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Abstract: Anthropomorphic robots are, as I have already said, in most of 

the most widespread and widely used works worldwide today, due to their 

ability to adapt quickly to forced work, working without breaks or breaks 

24 h a day, without unpaid leave without asking for food, water, air, or 

salary. Anthropomorphic robots are supple, elegant, easy to configure and 

adapted to almost any required location, being the most flexible, more 

useful, more penetrating, easy to deploy and maintain. For the first time, 

these robots have asserted themselves in the automotive industry and 

especially in the automotive industry, today they have penetrated almost 

all industrial fields, being easily adaptable, flexible, dynamic, resilient, 

cheaper than other models, occupying a volume smaller but with a major 

working space. They can also work in toxic or dangerous environments, 

so used in dyeing, chemical cleaners, in chemical or nuclear 

environments, where they handle explosive objects, or in military 

missions to land or sea mines, even if they were banned to use, because 

there are still countries around the globe that use them, such as 

Afghanistan ... In the study of the dynamic movement of robots, i.e their 

real movement, when considering the actions and effects of the various 

forces that act upon them, it is important to know the real motion of the 

robots, ie the dynamic cinematic (the one imposed by the dynamics, that 

is, the forces in the mechanism). 
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Introduction 

Anthropomorphic robots are, as I have already said, 

in most of the most widespread and widely used works 

worldwide today, due to their ability to adapt quickly to 

forced work, working without breaks or breaks 24 h a 

day, without unpaid leave without asking for food, 

water, air, or salary. Anthropomorphic robots are supple, 

elegant, easy to configure and adapted to almost any 

required location, being the most flexible, more useful, 

more penetrating, easy to deploy and maintain. For the 

first time, these robots have asserted themselves in the 

automotive industry and especially in the automotive 

industry, today they have penetrated almost all industrial 

fields, being easily adaptable, flexible, dynamic, 

resilient, cheaper than other models, occupying a volume 

smaller but with a major working space. They can also 

work in toxic or dangerous environments, so used in 

dyeing, chemical cleaners, in chemical or nuclear 

environments, where they handle explosive objects, or in 

military missions to land or sea mines, even if they were 

banned to use, because there are still countries around 

the globe that use them, such as Afghanistan.  

In the study of the dynamic movement of robots, ie 

their real movement, when considering the actions and 

effects of the various forces that act upon them, it is 

important to know the real motion of the robots, ie the 

dynamic cinematic (the one imposed by the dynamics, 

that is, the forces in the mechanism). 

In some previous papers, the mechatronic module 3R, 

plan, is a basic module on which the complete, geometric, 
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cinematic, dynamic calculation of the anthropomorphic 

robots, the most used today's industrial robots, is built. 

The importance of the study of anthropomorphic robots 

has also been signaled, being today the most widespread 

robots worldwide, due to its simple design, construction, 

implementation, operation and maintenance. In addition, 

anthromomorphic systems are simpler from a 

technological and cheaper point of view, performing a 

continuous, demanding, repetitive work without any 

major maintenance problems. The basic module of these 

robots was also presented geometrically, cinematically, 

of the forces, of its total static balancing and of the 

forces that arise within or after balancing. In the present 

paper we want to highlight the dynamics of the already 

statically balanced total module. It has been presented in 

other works and studied matrix spatially, or more simply 

in a plan, but in this case, it is necessary to move from 

the working plane to the real space, or vice versa, 

passage that we will present in this study. In the basic 

plan module already presented in other geometric and 

cinematic works, we want to highlight some dynamic 

features such as static balancing, total balancing and 

determination of the strength of the module after 

balancing. Through a total static balancing, balancing the 

gravitational forces and moments generated by the forces 

of gravity is achieved, balancing the forces of inertia and 

the moments (couples) generated by the presence of 

inertial forces (not to be confused with the inertial 

moments of the mechanism, which appear separately 

from the other forces, being part of the inertial torsion of 

a mechanism and depending on both the inertial masses 

of the mechanism and its angular accelerations. 

Balancing the mechanism can be done through various 

methods. Partial balancing is achieved almost in all cases 

where the actuators (electric drive motors) are fitted with 

a mechanical reduction, a mechanical transmission, a 

sprocket, spiral gear, spool screw type. This results in a 

"forced" drive balancing from the transmission, which 

makes the operation of the assembly to be correct but 

rigid and with mechanical shocks. Such balancing is not 

possible when the actuators directly actuate the elements 

of the kinematic chain without using mechanical 

reducers (Antonescu and Petrescu, 1985; 1989; 

Antonescu et al., 1985a; 1985b; 1986; 1987; 1988; 1994; 

1997; 2000a; 2000b; 2001; Aversa et al., 2017a; 2017b; 

