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Abstract: In response to the increasing complexity and vulnerability of
traditional authentication techniques, this paper proposes the Multiphase
Zero-Trust Authentication Framework (MZTAF), which combines device-
level and user-level authentication to enhance security in zero-trust
environments. Phase | leverages replicated key-based authentication to ensure
fault tolerance and reduce the risk of device-level compromise. Phase Il
introduces homomorphic encryption for user authentication, securely
verifying identity, context, and behaviour without exposing sensitive data.
This multiphase authentication approach provides a robust, scalable, and
privacy-preserving solution, offering continuous verification in dynamic
environments. Experimental results demonstrate the framework's
effectiveness, achieving a 94% success rate in device authentication and a
95% success rate in user authentication, outperforming core mechanisms such
as Replicated Key Authentication, Threat-Based ZTA with MITRE Mapping,
Blockchain-Based Distributed Authentication, and MFA-ZTA at 89, 91, 92
and 88% respectively. The framework also incorporates dynamic access
control, adjusting permissions based on the outcomes of authentication
phases, and ensuring flexible and granular access management. MZTAF
offers a significant advancement in securing modern networks against
emerging threats.

Keywords: Device Authentication, Homomorphic Encryption, Replica Keys,
User Authentication, Zero-Trust

Introduction

As cyber threats evolve and the digital landscape
becomes increasingly interconnected, ensuring robust
security has become a critical concern for organizations
and individuals alike. Traditional models of
authentication, which often rely on static credentials
such as passwords, are no longer sufficient to protect
sensitive systems and data (Harrison, 2023; Liu, 2024;
Trott, 2024). These models are vulnerable to a wide
range of attacks, including phishing, credential theft,
and insider threats. The growing complexity of modern
IT environments, where devices and users interact
across diverse networks, further complicates security
measures. This has led to the rise of Zero-Trust
Architecture (ZTA) (Arenas et al., 2024; Bashir, 2024;
Huber and Kandah, 2024). In a zero-trust environment,
every device, user, and connection is treated as
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untrusted by default, requiring continuous and dynamic
verification to ensure secure access to resources.

To address the challenges posed by traditional security
models and enhance the security of zero-trust
environments, this paper introduces a novel multiphase
zero-trust authentication framework that integrates two
key authentication layers called  device-level
authentication through replicated key generation and user-
level authentication using homomorphic encryption
techniques. The proposed framework is structured to
sequentially authenticate devices and users. The device-
level verification must be completed successfully before
initiating user-level authentication, thereby ensuring only
verified devices proceed to access user-specific resources.
This layered process aligns with zero-trust principles and
enhances security granularity. The primary objective of
MZTAF is to provide a more secure, resilient, and
adaptable approach to authentication, combining the
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strengths of decentralized verification and privacy-
preserving computations. The system adaptively grants
access based on risk levels, providing flexibility and

Table 1: Comparison of existing models and techniques

improved security over traditional static models. Based on
the novelty criteria, the comparison of existing and
proposed methods is presented in Table 1.

Model Key Features Limitations Novelty in Proposed Work
Zero-trust architecture (Bashir, Continuous verification of  Lacks fault tolerance MZTAF introduces decentralized
2024) devices and users and may rely on fault-tolerant verification and

Replicated key-based
authentication (Chaturvedi et al.,
2024; Lavanya and
Saravanakumar, 2023)
Homomorphic encryption
(Akavia et al., 2025; Kerl et al.,
2025)

Multi-factor authentication
(MFA)(Dargaoui et al., 2025;
Rawther and Sivaji, 2025)

Replicates keys across
nodes for fault tolerance

Allows secure
computations on
encrypted data
Combines multiple
verification factors

Multiphase authentication(Ahn et Authentication is done in
al., 2024; Aswathy et al., 2023)

context, and behaviour

Authentication is
distributed across multipl
nodes

Decentralized authentication
(Bast and Yeh, 2024; Boji¢
Burgos and Pustisek, 2024)

phases, verifying identity,

centralized verification

Communication
overhead, scalability

High computational
overhead and
complexity.

It can still be
compromised by
advanced attacks

Complexity in
implementation,
computational cost

Complexity in
management and
synchronization of
replicas

e

multiphase user-level
authentication

Use replicated keys for fault
tolerance and integrate
homomorphic encryption for
secure verification

Use homomorphic encryption for
user-level verification, enabling
privacy-preserving authentication
Enhances MFA by incorporating
context-based and behavioral
verification in a multiphase
process

