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Abstract: In contemporary clinical environments, precisely simulating the 

emergence of disease is an intricate task owing to heterogeneously derived 

data and variability in the record of diagnoses. The research presents a stable 

classification model that integrates image data with formalized patient data 
to track patterns in disease through various stages. The suggested approach 

combines a multi-stage analytical methodology that includes systematic data 

preparation, transfer-based feature learning with a purpose-tuned 

InceptionResNetV2 architecture, and performance metrics evaluation under 

stringent criteria. Substantially, the system has been augmented by 

incorporating a fusion approach in which diagnostic images are combined 

with patient records, leading to enhanced classification validity. With a 

general accuracy level of 97.45%, the model indicates good generalizability 

and interpretability. Its use of domain-specific tuning and interpretive tools 

increases its applicability to real-world medical diagnosis, offering a sound 

solution for dealing with class imbalance and heterogeneous disease 

presentations. These figures indicate the model's best performance in dealing 
with data imbalance and misclassifications, typical in medical imaging and 

Electronic Health Record (EHR) analysis. Data imbalance, whereby certain 

disease categories are underrepresented, is likely to lead to skewed 

predictions and false generalizations. The findings point to the need for 

developing diagnostic tools that would be applicable in multimodal data 

integration. 

 

Keywords: Deep Learning, Disease Progression Modelling, 

InceptionResNetV2, Medical Image Classification, Transfer Learning 

 

Introduction 

Disease progression refers to the transition of a 

medical condition through various stages, typically from 

early onset to advanced severity, as observed through 

clinical symptoms and imaging changes. In this study, 

progression is modelled by analyzing sequential data 

patterns derived from imaging modalities and patient 

records. Understanding this trajectory aids in forecasting 

clinical outcomes and enhancing decision-making. The 

application of medical technologies has transformed 

healthcare systems by assisting in the diagnosis of various 

diseases. Nevertheless, the capacity to categorize all 

forms of diseases (Wan and Shao, 2023) is still 

challenging. The intricacy of imaging data among patients 

further complicates the challenge of diagnosing diseases 

among patients. To address these issues, this research 

employs deep learning techniques to label medical images 

of diseases in some patients. Existing medical imaging 

technologies like Convolutional Neural Networks (CNN) 

and Long Short-Term Memory (LSTM) are subject to 

some drawbacks (Tian et al., 2024). Most of the models 

are plagued by low scalability and low adaptability to 

individual conditions of patients. Also, these models tend to 

provide wrong diagnoses in the case of low-resolution 

images. Current models are often incapable of generalizing 

various medical datasets, thus limiting their practical 

application. Recent integration of multi-modal data and 

Transfer Learning has vastly enhanced disease diagnosis, 

particularly how they propagate in the human body. Many 

issues are still present, such as data heterogeneity, how 

scalable they are, and how to extract them. 
This study is therefore intended to overcome these 

limitations by adopting a structured approach that 
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involves pre-processing, optimizing the transfer of 

learning strategies, and multimodal feature fusion. 

Traditional transfer learning models often use a pre-

determined architecture without sufficiently adapting it to 

medical datasets, which limits their applicability. The 
model uses the InceptionResNetV2 architecture and fine-

tunes it specifically for multimodal medical imaging data. 

By freezing initial layers and retraining higher layers with 

domain-specific images, the framework ensures: 

 

 An improved generalisation to medical imaging 

datasets 

 More effective feature extraction from high-

dimensional data 

 Reduction of over-fitting through controlled layer 

adaptation 

 

Additionally, data augmentation techniques such as 
the adjustment of brightness, rotation, and flipping 

enhance the robustness of the model, which ensures that 

there is a better adaptation to variations in medical 

imaging. One of the most serious issues in multimodal 

data processing is the natural imbalance in medical 

datasets, in which some phases of diseases can be 

underrepresented. 

The framework employs: 

 

 Synthetic Minority Over-sampling Technique 

(SMOTE) to obtain a balanced class representation. 

 Standardisation and normalization to promote 

consistency across modalities 

 Cross-modal feature alignment to synthesize 

information optimally from various imaging 

modalities (e.g., CT, MRI, and X-rays) 

 

By paying attention to these factors, the model 

becomes more accurate and ensures that all the diseases 

are equally represented. Existing multimodal deep 

learning models often struggle with scalability due to high 

computational demands. The framework optimizes the 

efficiency of computation through: 

 

 Batch processing is required for large-scale data 
ingestion 

 Dynamic learning rate scheduling to prevent 

unnecessary computations and accelerate 

convergence 

 Parallel processing capabilities that allow a 

simultaneous analysis of multiple imaging modalities 

 

These optimizations make the framework suitable for 

use in healthcare applications, resulting in the reduction 

of inference time. Many deep learning models operate as 

"black boxes," thereby limiting their interpretability. The 

proposed framework incorporates: 

 

 Gradient-weighted Class Activation Mapping 

(Grad-CAM) for decision-making processes 

 Class-wise performance evaluation to highlight 

specific strengths and weaknesses 

 Confusion matrix analysis to understand 

misclassification trends 

 

These features provide clinicians with greater insight 

into the efficiency of the model, which fosters trust in 

medical practice. Furthermore, traditional algorithms are 

not graded thoroughly to handle multi-modal data 

integration (Yang et al., 2024), which is crucial for 

designing a prototype for disease progression. These gaps 
necessitate the development of an advanced system 

capable of improving diagnostic precision in healthcare 

services. 

