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Parsimonious Var Models For Air Pollution Dynamic Analysis

Fontanella Lara and Granturco Mariagrazia
Department of Quantitative Methods and EconomicofjneUniversity G.D’Annunzio - Italy

Abstract: We discuss a framework to obtain temporal preghigti for an evolving spatial field
regularly sampled in time at arbitrary spatial kimas. Difficulties caused by large data sets drel t
modelling of complicated spatio-temporal interaetidimit the effectiveness of traditional spacedim
statistical models. In this study, we propose the of a flexible approach to deal with large anélsm
time-scale variability of the observed data. Thegeral model is applied with respect to both the
observed data domain and the common component dptoaachieve a dimensionality reduction.
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INTRODUCTION good interaction between the modelling ®fand the
covariance matrix of the transition noise vector.

Environmental processes are usually monitored
over space and time. When dynamical processeFhe data: Here we provide an explorative analysis of
involve complicated temporal and spatial featur@s, the data set used in the example. We chose thexMila
simultaneous space-time analysis can provide benefidistrict as a test bed for our analysis and siedist
with respect to a solely temporal or spatial insjpec  modelling. The data are daily maximum values of
There are several examples of space-time modelSarbon Monoxide concentrations at 25 monitoring
applied to environmental problems. Some of them argtations. The coordinate system of the monitoring
also based on a Bayesian dynamic linear nfioieln  stations refers to the Italian national grid system
order to obtain a parsimonious model (in parampgters (Gauss-Boaga) based on the Universal Transverse
our study addresses directly the problem of dinmmnsi Mercator (UTM) projection. The map of the monitayin
reduction, which is a critical issue for implemewgtithe  sites is shown in Fig. 1.

Kalman filter on large data sets.

More precisely, considering a spatial field on a 508 ‘ . .
fixed region that is evolving in time and for whigre
have discrete observations at regular time intsjuak
use a simple and parsimonious model, which accounts .| ! 1 *® 1
for the main features of the data to obtain temipora 3 *
forecasts. We let, later indexed by both space and snsr
time, represents the primary variable of interest.
Recognizing the presence of a measurement errol
component, the space-time dynamic process can be¢ =t
described through a state-space formulation. Times, o
assume that the observational data which is an o |
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observation ofY with error, can be specified by a . * * i
measurement equationSubtraction of deterministic f
components, such as temporal trend and seasone =2—; = = = = =

LONGITUDE

effects, identifies a short-time scale dynamicalcpess
X which is modelled through theansition equation . . o

The role of theX-process is to account for both Fig. 1: Map of the Milan monitoring network. The
spatial and temporal dynamics beyond those accdunte marks correspond to the locations of the CO
for in long-term means and seasonal behaviour. The monitoring stations

structure of the@ransition matrix= is a key concern. In ) )
particular, the crucial issue of modelling spatial ~ |Nhe measurement units are micrograms of Carbon

structures obviously involves a trade-off betweha t Per cubic meter /g(CO)/m’). The period of the data
richness of= and the level of spatial independence ofcovers the years 1998-2001, giving ax2861 data
the transition noiseterm. In this context, using the matrix. The raw data were provided by the
Karhunen- Loéve transform, our objective is to obta  ENnvironmental Agency (ARPA) of Lombardia Region.
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Fig. 2: CO concentration time profiles at monigristation locations
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Fig. 3:

(a) Average of CO concentration over 2&ssitrom 1998 to 2001. (b) Average of CO concermtrativer
days from 1998 to 2001 for 25 sites. Each linedatls one site.

