated environment, future work will involve pilot 
deployment in enterprise networks to validate real-world 

applicability and performance under varying load and 

threat conditions. MZTAF introduces significant 

innovations in the way authentication is conducted. First, 
its use of replicated key-based device authentication 

ensures that devices are continuously verified in a fault-

tolerant manner, without relying on a central authority. 
This reduces the risk of single points of failure and 

enhances the security of device access in zero-trust 

networks. Second, by utilizing homomorphic encryption, 

MZTAF preserves the privacy of sensitive user data 
during authentication, making it suitable for privacy-

sensitive applications while still allowing for detailed 

behavioral analysis and contextual checks. The three-
phase user authentication process, which involves 

identity, context, and behavior verification, adds an extra 

layer of granularity, thereby reducing the risk of 

unauthorized access. 
The experimental results highlight the effectiveness of 

MZTAF, achieving 94% success in device authentication 

(Phase I) and 95% success in user authentication (Phase 

II). The results also demonstrate the scalability of the 

framework, with minimal performance overhead even as 

the number of replicas increases. The system's ability to 

adaptively grant access based on the aggregate scores 

from all authentication phases ensures that security is 

maintained without sacrificing user convenience. A key 

strength of MZTAF lies in its dynamic access control 

mechanism, which adjusts access permissions based on 

the outcomes of each authentication phase. This flexibility 
allows the system to handle a wide range of access 

scenarios, from granting full access to highly trusted users 

to imposing restrictions on users whose authentication 

results are borderline. This approach represents a 

significant departure from traditional models, which 

typically rely on static authentication results. While this 

work demonstrates high authentication accuracy, formal 

security proofs will be developed in future iterations using 

standard frameworks such as IND-CPA and zero-

knowledge proof models. A comparative study against 

cryptographic benchmarks will also be explored. 

Despite its promising results, there are areas for 

future improvement. The behavioral verification phase 

in Phase II, while effective, can be further optimized. 

Future versions of MZTAF could incorporate machine 

learning techniques to improve behavioral analysis, 

reducing the failure rate in this phase. Additionally, 

real-time deployment and testing in more complex, 

large-scale environments will help assess the 

framework's performance under more dynamic 

conditions. Overall, the Multiphase Zero-Trust 

Authentication Framework (MZTAF) represents a 

significant advancement in the field of authentication 

systems. By combining replicated key-based device 

authentication with homomorphic encryption for user 

authentication, it offers a robust, scalable, and secure 

solution for modern zero-trust environments. Its 

multiphase approach, dynamic access control, and 

privacy-preserving techniques provide a higher level of 

security than traditional authentication models, making 

it an ideal solution for securing distributed, privacy-

sensitive systems in today’s threat landscape.  
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