Use a three-phase approach for
user authentication, combining
identity, context, and behaviour
verification for increased security
Incorporates replicated key-based
device authentication to ensure
decentralized fault tolerance and
scalability

ssues

Materials and Methods

The proposed Multiphase Zero-Trust Authentication
Framework (MZTAF) was developed and tested in a
controlled simulation environment to assess its
effectiveness, performance, and scalability. The
framework consists of two distinct but interconnected
authentication phases: Device-level verification using
replicated key authentication (Phase I) and user-level
verification employing homomorphic encryption (Phase
I1). The whole setup was deployed in MATLAB R2021b
on a virtual network test bed. The simulation model
accommodated 50 virtual devices and 100 user profiles.
Each device and user profile was allocated predefined
properties, such as identity parameters, contextual values
(e.g., device type, location), and behavioral attributes
(e.g., typing patterns). The profiles were randomly
changed between sessions to verify the system's resilience
against varied authentication conditions. Each verification
phase produces a similarity score between 0 and 1. These
scores are averaged over replicas and compared with
thresholds of 0.8 for identity, 0.75 for context, and 0.7 for
behavior. Decisions for access control are made based on
the sum of these scores. Access in full is given if the
average score is above 0.9. The system was tested on the
accuracy of authentication, response time, failure rate, and
scalability. Accuracy was assessed as the ratio of
successful authentications to total tries. Response time
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measured the processing time from the challenge request
to the decision. Scalability was ensured by varying the
number of simultaneous requests from 100 to 500 and
noting the impact on the performance measures.

Phase 1. Device-Level
Replicated Key Generation

Authentication  Using

Phase | focuses on device-level authentication using
replicated keys, while Phase Il implements user-level
authentication with homomorphic encryption across
multiple authentication phases. The outcomes are
logged for traceability and anomaly detection. Profiles
are homomorphically updated to reflect behavioural
changes over time and tested in a virtual network
environment with 100 iterations for both phases using
MATLAB to simulate various authentication scenarios.
Replay attacks are mitigated using nonce-based
challenge-response mechanisms. Man-in-the-middle
threats are addressed by ensuring mutual authentication
between nodes. Additionally, the use of homomorphic
encryption ensures that sensitive data remains
concealed during transit and processing.

The device-level authentication method (Farhat et al.,
2025; Goodness Hassan et al., 2025) ensures fault tolerance
and anomaly detection through replication-based key
generation and verification. The various derivations required
for Phase-I architecture are presented in Fig. 1.
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XOR Encryption (E)
(XOR of Kand C)

Fig. 1:Phase-1 architecture: Device-level authentication with
replicated nodes

Figure 1 depicts the process and structure of device-level
authentication under the proposed framework. The
mechanism allows only authentic devices to make further
communication possible by verifying their identities through
replicated key-based consensus. One device initiates the
authentication process by requesting the authentication
system. The system initiates a challenge-response system to
authenticate the device. The server generates a 128-bit
random challenge. This challenge makes every attempt at
authentication novel and immune to replay attacks.

The challenge is XORed with the device's cryptographic
key using a bitwise XOR operation to generate a cryptic
response. It is a simple and fast encryption process. The same
device key is duplicated at multiple secure nodes (replicas).
Every node performs an independent XOR operation using
the same challenge to calculate an expected response. The
device gathers all the replica responses and compares them
with its own encrypted response. A majority check is
performed; if most of the responses are identical, the device
is successfully authenticated. The ultimate decision (failure
or success) is recorded, and regular re-verification is
supported to maintain continued device trustworthiness. Any
anomalous behavior during these time periods might initiate
additional verification or access restriction.

This decentralized method is more fault-tolerant. Even if
some of the nodes are compromised or fail, if a consensus of
the majority is established, authentication can still be carried
out securely. A unique cryptographic key K is generated for
each device. Let 'K' be represented as given in Eq. (1):

k = [k1,k2, ..., kn], ki € {0,1},n = 128 (1)

Where: ki is a binary digit in the key. This key is then
replicated across ‘R’ nodes to form ‘R’ identical replicas
k1,k2, .., kR.

The device initiates authentication by sending a
challenge ‘C’, a 128-bit random string as given in Eq. (2):

@)

Each node computes an encrypted response E using a
lightweight operation, such as XOR: E =K @ C. The
device verifies the response by comparing it with the
expected outcome.

¢ =|c1,¢2,..,cn],ci € {0,1}
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The system aggregates verification results (Aleisa,
2025) across ‘R’ nodes. Let Vi’ represent the result from
node 7; where V; = 1 for success and V; = 0 for failure. A
majority consensus is calculated as given in Eg. (3):

R o
ot 3)

Where: ki is a binary digit in the key. This key is then
replicated across ‘R’ nodes to form ‘R’ identical replicas
k1,k2,...,kR . Authentication is successful if the
consensus value exceeds the threshold (e.g., 70%).

Periodic checks are conducted to ensure device
legitimacy during active sessions. Discrepancies trigger
(Aleisa, 2025) access restrictions or additional checks. Fault
tolerance is achieved as long as most replicas remain
uncompromised. For a failure probability »’, the probability
of successful authentication is given in Eq. (4):

Zﬁ:[RT](i)(l —p)kpRk

Where: () is the binomial coefficient.
The Phase-I algorithm is presented in Algorithm 1.