To avoid the effects of a small amount of missingCO average concentration as a function of yearghfe
data, they have been estimated by using biharmoni25 monitoring sites, where the average is takerr ove
spllneé4 for each data time. Because concentration datdays. Both figures indicate that the CO concemmati
are always positive, it is convenient to operateaon pattern is governed by both spatial and temporal
logarithmic scale, to remove the effect of features.
heteroschedasticity. As shown in Fig. 2, the valitgb
structure of the data exhibits a strong seasonalhe dynamic model: Consider a spatio-temporal field
dependence. Z(st), where s is a generic location within some

Figure 3a and b are also helpful for an explosator geographic region of interest aft-t,,... 1} indexes
data analysis. Figure 3a shows the CO averageonsecutive times at which monitoring data are
concentration for years 199801, where the average is collected. LeZ(s,t) have the decomposition
taken over the 25 monitoring sites. Figure 3b shthgs  Z(s,t) = M(s,t) +77(s,t) (1)
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Where M(st) is a deterministic component Given the autoregressive assumption ] t),
modelling a smooth long-term variability of the 8pa . Rel ,
temporal process any(s,t) is a stationary residual term, 8. X (1) _Zizlq)'x(mt_l) +1(CD), the reader may
independent oM(s;t), modelling the space-time higher recall that equations (4) and (5) represent théesta
frequency fluctuations aroundvi(st). In practical space formulation of a VARf+Noise moddf which
applications, the field may be a non linear transform is obtained by defining

of the directly observable variable field. For exden X(Gb)
for non-negative concentratioz, might be obtained X (Gt -1)
from a logarithmic transformation. c(Ly) = :
The first task is to identify the long-range temrgdo '
variability at each monitoring statiogsi = 1,...,n This X(Ct-p+1)
can be done using time or frequency domain
procedured. The deterministic componem(s;t) is ® ®; - Oy Py
assumed to be modelled, at each sitas the sum of | 0 .. 0 0
(K+1) basis functions of timg(t) g= ‘
K
M(s. 1) = ai(s)¢ () @) 0 0 0
j=0
Wherea(s) is the coefficient associated with the (L)

th function g(t), with @y(t) = 1 by convention. Each v(0t) = 9
basis function is independent of the spatial |@cat :

and should correspond to some components of 0

variability such as temporal trend and annual, @e@ls andH = [I,, 0...0], wherel, denotes thenx n identity
or monthly periodic effects. Thus, for environménta matrix. Using the Kalman filter, our goal is to gdiet a
data, we would typically model these components bysmoother processy(4/t) = M(47t) + H (471, at all
letting @(t) be a series of sine and cosine functionsspatial locations and time points of interest. he t
Exploiting the temporal information, the coefficien current case, the problem is well defined if we rar
a;(s;) can be estimated via ordinary least-squares. Oncean estimate the parameter matri&gsz, and Z. In
the M(s,t) component is determined at station locationspractice, we seldom know these and must eitherifgpec

by equation (2), the residual term is obtained as or estimate them. However, as pointed out by Whkle
K the crucial issue of modelling spatial structurk=ady
n(s,t)=2(s 't)_zai §)g (1) involves a balance between the structure of theixnat
i=0 ®3) and the level of independence among the elements of
=X(s,t) +£(S,t) the state noise. For example, in some cases aeimpl

structure ofZ, obtained by an autoregressive temporal
dependence parametdr, implies that the covariance
matrix for the shocks can be represented by sosgty
isotropic covariance modél

Statespace formulation: The presence of a Alternatively, in other circumstances the choie o

measurement error naturally leads to a state-spack NOn-diagonatb; matrix may be a natural choice. In
representation of model (3). It is then also ndttwa these cases, the “richer” is the structure d@f the

consider prediction via the Kalman filf8r Let n(5 1) higher is the Ievql of i.ndependence for the statisen
the n-vector spatial series at timeThe linear Gaussian However a parsimonious model can be reached by

state-space modBlis described by the followingtate ~ USINg & “nearest-neighbour” VAR model where, as for
andmeasuremergquations the Space-Time Autoregressive Moving Average

() = E¢(t- 1)+ v (1) 4) (STARMA) model§?, the structure of the parameter
(Gt = HOD + £ (1) ) matrix @; is fixed, according to a graph which specifies

) ) s relationships between the sites. We shall come back
Where{(L]1) is thestate vectar= is thetransition  |ater on this point.