The main objective of this study is to design an 

innovative classification system and patient-specific 

disease progression modelling. Using the power of deep 

learning, the proposed framework will incorporate 

advanced pre-processing techniques that rely on transfer 

learning and optimized training strategies. The objective 

of the study is to ensure that there is accuracy in the 

classification process, which minimizes improper 
classifications, develops a scalable solution that can adapt 

to diverse medical datasets and patient profiles, and 

provides interpretable results that help healthcare 

professionals make reliable decisions. Consequently, this 

study focuses on using the Inception ResNetV2 

architecture for the extraction of features and their 

classification. By pre-processing pipelines, the 

framework makes medical images suitable for 

application. It also solves the issue of the imbalance of 

data and noise in imaging datasets. 

Review of Literature 

Based on existing frameworks of Electronic Health 

Records (EHR), the literature review for this study 

focuses on the healthcare sector, which is increasingly 

shifting towards the use of Artificial Intelligence (AI) and, 

at the same time, incorporating traditional analytic 

workflows. The application of AI, nevertheless, is 

confronted by several challenges: The most prominent 

among them is its inability to be applied to different 

domains. These disadvantages include a deficiency of 

data, which can result in inconsistency in practice. 
Besides, Electronic Health Record (EHR) systems have 

data biases and discrepancies that need to be handled with 

expertise. As a reaction to such issues, the EHR-ML 

framework pronounced by Ramakrishnaiah et al. (2025) 

presents an organized machine learning strategy to the 

health sector. EHR- ML shortens model architecture and 
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parameter selection by automating the data ingestion as 

well as harmonization across institutions. With the use of 

case studies, the authors detail how EHR-ML goes 

beyond traditional measures to address many medical 

problems. 
This approach emphasizes the potential of AI to 

enhance predictive validity and overall quality of health 

care and addresses typical obstacles to its implementation. 

To help advance the predictive validity of machine 

learning models, Hancox et al. (2024) investigate the 

application of graph theory. In their systematic review, 

they examine the possible value of graph representations 

of EHR data in an effort to enhance disease diagnosis. 

They identified 27 studies to investigate graph-based 

models that predict different health outcomes, like 

hospital readmission and death. Compared to State-of-
the-Art techniques, the authors discovered that graph 

representations significantly improve the prediction of 

machine learning models, but more studies have to be 

conducted before the methods can be utilized in clinical 

environments. 

In order to enhance understanding in this research, 

there is an emphasis on conducting more research on how 

graph-based models can help ensure the accuracy of 

disease interpretation that can redefine the significance of 

electronic health records. Cardiovascular diseases have 

been studied to identify them at an earlier stage by 

Pamulaparthyvenkata et al. (2024). Their research 

emphasizes grave concerns, such as employing machines 

for disease interpretation. Using both local and global 

methods, the authors propose implementing an Entropy 

Hidden Markov Model (EHMM) to detect heart diseases. 

The result, with 0.98 prediction accuracy, indicated that 

EHMM is more effective than Support Vector Machine 

(SVM) and Random Forest (RF). The technique enhances 

personalized medicine through a clearer and more reliable 

methodology for the early detection of heart diseases. 

To diagnose disease from EHR data, Tian et al. (2024) 

suggest a new hybrid model based on the integration of 

Convolutional Neural Networks (CNN) and Long Short-

Term Memory (LSTM) networks. The hybrid model uses 

LSTMs to extract long-term dependencies and the 

capacity of CNNs to learn hierarchical features of 

complex data. According to their empirical work, this 

technique outperforms the standard machine learning 

methods like Support Vector Machines (SVM) and 

individual CNN and LSTM models. Deep learning holds 

the potential to transform the science of accurate disease 

diagnosis using novel neural network models. To predict 

the clinical outcomes, Wang et al. (2025) propose a multi-

step Feature Selection (FS) process that integrates 

knowledge-based expert methods with data-driven 

statistical methods. In predicting Acute Kidney Injury 

(AKI), the model was validated in two independent 

cohorts of the MIMIC-III and MIMIC-IV-ED databases. 

Based on their analysis, the researchers learned that their 

FS model enhances their predictive abilities via various 

machine learning methods. 

The model enhances the capacity to conduct disease 

diagnosis without any loss of efficiency. The approach 

enhances clinical decision-making with the triumph of 

reducing dimensionality in Electronic Medical Records 

(EMRs). Fallahpour et al. (2024) argue that the challenges 

in incorporating transformer-based models with 

Electronic Health Records (EHRs are because they are 

very costly and have a short lifespan. They overcame 

these challenges by presenting EHR Mamba, a robust 

foundation model that significantly improves longer EHR 

sequence processing and is built on the Mamba 

architecture. Cross-task generalization and deployment 

efficiency are improved by the model's ability to perform 

multitask learning with a single fine-tuning step. EHR 

Mamba's application in real-world healthcare is made 

simpler by its compatibility with the HL7 FHIR standard, 

which makes it easy to use in hospitals. 

According to Fallahpour et al. (2024), EHR 

significantly improves AI use in medicine because it 

improves on past systems in clinical workflows. 