Algorithm 1: Device-level authentication
replicated key generation (DLA-RKG)

STEP-1: Initialize Device Key Generation

a. Generate a unique cryptographic key K for the device.
b. Replicate the key K across R secure nodes (key
replicas).

STEP-2: Device Authentication Request

a. The device sends an authentication request to each of
the R nodes.

b. The request includes a challenge C (random data, e.qg.,
timestamp, nonce).

STEP-3: Encrypted Response from Nodes

a. Each node i (1 < i £ R) calculates an encrypted
response E_i using its stored key replica STEP-4: K_i
and the challenge C:

E_i=XOR(K_j, C)

b. Each node returns E_i to the device.

STEP-5: Consensus Verification

a. The device receives the responses E_1, E_2, ..., E_R
from each node.

b. For each node i, verify if E_i matches the expected
result using the known key replica.

¢. Compute the consensus count C = number of valid
responses (E_i matches).

d. If C > threshold * R, then the device is authenticated;
otherwise, the device is denied.

STEP-6: Continuous Device Monitoring and Re-
Verification

a. Periodically, the system re-initiates the authentication
process to verify the device's legitimacy.

b. If discrepancies are found during any re-verification
cycle, restrict access and trigger additional checks.
Output:

a. If authentication is successful (consensus achieved),
grant access to the device.

b. If authentication fails, log the event and deny access.

Consensus =

- (4)

P Success

using
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End Device-level authentication using replicated key
generation (DLA-RKG)

The algorithm for Phase | focuses on device
authentication through the generation and replication of
cryptographic keys across multiple nodes for verification.
The process includes key generation, verification of
responses from each replica, and the application of a
consensus mechanism to decide whether access is granted. A
unique cryptographic key is generated and replicated across
multiple nodes (replicas) to ensure fault tolerance. The
device's authenticity is verified by challenging each node and
ensuring the responses from the nodes match the expected
encrypted result. Consensus from maost nodes is required to
authenticate the device. The system re-verifies devices
periodically to ensure continuous trust.

Phase Il: Multiphase Zero-Trust
Authentication With Homomorphic Encryption

Phase Il extends the zero-trust architecture by
introducing  user-level  authentication  through
homomorphic encryption. This allows for secure
verification without exposing sensitive data. Phase Il
introduces three levels of verification (identity, context,
and behavior). The system first checks if the identity
matches, then verifies contextual data, and finally

analyzes behavioral data. The results of all three phases
are aggregated to provide an overall score that
determines the user's access level. Phase-11 architecture
is depicted in Fig. 2.

Figure 2 illustrates the multiphase user-level
authentication system framework based on homomorphic
encryption concepts. This framework is expected to
authenticate not just the user's identity but also contextual
and behavioral aspects, without exposing sensitive
information. The information (identity, context, and
behavioral characteristics) from the user is encrypted via a
homomorphic encryption scheme. This makes operations
possible on the encrypted information without decryption,
keeping the process private during verification.

Encrypted data is sent to multiple verification nodes.
Each node holds and processes the data separately,
allowing  for  distributed  decision-making and
minimization of dependence on a central figure. In
Identity Verification, the system verifies whether the
encrypted identity corresponds with the saved profile
through similarity scoring. In Context Verification,
Device type, location, or time-based information is
matched with saved contextual profiles. In Behavior
Verification, Behavioral characteristics like typing
rhythm or app usage behavior are assessed for
consistency.

A

Homomorphic

encrypiion engine

o

A

G oas |

Replication node 1
(R1)

]
Aggrigation of
similarity scores

(Replica of encrypted data)

5 1 1,8_C_1,S_B_1!

Similarity calculation
Idenfity venfication /
phase

Identity concensus,
Context cons.

e L]

Encrypts data (EU), (El), (EC), (EB)
(Replica of encrypted data)

Replication node R
(Rr)

imilarity calculation
Context veriiication SEESSSEICE =11
phase Identity concensus,
Context cons.
Aggrigation of
similarity scores
.
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Access decision

Dynamic access conirol (Aggregate)

Profile update and audit log

Fig. 2: Overall Architecture of Multiphase User-Level Authentication
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For every verification level, nodes calculate similarity
scores individually. They are compiled and compared
with established thresholds to ascertain the legitimacy of
the user at every stage. The results from all three phases
of verification are collated. Depending on the aggregate
score, dynamic access control is imposed:

High score — Full access

Medium score — Limited access
Low score — Access denied,
verification required

or additional

Each authentication attempt is recorded. When
authentication is successful, the user's encrypted profile
can be updated to account for long-term changes in
behavior or patterns of use. This architecture adds to user-
level authentication by adding contextual intelligence and
behavior-based verification. It provides assurance that
access isn't granted based only on who the user is, but also
on how, where, and when they are trying to access,
enhancing overall security posture.