matrix, H is themeasurement matriand W] t) is the

state noiseThe outputp(Clt) is a linear function of the The common components. In order to achieve a
state {([J ) and the state at one time step dependglimension reduction, we exploit here the spatial
linearly on the previous state. Both state andstructure to produce a decomposition of the spatial
measurement noise are mutually independent, zerstochastic process into its more basic constitudrms
mean normally distributed random variables, withZ(st), described in (1), have the following
covariance matrices, andZ,. decomposition
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Where X(s,t) is a temporally stationary
autoregressive spatio-temporal random field afsdt)
is a zero mean Gaussian measurement noise term.
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Z(s,t) = u(s,t) +o(s,t) (6)

Whereu (s;t) is a spatial trend and(s,t) a residual
spatial process for a fixed time The deterministic
componenii(s,t) is assumed to be modelled as the su
of K+1 spatial trend fields f{s)™ with dynamic
coefficients;(t)

y(s,,t):Zﬂj(t)fj(S)

With fo(s)=1 by convention. Applying the theory
of generalized Fourier expansi@fs® the zero mean
residual spatial proces$s, t) can be expressed as

550 =Y. 0,000, (5) ®

Where the termsi(s) are the eigenfunctions of
the following homogeneous integral equation

[Cals s §)dg) =A% ) v=12.. (O
D

()

These eigenfunctions are also knownpascipal

fieldd*”. Under the hypothesis that it can be assume

known and common in timeCs is the covariance
matrix of the residual process whilg, are the
eigenvalues. Accordingly, thg,(t) are the principal
components obtained as the projectiord@f,t) on the
eigenfunctions

0, (0= [0 i §)d§) v=12.. (10
D

While equation (8) is known as th€arhunen-
Loéve Expansion -KLEequation (10) is known as the
Karhunen- Loéve Transform (KLThlowever, it should

r,ri)etween
unctiort*®!.

of the variancesj,, of the coefficientsg,(t), gives an
optimal expansion in the sense that the seriesdted
at any point minimises the integrated mean squaicg e
the actual and approximated random
In other words, it means that if we
approximate the random process in terms of some
number m<n of basis functions, the optimal basis
functions for the truncated expansion corresponitheo
eigenvectors ofC,s; with the m largest eigenvalues.
Finally, note that one reason for truncating the
expansion occurs if the random process consistg of
signal in additive noise. In this case, it can taut that
by using a truncated expansion, a significant pathe
noise is eliminated, while most of the signal iptke
intact™l,
Substituting (7) and (8) into (6) it follows thahet
spatio-temporal process can be expressed as

K
2(5, =) B (§)+

=0 (12)

Q0 )+ D) o ()

v=l v=m+l

Where the third term represents an error process.
As noted by Mardiaet al™, equation (11) spans the
process in the space of basic functidj{s) and ¢(s),
known ascommon fields The identification of such
common fields naturally leads to a parsimonious
measurement equation. However, in a different manne
from Mardiaet al*¥, a parsimonious state-space linear
model may be directly obtained by transforming the
data process in the domain of tt@mmon components

Bi(t) andg.,(t), so that a new and reduced data matrix,

be noted that we consider the process observed at i\‘ can obtained as

collection of sites, so, in practice, only a finiteear
approximation of (8), (9) and (10) is possible.
Consequently, if there ar@ sample points in the

domain, onlyn eigenfunctions can be estimated while,
a

indeed, there are a denumerable infinity for
continuous process. Thus, for a continuous dontan t
difficulties of the approach are considerable, whata
are collected only from a sparse and irregular agtyw
since the geometrical relations involving the damai
integration and the relations between the sge$ =
1,...,n are completely ignored in a “discrete” matrix
formulation of (9).