2017c; 2017d; 2017e; 2016a; 2016b; 2016c; 2016d; 

2016e; 2016f; 2016g; 2016h; 2016i; 2016j; 2016k; 

2016l; 2016m; 2016n; 2016o; Berto et al., 2016a; 2016b; 

2016c; 2016d; Cao et al., 2013; Dong et al., 2013; 

Comanescu, 2010; Franklin, 1930; He et al., 2013; Lee, 

2013; Lin et al., 2013; Liu et al., 2013; Mirsayar et al., 

2017; Padula and Perdereau, 2013; Perumaal and Jawahar, 

2013; Petrescu, 2011; 2015a; 2015b; Petrescu and 

Petrescu, 1995a; 1995b; 1997a; 1997b; 1997c; 2000a; 

2000b; 2002a; 2002b; 2003; 2005a; 2005b; 2005c; 2005d; 

2005e; 2011; 2012a; 2012b; 2013a; 2013b; 2016a; 2016b; 

2016c; Petrescu et al., 2009; 2016; 2017a; 2017b; 2017c; 

2017d; 2017e; 2017f; 2017g; 2017h; 2017i; 2017j; 2017k; 

2017l; 2017m; 2017n; 2017o; 2017p; 2017q; 2017r; 

2017s; 2017t; 2017u; 2017v; 2017w; 2017x; 2017y; 

2017z; 2017aa; 2017ab; 2017ac; 2017ad; 2017ae). 

Figure 1 shows the kinematic diagram of the planar 

chain and Fig. 2 shows the kinematic scheme of the 

space chain. 

The mechanism in Fig. 1 (planar cinematic chain) 

must be balanced to have a normal operation.  

Through a total static balancing, balancing the 

gravitational forces and moments generated by the forces 

of gravity is achieved, balancing the forces of inertia and 

the moments (couples) generated by the presence of 

inertial forces (not to be confused with the inertial 

moments of the mechanism, which appear separately 

from the other forces, being part of the inertial torsion of 

a mechanism and depending on both the inertial masses 

of the mechanism and its angular accelerations. 

Balancing the mechanism can be done through 

various methods. Partial balancing is achieved almost in 

all cases where the actuators (electric drive motors) are 

fitted with a mechanical reduction, a mechanical 

transmission, a sprocket, spiral gear, spool screw type. 

Such a reducer called the unisens (the movement 

allowed by it is a two-way rotation, but the 

transmission of the force and the motor moment can 

only be done in one direction, from the spindle to the 

worm gear, vice versa from the worm gear to the screw 

the force can not be transmitted and the movement is 

not possible by blocking the mechanism, which makes 

it apt to transmit the movement from the wheel of a 

vehicle to its wheels in the steering mechanism, not 

allowing the wheel forces due to the unevenness of the 

ground, to be transmitted to the steering wheel and 

implicitly to the driver, or this mechanism is suitable for 

mechanical meters so that they do not twist and vice 

versa etc.) can balance the transmission by letting the 

forces and motor moments unfold, but not allowing the 

kinematic elements to influence the movement through 

their forces of weight and inertia.  

This results in a "forced" drive balancing from the 

transmission, which makes the operation of the assembly 

to be correct but rigid and with mechanical shocks. 

Such balancing is not possible when the actuators 

directly actuate the elements of the kinematic chain 

without using mechanical reducers.  
It is necessary in this situation for a real, 

permanent balancing. 
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Fig. 1: The kinematic scheme of the plan chain 
 

 

 

 
Fig. 2: The kinematic scheme of the spatial chain 

 

In addition, in situations where hypoid reducers are 

used, it is also good to have a permanent, permanent static 

balancing that achieves a normal, quiet operation of the 

mechanism and the whole assembly. 
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Fig. 3: Balancing the plan cinematic chain 

 

As has already been shown, by balancing the static 

totality of a mobile cinematic chain, it is possible to balance 

the weight forces and couples produced by them, as well as 

balancing the inertial forces and the couples produced by 

them, but not balancing the moment of inertia. 

Arcing balancing methods generally did not work 

very well, the springs having to be very well calibrated, 

so that the elastic forces realized (stored) by them are 

neither too small (insufficient balancing) nor too large 

(because prematurely kinematic elements and couplers 

and also greatly forces actuators). The most used method 

is the classic one, with additional counterweight masses, 

similar to traditional folk fountains. Total balancing of 

the open robotic kinematic chain is shown in Fig. 3. 

Materials and Methods  

The following "scenario" is being pursued. The 

following parameters are known: 
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The moments of the electric motors (moments of 

the actuators) have values that vary in a narrow beach, 

along with the value of the angular speed of the 

respective engine, according to the characteristic 

diagram presented by the respective manufacturer. 

