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Abstract: In contemporary clinical environments, precisely simulating the
emergence of disease is an intricate task owing to heterogeneously derived
data and variability in the record of diagnoses. The research presents a stable
classification model that integrates image data with formalized patient data
to track patterns in disease through various stages. The suggested approach
combines a multi-stage analytical methodology that includes systematic data
preparation, transfer-based feature learning with a purpose-tuned
InceptionResNetV2 architecture, and performance metrics evaluation under
stringent criteria. Substantially, the system has been augmented by
incorporating a fusion approach in which diagnostic images are combined
with patient records, leading to enhanced classification validity. With a
general accuracy level of 97.45%, the model indicates good generalizability
and interpretability. Its use of domain-specific tuning and interpretive tools
increases its applicability to real-world medical diagnosis, offering a sound
solution for dealing with class imbalance and heterogeneous disease
presentations. These figures indicate the model's best performance in dealing
with data imbalance and misclassifications, typical in medical imaging and
Electronic Health Record (EHR) analysis. Data imbalance, whereby certain
disease categories are underrepresented, is likely to lead to skewed
predictions and false generalizations. The findings point to the need for
developing diagnostic tools that would be applicable in multimodal data

integration.
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Introduction

Disease progression refers to the transition of a
medical condition through various stages, typically from
early onset to advanced severity, as observed through
clinical symptoms and imaging changes. In this study,
progression is modelled by analyzing sequential data
patterns derived from imaging modalities and patient
records. Understanding this trajectory aids in forecasting
clinical outcomes and enhancing decision-making. The
application of medical technologies has transformed
healthcare systems by assisting in the diagnosis of various
diseases. Nevertheless, the capacity to categorize all
forms of diseases (Wan and Shao, 2023) is still
challenging. The intricacy of imaging data among patients
further complicates the challenge of diagnosing diseases
among patients. To address these issues, this research
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employs deep learning techniques to label medical images
of diseases in some patients. Existing medical imaging
technologies like Convolutional Neural Networks (CNN)
and Long Short-Term Memory (LSTM) are subject to
some drawbacks (Tian et al., 2024). Most of the models
are plagued by low scalability and low adaptability to
individual conditions of patients. Also, these models tend to
provide wrong diagnoses in the case of low-resolution
images. Current models are often incapable of generalizing
various medical datasets, thus limiting their practical
application. Recent integration of multi-modal data and
Transfer Learning has vastly enhanced disease diagnosis,
particularly how they propagate in the human body. Many
issues are still present, such as data heterogeneity, how
scalable they are, and how to extract them.

This study is therefore intended to overcome these
limitations by adopting a structured approach that
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involves pre-processing, optimizing the transfer of
learning strategies, and multimodal feature fusion.
Traditional transfer learning models often use a pre-
determined architecture without sufficiently adapting it to
medical datasets, which limits their applicability. The
model uses the InceptionResNetV/2 architecture and fine-
tunes it specifically for multimodal medical imaging data.
By freezing initial layers and retraining higher layers with
domain-specific images, the framework ensures:

An improved generalisation to medical imaging
datasets

More effective feature extraction from high-
dimensional data

Reduction of over-fitting through controlled layer
adaptation

Additionally, data augmentation techniques such as
the adjustment of brightness, rotation, and flipping
enhance the robustness of the model, which ensures that
there is a better adaptation to variations in medical
imaging. One of the most serious issues in multimodal
data processing is the natural imbalance in medical
datasets, in which some phases of diseases can bhe
underrepresented.

The framework employs:

Synthetic  Minority Over-sampling  Technique
(SMOTE) to obtain a balanced class representation.
Standardisation and normalization to promote
consistency across modalities
Cross-modal feature alignment to
information optimally from various
modalities (e.g., CT, MRI, and X-rays)

synthesize
imaging

By paying attention to these factors, the model
becomes more accurate and ensures that all the diseases
are equally represented. Existing multimodal deep
learning models often struggle with scalability due to high
computational demands. The framework optimizes the
efficiency of computation through:

Batch processing is required for large-scale data

ingestion

e Dynamic learning rate scheduling to prevent
unnecessary  computations  and  accelerate
convergence

e Parallel processing capabilities that allow a

simultaneous analysis of multiple imaging modalities

These optimizations make the framework suitable for
use in healthcare applications, resulting in the reduction
of inference time. Many deep learning models operate as
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"black boxes," thereby limiting their interpretability. The
proposed framework incorporates:

Gradient-weighted Class Activation Mapping
(Grad-CAM) for decision-making processes
Class-wise performance evaluation to highlight
specific strengths and weaknesses
Confusion  matrix  analysis
misclassification trends

to  understand

These features provide clinicians with greater insight
into the efficiency of the model, which fosters trust in
medical practice. Furthermore, traditional algorithms are
not graded thoroughly to handle multi-modal data
integration (Yang et al., 2024), which is crucial for
designing a prototype for disease progression. These gaps
necessitate the development of an advanced system
capable of improving diagnostic precision in healthcare
services.