Homomorphic encryption enables operations on
encrypted data (R. Geelen, 2025). For a plaintext m and
encryption function E(-) as given in Eq. (5):

E(m1) @ E(m2) = E(m1 + m2) (5)
This property is exploited for identity, context, and
behaviour verification. This equation represents the
additive homomorphic property. It states that when two
encrypted values E(ml)and E(m2) are combined
using an operation (such as XOR or addition,
depending on the scheme), the result is equivalent to
encrypting the sum of their corresponding plaintexts.
This allows computations to be performed directly on
encrypted data without revealing the underlying values.

E(m1): Encrypted value of the first message
E(m2): Encrypted value of the second message
@: Operation supported by the homomorphic
encryption scheme (often addition or XOR)

The result E(m1+m2) remains encrypted and can
be decrypted later for verification

This property is essential for privacy-preserving
authentication because it enables identity, context, and
behaviour checks without decryption.

Encrypted user identity data E(U,) is distributed across
‘R’ replicas. Each node computes a similarity score S as
given in Eq. (6):

__ Matches(E(UI),E'(UD))
Total Attributes

St

(6)

Where: E(UI') is the encrypted input from the user.
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Calculates the similarity score between the stored
encrypted identity E(UI) and the user's input encrypted
identity E'(UI):

Matches() : Counts the number of encrypted
attributes that match between the stored and input data
Total Attributes: Total number of identity-related
fields being compared (e.g., name, ID number, role)
S,: The similarity score ranges from 0 to 1. A score of
1 indicates a perfect match across all identity fields

This ratio helps determine whether the identity
submitted by the user aligns with the profile stored in the
system.

A majority consensus is required as given in Eq. (7):

Y]

Where: T, is the identity verification threshold. If the
average similarity score across all replicas meets or
exceeds the threshold TI, the identity is considered
verified. Otherwise, access is denied, or further
authentication is required.

Contextual data, such as location and device type,
encrypted as E(C), undergoes verification (ltodo and
Ozer, 2024). Each replica computes a contextual score SC
as shown in Eq. (8):

, s R .Sui
Identity Verified < =2 T,

__ Matches(E(C),E'(C))
~ Total Attributes

S, ©)

A majority consensus ensures authenticity as derived
in Eq. (9). This equation evaluates how closely the
encrypted contextual information from the user matches
the expected profile:

e E(C): Stored encrypted contextual
location, device 1D)

E'(C): Encrypted context from the current user
session

SC: Context similarity score, expressed as a fraction

of matching attributes

data (e.g.,

This score supports the detection of suspicious access
patterns, such as logging in from a different region or an
unknown device:

©)

This equation validates whether the context similarity
score is sufficient to allow access:

e >R Sci
Consensus Verifiesd & %C'L >Tc

e Sc;: Context score evaluated by the ith verification
node
Tc: Threshold for context-based verification (e.g.,

0.75)

If the average score across all verification nodes is
greater than or equal to the threshold, the contextual data
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is deemed legitimate.
Behavioural attributes, such as typing patterns, are
analysed. Encrypted behavioural data E(B) is compared
to stored profiles. The similarity score Sg is computed
as given in Eqg. (10):
S — Matches(E(B),E'(B))
B ™ Total Attributes

(10)

Behavioural consensus ensures verification as given in
Eqg. (11). This score measures how well the user’s current
behaviour matches their historical behavioural profile:

e E(B): Stored encrypted behavioural data (e.g.,
typing speed, app usage)

e E'(B): Encrypted data from the ongoing session

e SB: Behaviour similarity score between 0 and 1

A lower score could indicate an imposter or an
unusual behaviour pattern, triggering restricted access
or additional checks. This equation checks whether the
average behaviour score across all nodes meets the
minimum threshold:

e SB,i: Similarity score at the ith node
e TB: Predefined threshold for
verification (e.g., 0.7)

behavioural

When the average similarity score is equal to or
greater than the threshold, the user’s behaviour is
accepted as genuine:

z

R .
Behaviour Verified %SB'L >Tg (11)

This equation calculates the overall authentication
score by averaging the individual scores from the three
verification stages:

e S1: Final identity verification score
e S2: Final context verification score
e  S3: Final behaviour verification score

Each stage contributes equally to the final score. This
score is then used to determine the access level.