The variation is generally of the type shown in Fig 4. 

As can be seen in Fig 4, the torque variation with the 

angular velocity is small so that the engine moment can 

be considered constant over the entire operating portion. 

An important observation that should not be 

overlooked is that both electric, DC and AC motors have 

a stable operating characteristic. 

If the load increases the angular speed of the motor and 
therefore the mechanism of the (open kinematic chain) 
decreases by adapting to the increased load and when the 
load decreases and the operation at a higher natural speed is 
possible, the angular speed of the actuator increases, 
according to its internal functional characteristics. 

Returning to the dynamic kinematics data, we will 

continue to pursue computational relationships in a 

natural order. 
It starts with the system (1), which determines the 

absolute angular velocity of the element 3, that of the 
element 2 being the same as that of the actuator 2 and for 
the element 3 the actuator speed 2 must be summed up 
with that of the motor 3. 

Also, in the system (1), the absolute angular 
accelerations of the two kinematic elements 2 and 3 of 
the open-chain chain are determined, by means of 
known relations from the dynamics of the system. 
System (1) represents the 0 set of relationships in the 
dynamic kinematics: 
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Fig. 4: Characteristics of DC and AC motors (three-phase asynchronous) 
 

Further, the orderly kinematic parameters required 

with relations (2), considered to be the set I of relations, 

will be determined in turn: 
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Results  

Follow the set II of dynamic kinematics relations, 

the system (3), which generates the linear speeds and 

accelerations of points O3 and M. For point O3, they 

will be denoted without a letter as an index and for M 

will be denoted by M. The set III (4) determines the 

exact angular velocities and accelerations: 
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Enter the III values in II and recalculate II which 

become II '. Then with III in III is recalculated and III 
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and III 'the iterative process stops, otherwise it must 
continue resulting II' 'and III' ', etc. 

Important notice! 
When the moments of the actuators are unknown (for 

example, there are used motorbikes, which are not 
technically familiar and therefore can not determine the 
mean or exact value of the torque generated by the 
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angular speed imposed), or not know exactly the mass 
parameters of the elements and/or the external loads, one 
can use the simple or direct dynamic kinematics, without 
the set 0 (it is practically renounced to the dynamic 
relations, Lagrange) using only the relations in sets I, II 
and III, but also with known angular speeds. 

Normally, the positions with the set of relations I are 
calculated, then the linear velocities and accelerations 
with the set II of existing relations are determined, 
knowing the desired angular speeds of the actuators and 
for their initial angular accelerations considering the 
values 0, only in set II. 

Then the exact angular speeds and the exact angular 

accelerations from the calculations made with the set of 

relationships III will then result, at which point it 

automatically follows at least one iteration, recalculating 

II 'and III'. 
It is good in this situation to carry out an iteration or 

even two, even if the convergence is strong enough. Thus, 
II ', III' 'and maybe even II' 'and III' 'are also obtained. 

Discussion 

The masses and forces (exterior and interior) acting 

on the kinematic chain directly influence the average 

angular velocities of the balanced cinematic chain 

elements, 
2 3
,ω ω . These determine the real, dynamic 

kinematics of the mechanism by the systems of 

equations II and III, directly influencing the values of 

linear and angular velocities and accelerations for each 

point and element of the chain in each of its positions. 

The actual angular accelerations of the two elements 

of the chain 
2* 3*
,ε ε  in each position obtained with III', or 

III'', or even III''', cause variations in actuator moments, 

according to the relationships given by the system (5), 

variations which immediately change and the average 

input angular velocities ω2, ω3 bringing them to the 

instantaneous values ω2’, ω3’ determined from the 

characteristic diagrams of the two actuators (for actuator 

2, the angular velocity removed from its characteristic 

diagram according to the instantaneous moment of the 

motor torque will be passed directly as the new angular 

velocity ω2’, but for the motor 3 according to the 

instantaneous calculated value of the motor moment 

Mm3 will determine from the characteristic diagram the 

instantaneous value of the angular speed of the actuator 3 

'
θɺ , which will calculate the new instantaneous speed 

value 
3' 2 ' '

ω ω θ= +
ɺ : 
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  (5) 

It is possible to recalculate the relations of the 

systems II and III (which pass into II * and III * 

respectively) for each position of the mechanism (the 

open-plan cinematic chain), introducing in the linear 

speed and acceleration system II (for angular velocities 

and accelerations) values 
2 ' 3 '
,ω ω  and 

2* 3*
,ε ε . With II * is 

recalculated III *. 

It is thus obtained from III * exact dynamic values, 

actual velocities and angular accelerations, of the 

mechanism (planar, open, balanced). Here again, several 

iterations can be performed (for example, using a 

computing program). 
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