The main objective of this study is to design an
innovative classification system and patient-specific
disease progression modelling. Using the power of deep
learning, the proposed framework will incorporate
advanced pre-processing techniques that rely on transfer
learning and optimized training strategies. The objective
of the study is to ensure that there is accuracy in the
classification process, which minimizes improper
classifications, develops a scalable solution that can adapt
to diverse medical datasets and patient profiles, and
provides interpretable results that help healthcare
professionals make reliable decisions. Consequently, this
study focuses on using the Inception ResNetV2
architecture for the extraction of features and their
classification. By pre-processing pipelines, the
framework makes medical images suitable for
application. It also solves the issue of the imbalance of
data and noise in imaging datasets.

Review of Literature

Based on existing frameworks of Electronic Health
Records (EHR), the literature review for this study
focuses on the healthcare sector, which is increasingly
shifting towards the use of Artificial Intelligence (Al) and,
at the same time, incorporating traditional analytic
workflows. The application of Al, nevertheless, is
confronted by several challenges: The most prominent
among them is its inability to be applied to different
domains. These disadvantages include a deficiency of
data, which can result in inconsistency in practice.
Besides, Electronic Health Record (EHR) systems have
data biases and discrepancies that need to be handled with
expertise. As a reaction to such issues, the EHR-ML
framework pronounced by Ramakrishnaiah et al. (2025)
presents an organized machine learning strategy to the
health sector. EHR- ML shortens model architecture and
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parameter selection by automating the data ingestion as
well as harmonization across institutions. With the use of
case studies, the authors detail how EHR-ML goes
beyond traditional measures to address many medical
problems.

This approach emphasizes the potential of Al to
enhance predictive validity and overall quality of health
care and addresses typical obstacles to its implementation.
To help advance the predictive validity of machine
learning models, Hancox et al. (2024) investigate the
application of graph theory. In their systematic review,
they examine the possible value of graph representations
of EHR data in an effort to enhance disease diagnosis.
They identified 27 studies to investigate graph-based
models that predict different health outcomes, like
hospital readmission and death. Compared to State-of-
the-Art techniques, the authors discovered that graph
representations significantly improve the prediction of
machine learning models, but more studies have to be
conducted before the methods can be utilized in clinical
environments.

In order to enhance understanding in this research,
there is an emphasis on conducting more research on how
graph-based models can help ensure the accuracy of
disease interpretation that can redefine the significance of
electronic health records. Cardiovascular diseases have
been studied to identify them at an earlier stage by
Pamulaparthyvenkata et al. (2024). Their research
emphasizes grave concerns, such as employing machines
for disease interpretation. Using both local and global
methods, the authors propose implementing an Entropy
Hidden Markov Model (EHMM) to detect heart diseases.
The result, with 0.98 prediction accuracy, indicated that
EHMM is more effective than Support Vector Machine
(SVM) and Random Forest (RF). The technigue enhances
personalized medicine through a clearer and more reliable
methodology for the early detection of heart diseases.

To diagnose disease from EHR data, Tian et al. (2024)
suggest a new hybrid model based on the integration of
Convolutional Neural Networks (CNN) and Long Short-
Term Memory (LSTM) networks. The hybrid model uses
LSTMs to extract long-term dependencies and the
capacity of CNNs to learn hierarchical features of
complex data. According to their empirical work, this
technique outperforms the standard machine learning
methods like Support Vector Machines (SVM) and
individual CNN and LSTM maodels. Deep learning holds
the potential to transform the science of accurate disease
diagnosis using novel neural network models. To predict
the clinical outcomes, Wang et al. (2025) propose a multi-
step Feature Selection (FS) process that integrates
knowledge-based expert methods with data-driven
statistical methods. In predicting Acute Kidney Injury
(AKI), the model was validated in two independent
cohorts of the MIMIC-11l and MIMIC-IV-ED databases.
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Based on their analysis, the researchers learned that their
FS model enhances their predictive abilities via various
machine learning methods.

The model enhances the capacity to conduct disease
diagnosis without any loss of efficiency. The approach
enhances clinical decision-making with the triumph of
reducing dimensionality in Electronic Medical Records
(EMRs). Fallahpour et al. (2024) argue that the challenges
in incorporating transformer-based models with
Electronic Health Records (EHRs are because they are
very costly and have a short lifespan. They overcame
these challenges by presenting EHR Mamba, a robust
foundation model that significantly improves longer EHR
sequence processing and is built on the Mamba
architecture. Cross-task generalization and deployment
efficiency are improved by the model's ability to perform
multitask learning with a single fine-tuning step. EHR
Mamba's application in real-world healthcare is made
simpler by its compatibility with the HL7 FHIR standard,
which makes it easy to use in hospitals.