In this study,
[14]

Ippolitit™™,

following Fontanella and

a coherent numerical treatment of the

Loty  pBata Bkt) gt gnltl
5| P2 At) Bkt 91td - gnft2

Botn) BitN) - Bk(tn) g1(tN) - Im(tN)
Z= lzo Z, Ly Zyy ZK+m]

Where as in (1),2u (t),u=0,...(K+m), can be
expressed as
Z,(t) =M, (1) +7,()

Once the spatio-temporal

(12)
process has been

problem is obtained considering the spectraftfansformed in the space of teemmon components

decomposition of a weighted covariance matrix,

one can remove the large scale variatidip(t) as

where the weights are given by a Voronoi polygondescribed earlier and use the linear Gaussian spaise

tessellation of the area of interest.
Within the framework of linear approximations,
equation (8) is the most efficient representatibrihe

model for the transformed procegg(t) expressed in
the common field’s domain.

random process if the expansion is truncated to userom the observed data to the common components:

fewer tham orthonormal basis functiong/(s). That is,
ordering the terms of the expansion in decreasrdgro

We discuss issues associated with the problem of
estimating the common components described before.
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The first task is to analyze the common spatial 5
structgre; thus _the type of trgnd and the_ reSidU"ﬂM(s,t)=Z[alj(q)cos(vxﬁ t+apj § )sin(y t)]
covariance matrixCs must be estimated. In this study, :
the common spatial trend is recognized as a conhstan 1=
surface, representing one trend fiefgs;,t)=1, giving Where w;, j=1,...5, represent, respectively, the
1(s,)=Ro(t). Following Cristakds”, the empirical frequencies associated to the cycle-trend compot@nt
variogram was obtained by averaging in time theigpa the annual harmonic, to a period of 6 and 4 moattus
variograms of the residual proceds,t). To asses the finally, to a period of 1 week. The plot of the 8pa
best fit for the empirical variogram, we investiggta temporal series associated to the large scaletiaries
variety of variogram transition mod€ls By using the ~Shown in Fig. 5. Figure 6 provides a representatibn
weighted least squares procedure, the Indicativéhe residual short temporal variability of the dsea
Goodness of Fit (IGF) ind€k was applied as a metric
for selecting the best fitting variogram model.
According to the IGF statistic, we have chosen an
omni directional spherical variogram with range 2s
0.1232, partial sill M802 and nugget 0.0703. The 2]
principal fields have been obtained by the,. [ 2
decomposition of the covariance matrix weighted by .
the influence areas of the Voronoi polygBfis To
achieve a dimension reduction, the choice of a . i
truncation parametanis essential.

In this study the analysis of the scree graphign F %8
4 suggests to choose equal to 13. Consequently, the 20
temporal data seZ of the common components is
constituted by one trend component and 13 principa
components.

1500

Fig. 5: Surface of the temporal large scale vamati
06— for the log-transformed CO concentration
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Fig. 4: Scree graph ~ 5D days

Modelling the temporal large scale variation: The  Fig. 6: Surface of the residual short temporalatéon
identification of the temporal dynamic term is for the log-transformed CO concentration
performed in the domain of the observed data akasel

the domain of the common components. The spectratollowing the same line, the trend model for the
analysis performed independently on each time seriecommon components can be obtained as

of the observed data suggests the presence of 5
different cycles with different periods. However, I\7|u(t)=2[c7u]1cos(wj't)+du%(th)}
from an explorative analysis we have seen thatall i=0

time series exhibit the same dominant periodic  thus asin the previous case, Fig. 7 and 8 peovid

components. The trend model for the 10g-yo hiots of the large and small temporal scaléatian
transformedCO concentration profile at each station for the common components

s, is thus obtained as
271
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MODELLING THE RESIDUAL particular form of the STAR modé&¥. In a different
SPACE-TIME DYNAMIC TERM manner from Wikleet al™, the nearest-neighbour
model relies on @&onstrainedtransition matrix which

VAR Modél in the observed data domain: Once the @llows temporal relations only for thespatially
model forM(s,t) is specified, attention is turned to the COntiguoussites. Specifically, the spatial contiguity is

, . not specified by a geographical proximity but isedtly
n(sy)'s. Through the state-space model, the residual  ,piained by looking at the spatial correlation b t

B observed data. Accordingly, two sites are defined

neighboursif their distance is less or equal to the
variogram range. With this constraint, only 143
parameters, instead of 625, must be estimated. As
highlighted in Fig. 9 there is an evident corregante
between the parameters of the constrained transitio
matrix and the significant ones (at a nomipalalueof
5%) of the "complete” transition matrix.