Nasarudin et al. (2024) explain in their critique how 

online medical databases and deep learning models can be 

utilized over EHR data to determine diseases. By so 

doing, the healthcare industry. This review presents other 

researchers with a choice of models to implement for the 

purpose of creating deep learning models that are 

specifically customized to identify disease. Niu et al. 

(2024) present a model named EHR-BERT, an anomaly 

identification model using the BERT architecture. The 

framework solves issues by means of Sequential Masked 

Token Prediction (SMTP) for improved anomaly 

detection capabilities. Most tests with huge EHR datasets 

from various medical facilities have proven that EHR-

BERT's performance is improved as compared to the 

conventional approach by eliminating incorrect 

information and enhancing abnormal rate identification. 

This breakthrough enables EHR-BERT to be a significant 

tool for improving medical data accuracy, which is liable 

for reducing medical errors. 

Cui et al. (2024) examine employing Electronic Health 

Records (EHRs) for illness diagnosis. Their study 

explores the potential to transform structured patients' 

data into natural language stories using LLMs. The 

authors suggest a novel method of pairing a predictor 

agent to determine a disease. Researchers' results show 

that LLMs can diagnose illnesses from EHR data with a 

learning process similar to traditionally supervised 

learning methods. The process opens new avenues for 

applying LLMs in medicine, particularly when there are 

limited labelled datasets. Heumos et al. (2024) propose 

that 'therapy' remains to be discovered in epidemiology 
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studies. From quality control and data extraction to causal 

inference, survival, and therapy, it supports a wide variety 

of analytical tasks. Ontologies are integrated into the 

system to allow data sharing. Heumos et al. (2024) 

describe in their case studies how therapy might be 

applied to the detection of EHR data biases in the setting 

of disease phenotypes. Such an open-source strategy is of 

utmost urgency to data analysis in the healthcare sector as 

well as in biomedical studies. 

Methods 

This research employs a multimodal deep learning 

framework for representing patient-specific disease as an 

ensemble of advanced imaging modalities and machine 

learning techniques. This research utilizes the data from a 

highly curated dataset of medical imaging consisting of 
several different modalities, including Computed 

Tomography (CT), Magnetic Resonance Imaging (MRI), 

and X-ray images. The data is structured to be compatible 

with deep learning models by classifying images 

according to various stages of disease. Metadata, such as 

patient demographic factors, such as age, gender, and 

clinical history, are included to make the datasets more 

helpful. The method utilised a few public datasets with 

3,77,110 frontal chest X-rays from 65,379 patients from 

MIMIC-CXR-JPG v2.0.0 PhysioNet data. Also, the NIH 

ChestX-ray14 dataset with 1,12,120 images from 30,805 
patients, including 14 labelled disease categories, was 

used. The chXpert dataset with 2,24,316 chest radiograph 

images collected from 65,240 patients is also used in the 

research. The overall data was split into 70% training, 

15% validation, and 15% testing data, respectively. The 

repository is rendered reproducible and derives from 

publicly available medical imaging databases and 

institutional holdings that are ethical in terms of 

adherence to guidelines and regulations for patient 

confidentiality. The materials and the techniques used in 

this study are to ensure that there is precision when pre-
processing the data, as well as being efficient, dependable, 

and consistent. The multimodal imaging dataset (Duan et 

al., 2024) is collected from a curated repository, such as 

CT, MRI, and X-rays. The data is categorized into 

labelled categories by the stages of diseases as follows: 

 

 Image Size: All portrait images are posed in a patterned 

size of 331x331 pixels so that they are compatible with 

deep learning models 

 Metadata: Information specific to the patient, such as 

age, gender, and the stage of disease, is incorporated in 

order to supply an exhaustive dataset 

 

The deep learning model utilizes transfer learning with 

InceptionResNetV2, which was chosen due to its 

improved balance between classification performance and 

computational speed. In comparison to other state-of-the-

art architectures like ResNet, DenseNet, and EfficientNet, 

InceptionResNetV2, which combines the inception 

modules and residual connections, leads to better depth 

and computation speed. Hybrid architecture enables 
multiple scales and backpropagation and gradient flow, 

and vanishing gradient problem improvement, and 

ensures that everything converges quickly. Besides, it 

performs excellently in feature extraction of fine-grained 

details from medical multimodal images and thus is 

worthy for multi-classification tasks. InceptionResNetV2, 

pre-trained on ImageNet data, alleviates the demand for 

intensive training on domain-specific data. This model 

merges the power of inception modules with dimension 

reduction and residual connections to attain rapid and 

augmented gradient flow. This research framework is 
developed in a way that the steps are well-designed to 

avoid data imbalance, multimodal feature fusion, and 

over-fitting (Wan and Shao, 2023). Data refinement 

ensured raw imaging of unprocessed data was clean, 

normalized, and ready to input into the model. 

The Image Conversion step involved converting all 

images to RGB format to normalize input sizes. In 

Normalisation, Pixel values were normalized to a range 

between 0 and 1 by dividing by 255, thus improving the 

numerical stability of the model. In Noise reduction, 

disruptions in images were reduced using filters. All 

images were resized to 331x331 pixels to make them 
compatible with InceptionResNetV2. In order to avoid 

over-fitting and enhance the diversity of training, the 

augmentation techniques like flipping, brightness 

changes, and rotation were utilized. These processes were 

done very carefully so that there was some variability, 

which ensured the generalizability of the model. 