Aggregate scores from all phases determine access
levels as given in Eq. (12):

51+52+53

Aggregate_Score = (12)

Access is granted or restricted based on thresholds:

51452453,

> 3 :

o Aggregates.ore Full Access

o 0.7 < Aggregateg.,. < 0.9: Limited Access
o Aggregates.,. < 0.7: Restricted Access

The phase-1l algorithm applies homomorphic
encryption across the main verification phases (identity,
contextual, and behavioral). The Phase-Il algorithm is
presented in Algorithm 2.
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Algorithm 2: Multiphase zero-trust authentication with
homomorphic encryption (MZTA-HE)

STEP-1: Initialization Phase

a. Encrypt user data U using homomorphic encryption
(E()).

b. Replicate the encrypted user data E(U) across R nodes for
decentralized verification.

c. Define thresholds for each authentication phase (identity,
context, behavior).

STEP-2: Identity Verification

a. Encrypt the user’s identity attributes I using homomorphic
encryption (E(1)).

b. For each replica i (1 < i < R), calculate the similarity
between the encrypted identity STEP-3: E(U) and the
user’s expected identity E(I):

S_L_i = CalculateSimilarity(E(U), E(1))

c. Aggregate the similarity scores from all replicas:
IdentityConsensus = Sum(S_I_1,S 1 2,..,S I R)/R

d. If IdentityConsensus > Threshold Identity, identity is
verified; otherwise, deny access.

STEP-4: Context Verification

a. Encrypt contextual data (location, device type, etc.) C
using homomorphic encryption (E(C)).

b. For each replica i (1 <1 < R), compare the encrypted
context E(C) to the expected contextual data.

S_C_i = CalculateSimilarity(E(U), E(C))

c. Aggregate the contextual similarity scores:
ContextConsensus =Sum(S_ C 1,S C 2,..,S C R)/R

d. If ContextConsensus > Threshold Context, context is
verified; otherwise, deny access.

STEP-5: Behavior Verification

a. Encrypt the user’s behavioral attributes B (typing speed,
app usage, etc.) using homomorphic encryption (E(B)).

b. For each replica i (1 <i < R), compare the encrypted
behavior E(B) to the expected behavioral data.

S_B_i = CalculateSimilarity(E(U), E(B))

c. Aggregate the behavioral similarity scores:
BehaviorConsensus =Sum(S_B_1,S B 2,..,S B R)/R
d. If BehaviorConsensus > Threshold Behavior, behavior is
verified; otherwise, deny access.

STEP-6: Dynamic Access Control

a. Calculate the aggregate score:

AggregateScore = (IdentityConsensus + ContextConsensus +
BehaviorConsensus) / 3

b. Based on the aggregate score, decide the access level:

- Full Access: If AggregateScore > 0.9

- Limited Access: If 0.7 < AggregateScore < 0.9

- Restricted Access: If AggregateScore < 0.7, request
additional authentication

STEP-7: Profile Update and Audit Logging

a. If authentication is successful, update the encrypted
user profile to reflect any changes in behavior or context.
b. Log each phase's outcomes and anomalies for audit and
future analysis.

Output:

a. If all phases pass their respective thresholds, grant the
user access.

b. If any phase fails, deny access and trigger additional
authentication if needed.

End: Multiphase zero-trust authentication with homomorphic
encryption (MZTA-HE)
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Hyperparameter Tuning for Both Phases

Hyperparameter tuning is a critical step in
optimizing the performance of the framework. For both
Phase | and Phase I, several parameters were adjusted
to optimize the system's performance, including the
number of replicas, thresholds for consensus, and
failure probabilities. Hyperparameter tuning in Table 2.

In Phase I, the device authentication system was
implemented using 2 to 5 replicas, with different
consensus thresholds to evaluate system performance. In
Phase Il, the multiphase user-level authentication was
implemented using 3 replicas for each phase. The
thresholds for identity, context, and behavior verification
were adjusted to evaluate the impact on success rates. The
hyperparameter tuning (Zhu et al., 2024) results show
how varying the number of replicas, consensus
thresholds, and failure probabilities impacted the system's
performance. The tuning process aims to balance security
with performance efficiency.

Number of Replicas (R): Increasing the number of
replicas improved fault tolerance and security but
introduced marginal delays due to additional computation
for consensus verification. A higher number of replicas

Table 2: Hyperparameter tuning for both phases

resulted in more robust anomaly detection.
Consensus Threshold (T): Raising the consensus
threshold improved security by requiring a higher
agreement rate across nodes. However, this led to
increased authentication failure rates as replicas
became more stringent in verifying data.

Failure Probability (P): A lower failure probability
improved the system’s overall reliability but required
higher computational overhead to ensure accuracy in
verifying keys and data.

Similarity Tolerance (ST): The tolerance for
similarity directly influences the authentication
process's sensitivity. A higher tolerance allowed easier
verification but decreased security, while a lower
tolerance improved accuracy and reliability.

The experimentation demonstrated that the
framework achieved robust performance in both
phases, with success rates of 94% for Phase | and 95%
for Phase Il. Hyperparameter tuning allows
optimization of system performance, balancing
security and efficiency. The framework’s ability to
continuously verify devices and users in a zero-trust
environment ensures a scalable and adaptable security
solution for modern networks.