According to Fallahpour et al. (2024), EHR
significantly improves Al use in medicine because it
improves on past systems in clinical workflows.
Nasarudin et al. (2024) explain in their critique how
online medical databases and deep learning models can be
utilized over EHR data to determine diseases. By so
doing, the healthcare industry. This review presents other
researchers with a choice of models to implement for the
purpose of creating deep learning models that are
specifically customized to identify disease. Niu et al.
(2024) present a model named EHR-BERT, an anomaly
identification model using the BERT architecture. The
framework solves issues by means of Sequential Masked
Token Prediction (SMTP) for improved anomaly
detection capabilities. Most tests with huge EHR datasets
from various medical facilities have proven that EHR-
BERT's performance is improved as compared to the
conventional approach by eliminating incorrect
information and enhancing abnormal rate identification.
This breakthrough enables EHR-BERT to be a significant
tool for improving medical data accuracy, which is liable
for reducing medical errors.

Cui et al. (2024) examine employing Electronic Health
Records (EHRs) for illness diagnosis. Their study
explores the potential to transform structured patients'
data into natural language stories using LLMs. The
authors suggest a novel method of pairing a predictor
agent to determine a disease. Researchers' results show
that LLMs can diagnose illnesses from EHR data with a
learning process similar to traditionally supervised
learning methods. The process opens new avenues for
applying LLMs in medicine, particularly when there are
limited labelled datasets. Heumos et al. (2024) propose
that 'therapy' remains to be discovered in epidemiology
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studies. From quality control and data extraction to causal
inference, survival, and therapy, it supports a wide variety
of analytical tasks. Ontologies are integrated into the
system to allow data sharing. Heumos et al. (2024)
describe in their case studies how therapy might be
applied to the detection of EHR data biases in the setting
of disease phenotypes. Such an open-source strategy is of
utmost urgency to data analysis in the healthcare sector as
well as in biomedical studies.

Methods

This research employs a multimodal deep learning
framework for representing patient-specific disease as an
ensemble of advanced imaging modalities and machine
learning techniques. This research utilizes the data from a
highly curated dataset of medical imaging consisting of
several different modalities, including Computed
Tomography (CT), Magnetic Resonance Imaging (MRI),
and X-ray images. The data is structured to be compatible
with deep learning models by classifying images
according to various stages of disease. Metadata, such as
patient demographic factors, such as age, gender, and
clinical history, are included to make the datasets more
helpful. The method utilised a few public datasets with
3,77,110 frontal chest X-rays from 65,379 patients from
MIMIC-CXR-JPG v2.0.0 PhysioNet data. Also, the NIH
ChestX-rayl4 dataset with 1,12,120 images from 30,805
patients, including 14 labelled disease categories, was
used. The chXpert dataset with 2,24,316 chest radiograph
images collected from 65,240 patients is also used in the
research. The overall data was split into 70% training,
15% validation, and 15% testing data, respectively. The
repository is rendered reproducible and derives from
publicly available medical imaging databases and
institutional holdings that are ethical in terms of
adherence to guidelines and regulations for patient
confidentiality. The materials and the techniques used in
this study are to ensure that there is precision when pre-
processing the data, as well as being efficient, dependable,
and consistent. The multimodal imaging dataset (Duan et
al., 2024) is collected from a curated repository, such as
CT, MRI, and X-rays. The data is categorized into
labelled categories by the stages of diseases as follows:

o Image Size: All portrait images are posed in a patterned
size of 331x331 pixels so that they are compatible with
deep learning models

o Metadata: Information specific to the patient, such as
age, gender, and the stage of disease, is incorporated in
order to supply an exhaustive dataset

The deep learning model utilizes transfer learning with
InceptionResNetV2, which was chosen due to its
improved balance between classification performance and
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computational speed. In comparison to other state-of-the-
art architectures like ResNet, DenseNet, and EfficientNet,
InceptionResNetVV2, which combines the inception
modules and residual connections, leads to better depth
and computation speed. Hybrid architecture enables
multiple scales and backpropagation and gradient flow,
and vanishing gradient problem improvement, and
ensures that everything converges quickly. Besides, it
performs excellently in feature extraction of fine-grained
details from medical multimodal images and thus is
worthy for multi-classification tasks. InceptionResNetV2,
pre-trained on ImageNet data, alleviates the demand for
intensive training on domain-specific data. This model
merges the power of inception modules with dimension
reduction and residual connections to attain rapid and
augmented gradient flow. This research framework is
developed in a way that the steps are well-designed to
avoid data imbalance, multimodal feature fusion, and
over-fitting (Wan and Shao, 2023). Data refinement
ensured raw imaging of unprocessed data was clean,
normalized, and ready to input into the model.