Exploratory Data Analysis (EDA) (Shabbir et al., 2023) 

was performed to understand the intricacies of the data 

set. Statistical quantities and visualization tools were 

employed to determine: 

 

 Class Imbalance: The class distribution of samples 

was examined, and synthetic methods (e.g., 

SMOTE) were used to handle any imbalance 

 Trends in Data: Patterns of trends in diseases were 

gathered from feature distributions and metadata 

 

The model of deep learning employed models like 
InceptionResNetV2 during training. Transfer learning 

made feature extraction more efficient with less 

computational time. Retrieved features from various 

visualizing platforms were merged through 

concatenation to make the filling of modalities feasible. 

Training was done with the Adam optimizer (Kumar et 

al., 2024) due to its effectiveness. Categorical cross-

entropy was utilized for computing the difference 

between predicted and actual labels. 32 to 50 capacity 
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slots guaranteed that there was learning without 

overburdening the computational resources. Learning 

rate was also adjusted to guarantee that there was 

convergence with stability. 

In contrast to the conventional models based on single-

modal data, the current study combined multiple imaging 

modalities to present a richer picture of the distribution of 

disease. Current models do not always make use of the 

complementary advantages of various modalities. 

Utilization of InceptionResNetV2 dramatically improves 

its performance compared to current models that lack 

fine-tuning needed for certain datasets. The enhancement 

of data ensured that the model was purposeful for which 

it was created. This caused the process to reduce the 

likelihood of over-fitting, which is a deficiency in most 

models on offer. Utilization of techniques like Grad-CAM 

enabled visual explanations of the decision process, hence 

making it clinically more usable. On the other hand, most 

existing models are "black boxes" that yield little or no 

interpretability (Hassija et al., 2024). The model was 

designed to be capable of handling large amounts of data 

and other modalities and was extremely scalable. Most 

other models are not scalable because of bad architecture 

or pre-processing. The materials and methods used in this 

work were focused on addressing the gaps in our current 

disease modelling techniques. 

Materials 

This study used publicly accessible datasets 

containing CT, MRI, and X-ray scans. Images were 

resized to 331×331 pixels and converted to RGB format. 

Demographic information, such as age and gender, was 

incorporated as metadata. Experiments were conducted 

on a workstation equipped with an Intel i7 processor, 

32GB RAM, and an NVIDIA RTX 3080 GPU. All 

processing was done using Python, with libraries 

including TensorFlow and OpenCV. No identifiable 

personal information was used; thus, no formal ethics 

clearance was required. 

Framework of the Research 

The Research presents a new framework called 

"Patient-Centric Multimodal Disease Progression 

Modelling (PCMDPM)" that utilizes multimodal 

medical imaging data in an effort to create a personalized 

concept of disease progression. The framework is in 

three phases. 

Phase I: Focuses on preparing the dataset through 

noise reduction, resizing, augmentation, and balancing 

techniques. 

Phase-II: Describes the training process using a 

customized deep learning architecture tailored to 

multimodal data. 

Phase-III: Emphasizes evaluation using classification 

metrics and interpretability tools like heatmaps and 

confusion matrices. 

Every stage in Fig. 1 below plays an essential role in 

determining the reliability of the framework and its 
applicability to practice. 

Figure 1 illustrates the complete workflow, beginning 

with multimodal data acquisition and pre-processing, 

followed by feature extraction via InceptionResNetV2, 

metadata fusion, and concluding with classification and 

performance evaluation. Each block is annotated to reflect 

its functional role in the pipeline. 

 

 

 
Fig. 1: Overall Architecture of the Proposed Model for Disease 

Prediction 

 

Phase I: Pre-Processing and Data Analysis 

The initial phase is devoted to a meticulous 

preparation of the multimodal imaging dataset and 
exploratory analysis in order to ensure that the data is 

clean, balanced, and indicative of the target problem. This 

phase consisted of multiple steps, which were all designed 

to ensure optimum data quality as input to the deep 

learning model. Multimodal imaging information was 

obtained from various sources, such as radiological 

diagnosis imaging scans containing MRI, CT, and X-rays. 

This formatted information was labelled to correspond 

with the respective phases of diseases. A particular 

diagnostic characteristic was made feasible by each 

modality, which helped the researchers come to a greater 
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overall understanding of how the disease is contagious. 

The data was painstakingly recorded in order to ensure 

consistency. The imaging information was stored in an 

organized form such that it is easily retrievable and can be 

compatible with pre-processing pipelines (Bilal et al., 
2022). Pre-processing is needed to normalize formats to 

be best for deep learning architectures. The following 

steps were executed: 

 

 Image Conversion: Images were converted and 

processed, such as X-rays 

 Resizing: To accommodate the requirements of a 

model, all pictures were trimmed to a fixed 

measurement, such as 331x331 pixels 

 Normalisation: Every value of the pixel was 

efficient 

 Augmentation: Strategies like flipping, rotation, 

and zooming were employed to increase the 

diversity of the collection of datasets and to reduce 

the risk of over-fitting 

 Noise Reduction: Filters were applied to reduce 

noise while preserving their capacity to read subtle 
patterns 

 

EDA detects patterns, trends, and potential biases in 

the dataset. Statistical plots and graphs were employed to 

analyze the various stages of diseases. Methods like 

under-sampling, synthetic data creation, or oversampling 

(e.g., SMOTE) were employed to ensure that there was a 

balanced representation of all categories. Important 

features specific to every imaging modality were 

examined in order to determine their diagnostic 

importance. For example, MRI scans can point out soft 

tissue abnormalities, whereas CT scans offer detailed 

information regarding bone and organ structures. This 

analysis was designed to make sure that attributes from 

various modalities were being fused to get the highest 

level of prediction accuracy. 