Parameter Description

Phase-I Phase-II.

Number of replicas (R)

Consensus threshold (T) authentication

Failure probability (p)
Threshold for identity
verification (T_I)
Similarity tolerance (ST)

Threshold for context
verification (T_C).
Threshold for behavioral
verification (T_B)

Threshold for full access (T_F)

verification

verification.

verification

access

The number of nodes storing replicated keys/ data.
Percentage of agreement required for successful

The probability that a replica fails to verify correctly.
Minimum consensus required for behavioral

Tolerance level for similarity in verification phases.
A minimum consensus is required for context

Minimum consensus required for behavioral

The minimum aggregated score required to grant full

2,3,5 3

70%, 80%, 90% 70%, 80%, 90%
0.01, 0.05 0.01,0.05

70%, 80%, 90% 70%, 80%, 90%

N/A 0.09

N/A 75%, 80%, 90%
N/A 60%, 70%, 80%
N/A 0.9

Results and Discussion

This section presents experimental results and
compares the performance of Phase | and Phase Il in
terms of authentication success rates, response times,
failure rates, and other key metrics. The success rate
represents the percentage of authentication attempts that
were successfully granted access. In Phase |, the system
achieved a 94% success rate, indicating that the device-
level authentication mechanism was highly effective in
verifying devices. In Phase 11, the system's 95% success
rate demonstrated that user-level authentication, using
homomorphic encryption and multiphase verification,
was slightly more robust due to the inclusion of
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additional contextual and behavioral verification. The
success rate comparison is in Fig. 3.

The accuracy has been compared with traditional
benchmark models as given in Table 3.

As given in Table 3, the model proposed by Huang
(2024) adopts fault-tolerant device authentication using
cryptographic key replication between nodes. While it
improves the resilience of the system, its authentication
rate is 89%, which marks limitations in dealing with
dynamic and complicated environments. The work by
Azad et al. (2024) incorporates threat intelligence
mechanisms like the MITRE ATT&CK framework into
zero-trust systems.
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Success Rate

96%

95%

95% 95%
94%

94% 94%

Phase-1 Phase-1l

Success Rate

Fig. 3: Success rate comparison of the results of the two phases

This model provides better situational awareness and
response capabilities, leading to an increased accuracy of
91%. The Distributed Authentication Mechanism (DAM)
described by Rivera et al. (2024) uses decentralized
verification to avoid single points of failure. The model
attained an authentication accuracy of 92%,
demonstrating its efficiency in distributed systems with
reduced dependence on central authorities.

Based on these approaches, the Proposed Model —
Phase | integrates replicated key authentication with
consensus methods between numerous nodes. This
configuration ensures that even if a portion of the nodes is
compromised, the system will still be secure. It illustrates
an impressive accuracy of 94%, which reflects its
enhanced fault tolerance and verification reliability
compared to previous models. Stepping forward, the
Proposed Model — Phase Il presents a user-level
authentication strategy that examines identity, contextual
characteristics, and conduct patterns. Through conducting
these checks securely and without revealing sensitive
information, the system achieves an authentication
accuracy of 95%. Not only does this phase outperform
Phase I, but it also offers a more inclusive and adaptive
verification process.

Similarly, the failure rate represents the percentage of
authentication attempts that were denied due to failed
verification. Phase | recorded a 6% failure rate, while
Phase Il experienced a 5% failure rate, showing that the
more complex user-level authentication process had
slightly better overall performance. Response time
measures the time it takes for the system to authenticate a

Table 3: Result Comparison with benchmark models

device or user. Phase I, being a simpler system based on
key replication, achieved an average response time of 0
seconds due to its efficient structure. Phase Il, which
included more complex operations like homomorphic
encryption and multiphase verification, had a response
time of 0.02 seconds, which is still fast but slightly higher
due to the computational overhead involved in the
encryption and decryption processes.  Although
homomaorphic encryption enhances privacy, it introduces
computation latency. Our simulations showed an average
processing overhead of 0.02 seconds per authentication
request, which is acceptable for medium-scale enterprise
systems. Optimization techniques such as batching and
partial encryption were employed to improve efficiency.

The time taken for the verification process in Fig. 4
depends on the number of replicas and the complexity of
the verification operations. Phase |, which uses a simple
consensus-based verification mechanism across a few
replicas, had a verification time of 0.01 seconds. In
contrast, Phase Il had a slightly longer verification time of
0.03 seconds due to the three-phase authentication process
(identity, context, and behavior) and homomorphic
encryption. Phase Il is divided into three phases of
authentication:  Identity, context, and behavior
verification. The system performed differently across
these phases, with identity verification showing the
highest success rate at 97%, followed by context
verification at 94%, and behavior verification at 91% as
in Table 4. The results indicate that context and behavior
verification are more prone to errors due to the
complexities of analyzing encrypted behavioral patterns
and context data.