The Image Conversion step involved converting all
images to RGB format to normalize input sizes. In
Normalisation, Pixel values were normalized to a range
between 0 and 1 by dividing by 255, thus improving the
numerical stability of the model. In Noise reduction,
disruptions in images were reduced using filters. All
images were resized to 331x331 pixels to make them
compatible with InceptionResNetV2. In order to avoid
over-fitting and enhance the diversity of training, the
augmentation techniques like flipping, brightness
changes, and rotation were utilized. These processes were
done very carefully so that there was some variability,
which ensured the generalizability of the model.
Exploratory Data Analysis (EDA) (Shabbir et al., 2023)
was performed to understand the intricacies of the data
set. Statistical quantities and visualization tools were
employed to determine:

e Class Imbalance: The class distribution of samples
was examined, and synthetic methods (e.g.,
SMOTE) were used to handle any imbalance

e Trends in Data: Patterns of trends in diseases were
gathered from feature distributions and metadata

The model of deep learning employed models like
InceptionResNetV2 during training. Transfer learning
made feature extraction more efficient with less
computational time. Retrieved features from various
visualizing  platforms  were  merged through
concatenation to make the filling of modalities feasible.
Training was done with the Adam optimizer (Kumar et
al., 2024) due to its effectiveness. Categorical cross-
entropy was utilized for computing the difference
between predicted and actual labels. 32 to 50 capacity
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slots guaranteed that there was learning without
overburdening the computational resources. Learning
rate was also adjusted to guarantee that there was
convergence with stability.

In contrast to the conventional models based on single-
modal data, the current study combined multiple imaging
modalities to present a richer picture of the distribution of
disease. Current models do not always make use of the
complementary advantages of various modalities.
Utilization of InceptionResNetV2 dramatically improves
its performance compared to current models that lack
fine-tuning needed for certain datasets. The enhancement
of data ensured that the model was purposeful for which
it was created. This caused the process to reduce the
likelihood of over-fitting, which is a deficiency in most
models on offer. Utilization of techniques like Grad-CAM
enabled visual explanations of the decision process, hence
making it clinically more usable. On the other hand, most
existing models are "black boxes" that yield little or no
interpretability (Hassija et al., 2024). The model was
designed to be capable of handling large amounts of data
and other modalities and was extremely scalable. Most
other models are not scalable because of bad architecture
or pre-processing. The materials and methods used in this
work were focused on addressing the gaps in our current
disease modelling techniques.

Materials

This study wused publicly accessible datasets
containing CT, MRI, and X-ray scans. Images were
resized to 331x331 pixels and converted to RGB format.
Demographic information, such as age and gender, was
incorporated as metadata. Experiments were conducted
on a workstation equipped with an Intel i7 processor,
32GB RAM, and an NVIDIA RTX 3080 GPU. All
processing was done using Python, with libraries
including TensorFlow and OpenCV. No identifiable
personal information was used; thus, no formal ethics
clearance was required.

Framework of the Research

The Research presents a new framework called
"Patient-Centric  Multimodal Disease Progression
Modelling (PCMDPM)" that utilizes multimodal
medical imaging data in an effort to create a personalized
concept of disease progression. The framework is in
three phases.

Phase I: Focuses on preparing the dataset through
noise reduction, resizing, augmentation, and balancing
techniques.

Phase-11: Describes the training process using a
customized deep learning architecture tailored to
multimodal data.
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Phase-111: Emphasizes evaluation using classification
metrics and interpretability tools like heatmaps and
confusion matrices.

Every stage in Fig. 1 below plays an essential role in
determining the reliability of the framework and its
applicability to practice.

Figure 1 illustrates the complete workflow, beginning
with multimodal data acquisition and pre-processing,
followed by feature extraction via InceptionResNetV2,
metadata fusion, and concluding with classification and
performance evaluation. Each block is annotated to reflect
its functional role in the pipeline.

Phase-I: P and Data Analysi

Optimisation

Fig. 1: Overall Architecture of the Proposed Model for Disease
Prediction

Phase I: Pre-Processing and Data Analysis

The initial phase is devoted to a meticulous
preparation of the multimodal imaging dataset and
exploratory analysis in order to ensure that the data is
clean, balanced, and indicative of the target problem. This
phase consisted of multiple steps, which were all designed
to ensure optimum data quality as input to the deep
learning model. Multimodal imaging information was
obtained from various sources, such as radiological
diagnosis imaging scans containing MRI, CT, and X-rays.
This formatted information was labelled to correspond
with the respective phases of diseases. A particular
diagnostic characteristic was made feasible by each
modality, which helped the researchers come to a greater
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overall understanding of how the disease is contagious.
The data was painstakingly recorded in order to ensure
consistency. The imaging information was stored in an
organized form such that it is easily retrievable and can be
compatible with pre-processing pipelines (Bilal et al.,
2022). Pre-processing is needed to normalize formats to
be best for deep learning architectures. The following
steps were executed:

e Image Conversion: Images were converted and
processed, such as X-rays

e Resizing: To accommodate the requirements of a
model, all pictures were trimmed to a fixed
measurement, such as 331x331 pixels

e Normalisation: Every value of the pixel was
efficient

e Augmentation: Strategies like flipping, rotation,
and zooming were employed to increase the
diversity of the collection of datasets and to reduce
the risk of over-fitting

e Noise Reduction: Filters were applied to reduce
noise while preserving their capacity to read subtle
patterns

EDA detects patterns, trends, and potential biases in
the dataset. Statistical plots and graphs were employed to
analyze the various stages of diseases. Methods like
under-sampling, synthetic data creation, or oversampling
(e.g., SMOTE) were employed to ensure that there was a
balanced representation of all categories. Important
features specific to every imaging modality were
examined in order to determine their diagnostic
importance. For example, MRI scans can point out soft
tissue abnormalities, whereas CT scans offer detailed
information regarding bone and organ structures. This
analysis was designed to make sure that attributes from
various modalities were being fused to get the highest
level of prediction accuracy.