Phase-II: Training Data into a Model 

The second step involved developing a deep learning 

model specifically suited to a multimodal dataset. Patient-

specific data, such as age, gender, and diagnosis history, 
were encoded into numerical vectors and appended to 

image-derived features in the fully connected layers of the 

model. This fusion occurred after convolutional feature 

extraction, allowing both visual and contextual 

information to inform classification. This included 

choosing an appropriate model that utilizes state-of-the-

art deep learning methods. A pre-trained model like 

InceptionResNetV2 was chosen due to its capability of 

extracting high-level features from imaging data. Transfer 

learning was used to save training time and to satisfy 

computational needs. 

Individual features were pulled out like convolution 

layers to preserve important information. Goyal and Singh 

(2023) argue that the final layer of the output assists in 

classifying various diseases and in determining the status 

of each one of them. The key elements of the learning 
process are: 
 

 Loss function (Akter et al., 2025) is self-learnt and 

defines the nature of the problem 

 The Adam optimizer is used for its adaptability and 

efficiency in handling sparse gradients 

 A mini-batch gradient descent (Zha et al., 2025) 

approach is implemented using a slot to stop early 

usage 
 

Augmented data is fed into the model during training 

to improve its generalizability. A learning rate schedule is 

modified so that there will be no time loss and that the 

convergence is achieved efficiently. Optimization of a 

design is guaranteed by applying k-fold cross-validation 

while the dataset is partitioned based on training 

schedules. This sophisticated technique guarantees that 

there is a proper evaluation of the performance of the 

model. Training parameters such as the learning rate, 

dropout rate, and unit density are tracked by a Bayesian 

optimization method (Uddin et al., 2025). The process 

ensures the model performs its desired functions with 

minimal computational burdens. 

Phase-III: Testing and Evaluation of the Model 

The final step is to test the model learnt by itself on an 

unseen data set and check its performance with some 

metrics. This step ensures that the model is reliable and 

can accurately predict. The model is run on a data set not 

seen during training. Predictions are made for all inputs 

and compared against actual labels. Some statistical 

measures are used to ensure the efficacy of the model. 

Shatnawi et al. (2025) argue that accuracy is the 

proportion of correct classification of instances and the 

number of instances in the dataset. Rakaee et al. (2025) 
assert that precision addresses the capability to avoid false 

predictions, which is the proportion of true positives to the 

total of false positives. Recall handles the design's ability 

to recognize true positives from a total of false negatives 

(Fakhrabadi et al., 2025). An F1 measure is the harmonic 

mean value working with precision and recall, giving an 

equal performance measure (Huang et al., 2025). The 

model's performance is gauged by creating a confusion 

matrix. This analysis determines where the model is 

strong and where it is weak, and such information allows 

further tuning of the model. The model's robustness is 
determined by a sensitivity analysis, which entails the 

addition of variations in the data, e.g., noise or distortions, 

and examining the consequences of ripple effects on 

predictions. 
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The base model, InceptionResNetV2, was initialized 

with pre-trained weights. Early layers (convolutional 

blocks 1–5) were frozen to retain general visual features, 

while higher layers were unfrozen to allow fine-tuning 

with medical data. Additional custom layers included a 

global average pooling layer, two fully connected dense 

layers (256 units with ReLU activation), a dropout layer 

(0.5), and a final softmax output layer. Multimodal fusion 

was achieved by concatenating image features with 

metadata inputs prior to the dense layers. This step 

determines the dependability of the design in managing 

the variability of data. The performance of the proposed 

framework is compared against other approaches to show 

its superiority. Test set metrics are compared with others 

to show their accuracy and precision. Techniques like 

Class Activation Mapping using Gradient-weight (Neal 

Joshua et al., 2021) are used for heat map creation that 

influences the model's predictions. These numbers help 

clinicians understand the model's diagnostic process. The 

proposed framework with its three-phase approach 

displays an end-to-end solution for patient-specific illness 

modelling using multimodal imaging data. Phase I 

ensures the quality and representativeness of the dataset, 

Phase II builds a deep learning model, and Phase III 

ensures the model's efficiency and accuracy. 

This model not only forecasts properly but also offers 

information on the dynamics of the disease, which can be 

followed by giving the right medicine. Its application in 

clinical practice is something to be explored. 

Implementation and Evaluation 

This research employed multiple algorithms at varied 

steps to pre-process data, train a model of deep learning, 

and evaluate performance. All experiments are conducted 

on a system with an Intel Core i7-12700K CPU, 16 GB 

RAM, and an NVIDIA RTX 3080 GPU (10 GB VRAM). 