In Phase I, the consensus agreement rate was 92%,
with at least 70% of the nodes agreeing on successful
authentication. Phase I, being more complex, had a 90%
consensus agreement rate, which is slightly lower due to
the involvement of multiple replicas and encryption
checks across multiple phases. In Phase I, the system
granted full access in 94% of cases, while restricted access
was rarely required. In phase Il, full access was granted
94% of the time, limited access to 25%, and restricted
access was required in 5% of cases, particularly when
discrepancies were found in the behavioral verification
phase, as in Table 5.

Model / Framework Description

Authentication Accuracy (%)

(Huang, 2024)
across nodes

Fault-tolerant device authentication via key replication 89%

(Azad et al., 2024) zero-trust models with threat knowledge-based, like the 91%
MITRE ATT&CK framework

(Rivera et al., 2024) Distributed Authentication Mechanism (DAM) 92%

Proposed Model - Phase | Device-level authentication using replicated keys and a 94%

consensus mechanism
Proposed Model - Phase Il

User-level authentication with homomorphic encryption 95%
(identity, context, behaviour)
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Fig. 4: Response time per authentication comparison (phase-I: 0.05; phase-1l: 0.02)

Table 4: Phase-ll authentication success rate of different
phases of verification

Phase-Il Authentication Phase

Success Rate (%)

Identity Verification 97%
Context Verification 94%
Behavior Verification 91%
Success Rate (%)
7%
98% 1%
96% 94%
94%
1%
92% 91%
90%
88%
Identity Context Behavior
Verification Verification Verification

—8— Success Rate (%)

Table 6 indicates failures as broken down into causes
based on the verification phase. Most failures occurred in
the behavioral verification phase at 65%, followed by
identity verification (20%), and context verification
(15%). This highlights the challenges of verifying
behavioral attributes, which are inherently more complex
and harder to analyze securely, especially when
encrypted. To evaluate the effectiveness of our model, it
was compared with traditional MFA and single-phase
ZTA methods. Our framework showed a 7% higher
success rate in user verification and 12% better fault
tolerance under simulated attack conditions.

In both phases, the security risk assessment was based
on the number of failed authentications or discrepancies
detected during re-verification. For Phase I, the risk of
security breaches was low, with an average security risk
of 6% due to device-level failures. In Phase |1, the security
risk was slightly higher at 9%, as discrepancies in
behavioral data and context-based verification
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contributed to occasional failures. Phase I, being simpler,
achieved faster response times and higher consensus
agreement rates. This is due to its reliance on replicated
key verification and the absence of computationally
intensive operations like encryption.

Table 5: The control outcomes during phase-1I execution
Phase Full Access Limited Restricted
(%) Access (%)  Access (%)
94% 6% 0%
94% 25% 5%

Phase-I
Phase-11

Control Outcomes

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

© 94%

94% ®

259

5%
6% °
0%

Phase-1 Phase-1l

=== Full Access (%)
=0-=imited Access (%)

Restricted Access (%)

Table 6: Failure rate assessment in the phase-Il authentication
phase
Phase-11 Authentication Phase

Failure Rate (%)

Identity verification 20%
Context Verification 15%
Behavior Verification 65%
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Failure Rate
70% 65%
60%
50%
40%
30%
20%
0,

20% 15%
10%

0%

Identity Context Behavior
verification Verification Verification

Failure Rate (%)

Phase Il, with its homomorphic encryption and
multiphase authentication process, introduced slightly
higher response times and verification delays but
achieved a higher overall success rate due to its
multifaceted approach. Both phases demonstrated high
levels of security, with Phase Il showing a marginally
higher failure rate due to the complexity of behavioral
and contextual verification. However, Phase Il also
demonstrated stronger security against sophisticated
attacks because of its multiphase, adaptive approach.

Phase I was highly scalable, with a minimal increase in
time delays even as the number of replicas increased.
Phase 1l showed moderate scalability, with a slight
increase in response times as the complexity of
verification operations grew. To validate the
effectiveness of the proposed Multiphase Zero-Trust
Authentication Framework (MZTAF), an extensive
comparison was carried out with leading zero-trust
authentication models recently proposed in the
literature, as shown in Table 7. The comparison
covered multiple evaluation criteria, including
authentication accuracy, average response time,
scalability under network load, and tolerance to node
failures. The proposed MZTAF framework consistently
outperforms existing models across key performance
indicators.

Authentication Accuracy: MZTAF achieves 94%
accuracy in device-level verification and 95% in user-
level authentication. This is notably higher than other
models, which range between 88% and 92%. The
enhanced accuracy is due to the layered verification
process combining identity, contextual, and behavioural
checks.