Phase-Il: Training Data into a Model

The second step involved developing a deep learning
model specifically suited to a multimodal dataset. Patient-
specific data, such as age, gender, and diagnosis history,
were encoded into numerical vectors and appended to
image-derived features in the fully connected layers of the
model. This fusion occurred after convolutional feature
extraction, allowing both visual and contextual
information to inform classification. This included
choosing an appropriate model that utilizes state-of-the-
art deep learning methods. A pre-trained model like
InceptionResNetV2 was chosen due to its capability of
extracting high-level features from imaging data. Transfer
learning was used to save training time and to satisfy
computational needs.
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Individual features were pulled out like convolution
layers to preserve important information. Goyal and Singh
(2023) argue that the final layer of the output assists in
classifying various diseases and in determining the status
of each one of them. The key elements of the learning
process are:

e Loss function (Akter et al., 2025) is self-learnt and
defines the nature of the problem

e The Adam optimizer is used for its adaptability and
efficiency in handling sparse gradients

e A mini-batch gradient descent (Zha et al., 2025)
approach is implemented using a slot to stop early
usage

Augmented data is fed into the model during training
to improve its generalizability. A learning rate schedule is
modified so that there will be no time loss and that the
convergence is achieved efficiently. Optimization of a
design is guaranteed by applying k-fold cross-validation
while the dataset is partitioned based on training
schedules. This sophisticated technique guarantees that
there is a proper evaluation of the performance of the
model. Training parameters such as the learning rate,
dropout rate, and unit density are tracked by a Bayesian
optimization method (Uddin et al., 2025). The process
ensures the model performs its desired functions with
minimal computational burdens.

Phase-l1l1: Testing and Evaluation of the Model

The final step is to test the model learnt by itself on an
unseen data set and check its performance with some
metrics. This step ensures that the model is reliable and
can accurately predict. The model is run on a data set not
seen during training. Predictions are made for all inputs
and compared against actual labels. Some statistical
measures are used to ensure the efficacy of the model.
Shatnawi et al. (2025) argue that accuracy is the
proportion of correct classification of instances and the
number of instances in the dataset. Rakaee et al. (2025)
assert that precision addresses the capability to avoid false
predictions, which is the proportion of true positives to the
total of false positives. Recall handles the design's ability
to recognize true positives from a total of false negatives
(Fakhrabadi et al., 2025). An F1 measure is the harmonic
mean value working with precision and recall, giving an
equal performance measure (Huang et al., 2025). The
model's performance is gauged by creating a confusion
matrix. This analysis determines where the model is
strong and where it is weak, and such information allows
further tuning of the model. The model's robustness is
determined by a sensitivity analysis, which entails the
addition of variations in the data, e.g., noise or distortions,
and examining the consequences of ripple effects on
predictions.
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The base model, InceptionResNetV2, was initialized
with pre-trained weights. Early layers (convolutional
blocks 1-5) were frozen to retain general visual features,
while higher layers were unfrozen to allow fine-tuning
with medical data. Additional custom layers included a
global average pooling layer, two fully connected dense
layers (256 units with ReLU activation), a dropout layer
(0.5), and a final softmax output layer. Multimodal fusion
was achieved by concatenating image features with
metadata inputs prior to the dense layers. This step
determines the dependability of the design in managing
the variability of data. The performance of the proposed
framework is compared against other approaches to show
its superiority. Test set metrics are compared with others
to show their accuracy and precision. Techniques like
Class Activation Mapping using Gradient-weight (Neal
Joshua et al., 2021) are used for heat map creation that
influences the model's predictions. These numbers help
clinicians understand the model's diagnostic process. The
proposed framework with its three-phase approach
displays an end-to-end solution for patient-specific illness
modelling using multimodal imaging data. Phase |
ensures the quality and representativeness of the dataset,
Phase Il builds a deep learning model, and Phase IlI
ensures the model's efficiency and accuracy.

This model not only forecasts properly but also offers
information on the dynamics of the disease, which can be
followed by giving the right medicine. Its application in
clinical practice is something to be explored.