The deep learning environment used Python 3.10, 

TensorFlow 2.13, Keras 2.11, and OpenCV 4.9. Model 

training and data augmentation were performed on 

Windows. Random seeds were fixed for reproducibility. 

This work introduces an advanced pre-processing pipeline 

that goes above conventional methods in that it has 
multimodal imaging standardization, class balancing, and 

domain-specific augmentation included. Unlike ordinary 

pipelines that feature only resizing as well as 

normalization, this approach improves the quality of the 

data by: 
 
 Multimodal Data Integration: Synthesises Imaging 

data acquired from various resources (MRI, CT, and 

X-ray) to a common data format without compromise 

of critical diagnostic information 

 Adaptive Augmentation: Applies relevant 

transformations like contrast adjustment specific to 
the modality, noise minimisation using Gaussian 

filters, and adaptive rotation to keep it medically 

appropriate 

 Balancing Classes with Synthetic Data Generation: 

Applies Synthetic Minority Over-Sampling 

Technique (SMOTE) to prevent biases in model 
classification 

 Metadata Utilisation: Includes patient-specific 

information like age, gender, and the disease stage to 

provide a complete diagnosis of the disease 

 

This pipeline reduces typical issues like data 

inconsistency and feature redundancy and improves the 

deep learning model's robustness for medical imaging 

analysis. Every algorithm is optimized for a particular 

task in order to be able to process efficiently, learn 

accurately, and provide a solid evaluation. The pre-

processing algorithm level 1 is shown in Algorithm 1. 

 
 

Algorithm 1 PreProcess_Disease (Input dataset_Path) 

INITIALIZE 
 dataset_list  empty list 

BEGIN 
image ← LoadImage(image_path)  // Load image file 
image ← ConvertToRGB(image)   // Convert to RGB format 

resized_image ← ResizeImage(image, target_size=(331, 
331)) 
normalized_image ← NormalizePixelValues(resized_image, 
scale=(0, 1)) 
APPEND (normalized_image, folder) TO dataset_list 
RETURN dataset_list 
train_data PreprocessData('data/train') 
test_data  PreprocessData('data/test') 

x_train, y_train  SplitData(train_data) 
x_test, y_test  SplitData(test_data) 

END 
End PreProcess_Disease 

 

The pre-processing algorithm in Algorithm 1 shows 

how image data is evaluated to estimate the effectiveness 

of the model. This step involves reading image files, 

resizing them, normalising their pixel values, and 

mapping their labels. Images are loaded from the directory 

structure where folders represent different classes. Each 

image file is accessed to ensure that it is compatible with 

multiple formats. Images are converted into pre-processed 

RGB format to ensure that they have a uniform colour 

across the dataset (Kumar et al., 2024). Each image is 

resized to a fixed dimension of 331×331 pixels in order to 

maintain consistency with the input requirements of the 

chosen model. Values of Pixel are generalised to a scope 

between 000 and 111 by a repetitive subtraction of 255. 

The process accelerates the convergence of training by 

reducing the scale of the input data. String labels 

corresponding to classes are mapped to integer values for 

compatibility with deep learning frameworks. 
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The training algorithm in Algorithm 2 is based on fine-

tuning a pre-trained InceptionResNetV2 deep learning 

model. This approach allows the transfer of learning to 

reduce the need for extensive computational resources 

while achieving high accuracy. The base model, 
InceptionResNetV2, is used as a feature extractor. It is 

pre-trained on the Image Net dataset, which includes 

multiple convolutions, residual, and inception layers. The 

base model is decorated with customized layers on its top, 

as shown below: 
 
 

Algorithm 2  Train_Disease_Model (INPUT x_train, y_train, 
num_classes) 

INITIALISE 
IMPORT InceptionResNetV2  
IMPORT Sequential, Dense, Dropout  
LOAD base_.model  LoadModel(base_model_path,  

Include.top=FALSE, input_shape=(331, 331, 3)) 
BEGIN 
model  Sequential() 
FOR EACH layer IN base_model: 
layer. trainable  FALSE 
APPEND base_model TO model 
APPEND Global_Average_Pooling2D.() TO model 
APPEND Dense.(256, activation="relu") TO model 

APPEND Drop_out(0.5) TO model 
APPEND Dense.(num_classes, activation="softmax") TO 
model 
optimizer  Adam(“learningrate=0.0001”) 
model. compile 
(optimizer=optimizer.loss="categorical_crossentropy",      
metrics=["accur"]) 
history  model.fit( x_train,  y_train, batch_size=32, 

epochs=50, validation_split=0.2, 
callbacks=[LearningRateScheduler(reduce_on_plateau)]) 
RETURN model, history 

END 
End Train_Disease_Model 

 
 Global Average Pooling Layer: Decreases spatial 

components while retaining essential features 

 Dense Layers: Perform classification by learning 

feature correlations 

 Dropout Layer: Prevents robustness by randomly 

disabling neurons during training 

 Output Layer: Soft Max activation function is 

utilized to categorize images as 666 distinct types 

 Adam Optimizer is used to adjust model weights. 
It merges the advantages of adaptive learning rates 

and momentum to seek optimal gradient updates 
 

The deviations between true label distributions and 

predictions are measured by the Categorical cross-entropy 

loss function, making it suitable for categorizing tasks for 

multiple classes. Base design layers are frozen initially, 

and only the custom layers are trained. A callback 

function dynamically adjusts the learning rate when 

validating performance stagnates. 