Response Time: Despite involving multiphase
verification and encrypted computations, MZTAF
maintains a low average response time of 0.02 seconds.
This is due to the lightweight XOR-based operations in
Phase | and the use of optimized homomorphic functions
in Phase II.

Fault Tolerance: Using key replication and consensus
mechanisms, the framework remains resilient even when
some nodes are compromised.

Table 7: Comparative Analysis of Zero-Trust Authentication Frameworks

Framework Core Mechanism Authentication Average Response Fault Scalability
Accuracy Time (s) Tolerance

(Huang, 2024) Replicated Key 89% 0.05 Moderate Moderate
Authentication

(Azad etal., 2024)  Threat-Based ZTA with 91% 0.06 Low Limited
MITRE Mapping

(Riveraetal., Blockchain-Based 92% 0.08 High Moderate

2024) Distributed Authentication

MFA-ZTA Multi-Factor + Location + 88% 0.04 Low Limited

(Dargaoui et al., Token

2025)

MZTAF Replicated Key + 94% (Phase 1) / 0.02 High High

(Proposed) Homomorphic User 95% (Phase 11)

Verification

Compared to blockchain-based models, which provide
high fault tolerance but incur latency, MZTAF balances
both speed and resilience.

Scalability: The architecture was tested with increased
node counts and authentication requests. Results show
stable performance, indicating the framework's ability to
scale efficiently in dynamic environments such as
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enterprise networks or cloud-based infrastructures.

The comparative analysis confirms that MZTAF
offers superior performance in terms of security,
adaptability, and efficiency. It bridges the limitations of
single-factor and centralized models by adopting a
layered, decentralized verification strategy that is both
robust and scalable.
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Conclusion

The development of secure and scalable authentication
systems is essential for safeguarding digital resources in
an increasingly complex and distributed world.
Traditional authentication models, which rely on
passwords, tokens, or biometric data, have proven to be
vulnerable to various forms of attack. These systems often
struggle to provide robust security in dynamic
environments where both devices and users may change
their access patterns or may be subject to advanced cyber
threats. The Multiphase Zero-Trust Authentication
Framework (MZTAF), as presented in this research,
offers a comprehensive solution to these challenges by
integrating  decentralized-level authentication and
privacy-preserving user-level authentication through
homomorphic encryption. While this study focused on a
simulated environment, future work will involve pilot
deployment in enterprise networks to validate real-world
applicability and performance under varying load and
threat conditions. MZTAF introduces significant
innovations in the way authentication is conducted. First,
its use of replicated key-based device authentication
ensures that devices are continuously verified in a fault-
tolerant manner, without relying on a central authority.
This reduces the risk of single points of failure and
enhances the security of device access in zero-trust
networks. Second, by utilizing homomorphic encryption,
MZTAF preserves the privacy of sensitive user data
during authentication, making it suitable for privacy-
sensitive applications while still allowing for detailed
behavioral analysis and contextual checks. The three-
phase user authentication process, which involves
identity, context, and behavior verification, adds an extra
layer of granularity, thereby reducing the risk of
unauthorized access.

The experimental results highlight the effectiveness of
MZTAF, achieving 94% success in device authentication
(Phase 1) and 95% success in user authentication (Phase
I). The results also demonstrate the scalability of the
framework, with minimal performance overhead even as
the number of replicas increases. The system's ability to
adaptively grant access based on the aggregate scores
from all authentication phases ensures that security is
maintained without sacrificing user convenience. A key
strength of MZTAF lies in its dynamic access control
mechanism, which adjusts access permissions based on
the outcomes of each authentication phase. This flexibility
allows the system to handle a wide range of access
scenarios, from granting full access to highly trusted users
to imposing restrictions on users whose authentication
results are borderline. This approach represents a
significant departure from traditional models, which
typically rely on static authentication results. While this
work demonstrates high authentication accuracy, formal
security proofs will be developed in future iterations using
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standard frameworks such as IND-CPA and zero-
knowledge proof models. A comparative study against
cryptographic benchmarks will also be explored.

Despite its promising results, there are areas for
future improvement. The behavioral verification phase
in Phase II, while effective, can be further optimized.
Future versions of MZTAF could incorporate machine
learning techniques to improve behavioral analysis,
reducing the failure rate in this phase. Additionally,
real-time deployment and testing in more complex,

large-scale environments will help assess the
framework's performance under more dynamic
conditions. Overall, the Multiphase Zero-Trust

Authentication Framework (MZTAF) represents a
significant advancement in the field of authentication
systems. By combining replicated key-based device
authentication with homomorphic encryption for user
authentication, it offers a robust, scalable, and secure
solution for modern zero-trust environments. Its
multiphase approach, dynamic access control, and
privacy-preserving techniques provide a higher level of
security than traditional authentication models, making
it an ideal solution for securing distributed, privacy-
sensitive systems in today’s threat landscape.
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