Implementation and Evaluation

This research employed multiple algorithms at varied
steps to pre-process data, train a model of deep learning,
and evaluate performance. All experiments are conducted
on a system with an Intel Core i7-12700K CPU, 16 GB
RAM, and an NVIDIA RTX 3080 GPU (10 GB VRAM).
The deep learning environment used Python 3.10,
TensorFlow 2.13, Keras 2.11, and OpenCV 4.9. Model
training and data augmentation were performed on
Windows. Random seeds were fixed for reproducibility.
This work introduces an advanced pre-processing pipeline
that goes above conventional methods in that it has
multimodal imaging standardization, class balancing, and
domain-specific augmentation included. Unlike ordinary
pipelines that feature only resizing as well as
normalization, this approach improves the quality of the
data by:

e Multimodal Data Integration: Synthesises Imaging
data acquired from various resources (MRI, CT, and
X-ray) to a common data format without compromise
of critical diagnostic information

o Adaptive  Augmentation:  Applies  relevant
transformations like contrast adjustment specific to
the modality, noise minimisation using Gaussian
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filters, and adaptive rotation to keep it medically
appropriate

e Balancing Classes with Synthetic Data Generation:
Applies  Synthetic ~ Minority ~ Over-Sampling
Technique (SMOTE) to prevent biases in model
classification

e Metadata Utilisation: Includes patient-specific
information like age, gender, and the disease stage to
provide a complete diagnosis of the disease

This pipeline reduces typical issues like data
inconsistency and feature redundancy and improves the
deep learning model's robustness for medical imaging
analysis. Every algorithm is optimized for a particular
task in order to be able to process efficiently, learn
accurately, and provide a solid evaluation. The pre-
processing algorithm level 1 is shown in Algorithm 1.

Algorithm 1 PreProcess_Disease (Input dataset Path)

INITIALIZE

dataset_list < empty list

BEGIN

image «— Loadlmage(image path) // Load image file

image <« ConvertToRGB(image) // Convert to RGB format
resized_image < ResizeImage(image, target_size=(331,
331))

normalized image «— NormalizePixel Values(resized image,
scale=(0, 1))

APPEND (normalized_image, folder) TO dataset_list
RETURN dataset_list

train_data < PreprocessData('data/train’)

test_data < PreprocessData('data/test’)

X_train, y_train < SplitData(train_data)

X_test, y_test €< SplitData(test_data)

END

End PreProcess_Disease

The pre-processing algorithm in Algorithm 1 shows
how image data is evaluated to estimate the effectiveness
of the model. This step involves reading image files,
resizing them, normalising their pixel values, and
mapping their labels. Images are loaded from the directory
structure where folders represent different classes. Each
image file is accessed to ensure that it is compatible with
multiple formats. Images are converted into pre-processed
RGB format to ensure that they have a uniform colour
across the dataset (Kumar et al., 2024). Each image is
resized to a fixed dimension of 331x331 pixels in order to
maintain consistency with the input requirements of the
chosen model. Values of Pixel are generalised to a scope
between 000 and 111 by a repetitive subtraction of 255.
The process accelerates the convergence of training by
reducing the scale of the input data. String labels
corresponding to classes are mapped to integer values for
compatibility with deep learning frameworks.
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The training algorithm in Algorithm 2 is based on fine-
tuning a pre-trained InceptionResNetV2 deep learning
model. This approach allows the transfer of learning to
reduce the need for extensive computational resources
while achieving high accuracy. The base model,
InceptionResNetV2, is used as a feature extractor. It is
pre-trained on the Image Net dataset, which includes
multiple convolutions, residual, and inception layers. The
base model is decorated with customized layers on its top,
as shown below:

Algorithm 2 Train_Disease_Model (INPUT x_train, y_train,
num_classes)

INITIALISE

IMPORT InceptionResNetV2

IMPORT Sequential, Dense, Dropout

LOAD base_.model €< LoadModel(base_model_path,
Include.top=FALSE, input_shape=(331, 331, 3))
BEGIN

model €< Sequential()

FOR EACH layer IN base_model:

layer. trainable €< FALSE

APPEND base_model TO model

APPEND Global_Average_Pooling2D.() TO model
APPEND Dense. (256, activation="relu") TO model
APPEND Drop_out(0.5) TO model

APPEND Dense.(num_classes, activation="softmax") TO
model

optimizer € Adam(“learningrate=0.0001")

model. compile
(optimizer=optimizer.loss="categorical_crossentropy",
metrics=["accur"])

history € model.fit( x_train, y_train, batch_size=32,
epochs=50, validation_split=0.2,
callbacks=[LearningRateScheduler(reduce_on_plateau)])
RETURN model, history

END

End Train_Disease_Model

The assessment algorithm in Algorithm 3 shows the
performance of a self-learnt model in unseen data. It
includes generating predictions, evaluating metrics, and
visualising results through a confusion matrix. The model
predicts the class probabilities of each test sample.
Predicted class probabilities are converted to labels of the
class by selecting the one with the maximum possibility.
To ensure that the results are valid and credible,
confidence intervals are calculated for each performance
metric using bootstrapping as shown in Table 1.