The assessment algorithm in Algorithm 3 shows the 

performance of a self-learnt model in unseen data. It 

includes generating predictions, evaluating metrics, and 

visualising results through a confusion matrix. The model 

predicts the class probabilities of each test sample. 
Predicted class probabilities are converted to labels of the 

class by selecting the one with the maximum possibility. 

To ensure that the results are valid and credible, 

confidence intervals are calculated for each performance 

metric using bootstrapping as shown in Table 1. 
 
 

Algorithm 3 Test_Disease_Model(() 

BEGIN 
ypredprobs  model.predict(xtest) 
ypredclasses  ArgMax(ypredprobs, axis=1) 

ytrueclasses  ArgMax(y_test, axis=1) 
confusionmatrix  ComputeConfusionMatrix(yrueclasses, 
ypredclasses) 
accuracy  ComputeAccuracy(ytrueclasses, ypredclasses) 
precision  ComputePrecision(ytrueclasses, ypredclasses, 
average="weighted") 
recall  ComputeRecall(y_true_classes, y_pred_classes, 
average="weighted") 

f1_score  ComputeF1Score(y_true_classes, 
y_pred_classes, average="weighted") 
     RETURN confmatrix, acc, prec, rec, f1 
confmatrix, acc, prec, rec, f1 ← TestModel(model, x_test, 
y_test) 

END 
End Test_Disease_Model 

 
The intervals in Table 1 above indicate a high degree 

of certainty in the model's generalisation capability. 

InceptionResNetV2, as a base model, uses pre-trained 

weights from a large dataset, resulting in a reduction of 

the training time. The optimisation of an adaptive learning 

rate (Xiang et al., 2025) prevents over-fitting and ensures 

an efficient convergence, which is often lacking in 

traditional models. The pre-processing pipeline ensures 

uniformity in data by reducing noise and, at the same time, 

improving the input quality. A combination of advanced 

pre-trained layers and custom dense layers balances the 

extraction of features and task-specific learning. The 

modular design of the algorithm ensures its adaptability to 

other medical image classification tasks with minimal 

modifications. By systematically integrating pre-

processing, transfer learning, and a rigorous evaluation, 

algorithms create an efficient pipeline for modelling 

patient-specific progression. 
 
Table 1: The Error-based Analysis based on the Confidence 

interval 

Metric Value (%) 95%Confidence 
Interval 

Accuracy 97.45 [96.85, 98.05] 

Precision 97.64 [96.95, 98.22] 
Recall 97.45 [96.72, 98.12] 
F1 Score 97.42 [96.81, 98.03] 



Thulaganyo Dimakatso et al. / Journal of Computer Science 2026, 22 (2): 504.516 

DOI: 10.3844/jcssp.2026.504.516 

 

512 

Results and Discussion  

The model incorporates Grad-CAM visualization to 

map input regions most influential in each classification. 

These visual outputs provide clinicians with an 

explanation of the decision process, enabling verification 

and trust in the model’s predictions. Research work 

evaluations often rely on different parameters to produce 

results. A detailed breakdown of predictions using correct 

labels is shown in Table 2. 

The results indicated that the model was capable of 

achieving high precision and accuracy rates, which 

confirmed its efficacy in terms of the correct categorization 

of images, as shown in Table 2. These metrics confirm their 

ability to process data accurately. 

Class-wise metrics in Table 3 showed a consistent 

performance across all categories, with precision, recall, 

and F1-scores above 96%. This balanced performance 

confirmed its effective handling of the model's data. 
 
Table 2: Overall Performance of Disease Prediction 

Metric Value 

Accuracy 97.45% 
Precision 97.64% 
Recall 97.45% 
F1-Score 97.42% 

 
Table 3: Summary of Class-Wise Performance Metrics 

Class 
Label 

Precisi
on (%) 

Recall 
(%) 

F1-
Score 

(%) 

Support (No. of 
Samples) 

Class 1 98.20 97.85 98.02 200 
Class 2 97.30 96.90 97.10 210 
Class 3 97.50 97.50 97.50 195 
Class 4 96.80 97.20 97.00 190 
Class 5 98.10 97.40 97.75 205 
Class 6 97.70 97.60 97.65 220 

The confusion matrix with class values in Table 4 

indicated the ability of the design to pinpoint classes 

accurately with no significant bias towards any specific 

class. This finding is shown in Fig. 2. 

The overall results of Training versus Validation Loss 

are presented in Table 5. 

Table 5 shows that learning and authentication losses 

gradually reduce across multiple iterations, which 

confirms effective learning with the least possible risk of 

over-fitting. The marginal gap that exists between 

validation losses and learning endorses this conclusion, 

which is represented in Fig. 3. 
Figure 3 tracks validation loss across training epochs. 

The consistent decline in both training and validation 

losses suggests effective learning without signs of 
overfitting, indicating model stability. The Validation 

Accuracy convergence is presented in Table 6 and Fig. 3. 
 