Algorithm 3 Test_Disease_Model(()

BEGIN
ypredprobs < model.predict(xtest)
ypredclasses € ArgMax(ypredprobs, axis=1)
ytrueclasses € ArgMax(y_test, axis=1)
confusionmatrix € ComputeConfusionMatrix(yrueclasses,
ypredclasses)
accuracy € ComputeAccuracy(ytrueclasses, ypredclasses)
precision €< ComputePrecision(ytrueclasses, ypredclasses,
average="weighted")
recall & ComputeRecall(y_true_classes, y_pred_classes,
average="weighted")
fl_score €< ComputeF1Score(y_true_classes,
y_pred_classes, average="weighted")

RETURN confmatrix, acc, prec, rec, fl
confmatrix, acc, prec, rec, f1 « TestModel(model, x_test,
y_test)
END
End Test_Disease_Model

e Global Average Pooling Layer: Decreases spatial
components while retaining essential features

e Dense Layers: Perform classification by learning
feature correlations

e Dropout Layer: Prevents robustness by randomly
disabling neurons during training

e Output Layer: Soft Max activation function is
utilized to categorize images as 666 distinct types

e Adam Optimizer is used to adjust model weights.
It merges the advantages of adaptive learning rates
and momentum to seek optimal gradient updates

The deviations between true label distributions and
predictions are measured by the Categorical cross-entropy
loss function, making it suitable for categorizing tasks for
multiple classes. Base design layers are frozen initially,
and only the custom layers are trained. A callback
function dynamically adjusts the learning rate when
validating performance stagnates.

ol1

The intervals in Table 1 above indicate a high degree
of certainty in the model's generalisation capability.
InceptionResNetV2, as a base model, uses pre-trained
weights from a large dataset, resulting in a reduction of
the training time. The optimisation of an adaptive learning
rate (Xiang et al., 2025) prevents over-fitting and ensures
an efficient convergence, which is often lacking in
traditional models. The pre-processing pipeline ensures
uniformity in data by reducing noise and, at the same time,
improving the input quality. A combination of advanced
pre-trained layers and custom dense layers balances the
extraction of features and task-specific learning. The
modular design of the algorithm ensures its adaptability to
other medical image classification tasks with minimal
modifications. By systematically integrating pre-
processing, transfer learning, and a rigorous evaluation,
algorithms create an efficient pipeline for modelling
patient-specific progression.

Table 1: The Error-based Analysis based on the Confidence

interval
Metric Value (%) 95%Confidence
Interval
Accuracy 97.45 [96.85, 98.05]
Precision 97.64 [96.95, 98.22]
Recall 97.45 [96.72, 98.12]
F1 Score 97.42 [96.81, 98.03]
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Results and Discussion

The model incorporates Grad-CAM visualization to
map input regions most influential in each classification.
These visual outputs provide clinicians with an
explanation of the decision process, enabling verification
and trust in the model’s predictions. Research work
evaluations often rely on different parameters to produce
results. A detailed breakdown of predictions using correct
labels is shown in Table 2.

The results indicated that the model was capable of
achieving high precision and accuracy rates, which
confirmed its efficacy in terms of the correct categorization
of images, as shown in Table 2. These metrics confirm their
ability to process data accurately.

Class-wise metrics in Table 3 showed a consistent
performance across all categories, with precision, recall,
and Fl-scores above 96%. This balanced performance

The confusion matrix with class values in Table 4
indicated the ability of the design to pinpoint classes
accurately with no significant bias towards any specific
class. This finding is shown in Fig. 2.

The overall results of Training versus Validation Loss
are presented in Table 5.

Table 5 shows that learning and authentication losses
gradually reduce across multiple iterations, which
confirms effective learning with the least possible risk of
over-fitting. The marginal gap that exists between
validation losses and learning endorses this conclusion,
which is represented in Fig. 3.

Figure 3 tracks validation loss across training epochs.
The consistent decline in both training and validation
losses suggests effective learning without signs of
overfitting, indicating model stability. The Validation
Accuracy convergence is presented in Table 6 and Fig. 3.

Contusion matrix

confirmed its effective handling of the model's data.
0 8 1 0 “ 120
Table 2: Overall Performance of Disease Prediction on
Metric Value %o
1{ © 48 0 0 1 0
Accuracy 97.45%
Precision 97.64% -
Recall 97.45% 21 ° 0 ’ ‘ 0 0 0
F1-Score 97.42% 4 N
Table 3: Summary of Class-Wise Performance Metrics - ¢ 2 . 2
Class Precisi Recall F1- Support (No. of 40
Label on (%) (%) Score  Samples) a{ © 0 0 0 0
(%) 20
Class 1 98.20 97.85  98.02 200 s] o 0 0 0 0
Class 2 97.30 96.90 97.10 210 n LI
Class3 9750 9750 97.50 195 N N N » N °
Class 4 96.80 97.20 97.00 190 Predicted label
Class 5 98.10 97.40 97.75 205
Class 6 97.70 9760 97.65 220 Fig. 2: The Confusion Matrix results for each of the classes
Table 4: The Confusion Matrix results for each of the classes
Predicted/Class Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
Classl 87 0 8 1 0 1
Class2 0 48 0 0 1 0
Class3 0 0 68 0 0 0
Class4 0 0 0 110 0 0
Class5 0 0 0 0 129 0
Classé 0 0 0 0 0 94

Table 5: Results of Training versus Validation Loss

Epoch Training Loss Validation Loss
1 0.5432 0.5621
5 0.3208 0.3285
10 0.1574 0.1652
15 0.0910 0.0928
20 0.0725 0.0753

Table 6 shows steady improvement in training and
validation accuracy, with values converging by epoch 20.
The narrow gap between them confirms generalization,
supported by dynamic learning rate adjustments. The
model achieved a high accuracy rate in the initial stages
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of training, with minimal over-fitting. This reflects the
advantage of transfer learning, where pre-trained weights
accelerate learning.

Table 6: Model Convergences based on Accuracy over Epochs

Epoch Training Validation
Accuracy (%) Accuracy (%)

1 75.30 74.80

5 87.60 86.90

10 93.50 93.20

15 96.10 95.80

20 97.80 97.45
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Fig. 3: Results of Validation Loss Training

The ROC-AUC values in Table 7, for all six classes,
exceed 0.98, demonstrating a high degree of separation
between positive and negative instances. This indicates
the model's robustness in distinguishing among disease
categories, even in overlapping visual characteristics.

Figure 4 shows the distribution of ROC-AUC across
all class levels. It confirmed the design's potential in
differentiating true and false samples in every possible
category.

Table 8 presents a comparative evaluation of the
proposed model against two commonly used
architectures. The hybrid model significantly outperforms
both standard CNN and baseline InceptionResNetV2
implementations across accuracy, precision, recall, and
F1-score metrics. This improvement is attributed to
enhanced pre-processing, fine-tuning, and multimodal
integration strategies. The results showed that the proposed
model significantly outperformed traditional models in all
metrics, underscoring the advantage of the fine-tuned
architecture and a robust pre-processing pipeline. The high
performance of the model can be attributed to.

Table 7: The ROC-AUC analysis for Each Class

Class_Label ROC-AUC Score

Class1 0.987

Class2 0.982

Class3 0.985

Class4 0.980

Class5 0.988

Classb 0.984

Table 8: Overall Comparison with Baseline Models

Model Accuracy Precision Recall F1-
(%) (%) (%) Score

(%)

ResNet152Vv2  93.10 92.70 9250 92.60

DenseNet201  94.25 93.95 93.80 93.85

EfficientNet-  95.40 95.10 95.05 95.08

B3

Proposed 97.45 97.64 9745 97.42

PCMDPM

e  Use of the InceptionResNetV2 architecture with pre-
trained weights allowed the model to extract rich
features effectively

e Normalizing images and ensuring uniform input
dimensions

e The use of call-backs to adjust the learning rate
during stagnation and to avoid over-fitting

o Effective handling of imbalanced datasets in medical
image datasets

e Distinguishing between classes and making it a
strong candidate for deployment

BOC-ATC SCORE

U hmnt
1=

hnsl
| &%

=

1é%

Fig. 4: The distribution of ROC-AUC across various class levels

Conclusion

This study introduces a robust disease classification
model that seamlessly integrates multimodal imagery and
structured patient information into a unified analytical
model. In contrast to traditional models based on visual
information alone or generic architectures, the technique
utilizes a tailored learning framework that takes into
consideration variability in imaging sources and patient
records. The addition of metadata to the modeling procedure
enhances feature representation, leading to better accuracy
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and consistency across varied diagnostic groups.
Interpretability is increased by gradient-based visualization,
providing transparency into decision flows. Comparative
evaluations indicate that the suggested approach has
enhanced predictive strength and clinical impact in
comparison to conventional image-based models. In this
research, a thorough training model for the classification of
various diseases has been formulated. Through the
combination of the InceptionResNetV2 model with a well-
defined pre-processing and training process, the model is
extremely efficient. The result of this model is that it is
capable of solving a few of the medical issues, like the
classification of diseases and the extraction of information
from dense data. With advanced methods, the model assists
in the prevention of disease spread and the prediction of
outcomes. Most importantly, the capacity to derive
significant information from intricate medical images
enhances disease diagnosis and classification. Some of the
limitations of the research include the restriction of the
generalized nature of rare due to the non-availability of the
datasets, and also its high computational costs. Further, the
research contributes in some way to our capacity to classify
diseases, thus enhancing the likelihood of administering the
correct drug. Most importantly, the research makes an
important contribution to medical image analysis by
providing a computationally effective framework that can be
translated into other fields with minimal adjustment, which
will assist clinicians in diagnosing and tracking diseases with
relative accuracy. The future work is to integrate federated
learning to enhance privacy and scalability across
institutions. Also, multimodal integration can be extended to
include genomic and clinical text data. The framework sets
the stage for the extensions into rare disease analysis and
integrated diagnosis systems that can be modified for
different healthcare infrastructures.
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