 
 
Fig. 2: The Confusion Matrix results for each of the classes 

 
Table 4: The Confusion Matrix results for each of the classes 

Predicted/Class Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

Class1 87 0 8 1 0 1 
Class2 0 48 0 0 1 0 
Class3 0 0 68 0 0 0 
Class4 0 0 0 110 0 0 

Class5 0 0 0 0 129 0 
Class6 0 0 0 0 0 94 

 
Table 5: Results of Training versus Validation Loss 

Epoch Training Loss Validation Loss 

1 0.5432 0.5621 
5 0.3208 0.3285 
10 0.1574 0.1652 

15 0.0910 0.0928 
20 0.0725 0.0753 

 
Table 6 shows steady improvement in training and 

validation accuracy, with values converging by epoch 20. 

The narrow gap between them confirms generalization, 

supported by dynamic learning rate adjustments. The 
model achieved a high accuracy rate in the initial stages 

of training, with minimal over-fitting. This reflects the 

advantage of transfer learning, where pre-trained weights 

accelerate learning. 

 
Table 6: Model Convergences based on Accuracy over Epochs 

Epoch Training 
Accuracy (%) 

Validation 
Accuracy (%) 

1 75.30 74.80 
5 87.60 86.90 
10 93.50 93.20 
15 96.10 95.80 
20 97.80 97.45 
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Fig. 3: Results of Validation Loss Training 
 

The ROC-AUC values in Table 7, for all six classes, 

exceed 0.98, demonstrating a high degree of separation 

between positive and negative instances. This indicates 

the model's robustness in distinguishing among disease 

categories, even in overlapping visual characteristics. 

Figure 4 shows the distribution of ROC-AUC across 

all class levels. It confirmed the design's potential in 

differentiating true and false samples in every possible 
category. 

Table 8 presents a comparative evaluation of the 

proposed model against two commonly used 

architectures. The hybrid model significantly outperforms 

both standard CNN and baseline InceptionResNetV2 

implementations across accuracy, precision, recall, and 

F1-score metrics. This improvement is attributed to 

enhanced pre-processing, fine-tuning, and multimodal 

integration strategies. The results showed that the proposed 

model significantly outperformed traditional models in all 

metrics, underscoring the advantage of the fine-tuned 
architecture and a robust pre-processing pipeline. The high 

performance of the model can be attributed to. 
 
Table 7: The ROC-AUC analysis for Each Class 

Class_Label ROC-AUC Score 

Class1 0.987 
Class2 0.982 
Class3 0.985 
Class4 0.980 
Class5 0.988 
Class6 0.984 

 
Table 8: Overall Comparison with Baseline Models 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-
Score 
(%) 

ResNet152V2 93.10 92.70 92.50 92.60 
DenseNet201 94.25 93.95 93.80 93.85 
EfficientNet-
B3 

95.40 95.10 95.05 95.08 

Proposed 
PCMDPM  

97.45 97.64 97.45 97.42 

 Use of the InceptionResNetV2 architecture with pre-

trained weights allowed the model to extract rich 

features effectively 

 Normalizing images and ensuring uniform input 

dimensions 

 The use of call-backs to adjust the learning rate 

during stagnation and to avoid over-fitting 

 Effective handling of imbalanced datasets in medical 
image datasets 

 Distinguishing between classes and making it a 

strong candidate for deployment 

 

 
 
Fig. 4: The distribution of ROC-AUC across various class levels 

 

Conclusion 

This study introduces a robust disease classification 

model that seamlessly integrates multimodal imagery and 
structured patient information into a unified analytical 

model. In contrast to traditional models based on visual 

information alone or generic architectures, the technique 

utilizes a tailored learning framework that takes into 

consideration variability in imaging sources and patient 

records. The addition of metadata to the modeling procedure 

enhances feature representation, leading to better accuracy 
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and consistency across varied diagnostic groups. 

Interpretability is increased by gradient-based visualization, 

providing transparency into decision flows. Comparative 

evaluations indicate that the suggested approach has 

enhanced predictive strength and clinical impact in 
comparison to conventional image-based models. In this 

research, a thorough training model for the classification of 

various diseases has been formulated. Through the 

combination of the InceptionResNetV2 model with a well-

defined pre-processing and training process, the model is 

extremely efficient. The result of this model is that it is 

capable of solving a few of the medical issues, like the 

classification of diseases and the extraction of information 

from dense data. With advanced methods, the model assists 

in the prevention of disease spread and the prediction of 

outcomes. Most importantly, the capacity to derive 

significant information from intricate medical images 
enhances disease diagnosis and classification. Some of the 

limitations of the research include the restriction of the 

generalized nature of rare due to the non-availability of the 

datasets, and also its high computational costs. Further, the 

research contributes in some way to our capacity to classify 

diseases, thus enhancing the likelihood of administering the 

correct drug. Most importantly, the research makes an 

important contribution to medical image analysis by 

providing a computationally effective framework that can be 

translated into other fields with minimal adjustment, which 

will assist clinicians in diagnosing and tracking diseases with 

relative accuracy. The future work is to integrate federated 
learning to enhance privacy and scalability across 

institutions. Also, multimodal integration can be extended to 

include genomic and clinical text data. The framework sets 

the stage for the extensions into rare disease analysis and 

integrated diagnosis systems that can be modified for 

different healthcare infrastructures. 
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