""':1500 Fig. 9: Transition matrices for the complete VAR

cormman . ash® ' model and the nearest neighbour VAR model
components 10 500 days

A "o . . Common components-based VAR mode: We
Fig. 7. Surface of the temporal large scale vamati chieve a dimension reduction of the Markov paremet
for the common components matrix =. In fact, in the common components domain
the VAR(1) state-space formulation is characterizgd
a 14x14 transition matrix. Even if it is not so obvious
for this particular example, it should be notedt ttés
approach could lead to a model which results more
parsimonious even with respect to the one specified
the nearest-neighbourVAR model. This strongly
depends on the spatial correlation structure atatiger
is the covariance range the smaller is the numb#reo
estimated components. As a guide example, Wikle and
Cressi€, where in their Near-Surface Wind
application, the authors achieve a very good
approximation of the spatial series, defined over a
1500 17x17 regular grid, using just 20 eigenvectors.
components 10 et However, to provide further insight, Fig. 10 and, 11
give some details on the dimension reduction of the
parameter matribE for a (1x10) lattice. Specifically,
Fig. 8: Surface of the residual short temporalation ~ for an increasing value of the range of three diffié
for the common components transition model variograms, Fig. 10a shows the
variation of the number nf) of the principal
space-time dynamic term is modelled as a vectofomponentsg(t), needed to explain the 75% of the
autoregressive (VAR) process. In particular, follogy ~ total spatial variability. As is evident, the motiee
the standard diagnostic procedures described in Tiarange is large, the lower is the number of comptmen
and Box'¥, a first order VAR model, characterized by a Which have to be considered to represent the ctivel

25x25 transition matrix, has been proved to provide th structure of the process. As expected, the Gaussian
best fit of the observed data. model provides a more parsimonious parameterization

which is evident above all for small values of thage.
Near est-neighbour VAR M odel in the observed data However, as it can be seen in Fig. 10b, the evéntua
domain: In dealing with large spatial dimensions presence of a nugget effect influences the
typical of environmental problems, it becomes raitur dimensionality reduction and Fig. 10c shows the
to find a simplified structure cE=d;. In practice, a ve number of additional principal components which are
ry simplified version could be achieved considermg needed to explain the same percentage of the bpatia
scalar structure ofp;. This results in the separable variation. _ _
spatio-temporal model is described in Huang and  Finally, using the Spherical model and the same
Cressi&®. However, whenb, is assumed diagonal and parameterization resulting from the previous exerci
constant across all spatial locations, the modetos ~ Fig. 11 compares the number of parametei far the
able to capture complicated dynamics. To overcom@earest-neighbour and the ~common component
this problem, a simple extension is to let neighbmu  approaches. To study the influence of a trend
spatial locations at previous time contribute te th component, a quadratic trend surface was also
process at current time. This model structure iswkn  considered in the analysis. As obvious, Fig. 1lawsh
as nearest-neighbouVAR model"! and constitutes a an inverse relation between the two approaches.
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Fig. 9: Transition matrices for the complete VARdaband the nearest neighbour VAR model
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Fig. 10: (a) Relation between the number of principal compon¢Rt) and the range of three different transition
variogram models with partial sill=10 and nuggetéf)Relation between the number of PC and the range
when a nugget effect is considerédNumber of additional PC which have to be taken aatoount when
a nugget effect is considered. In all cases, thehau of PC explain the 75% of the total spatialatan
over a (1&10) lattice
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Fig. 11: (a)Relation between the number of parameterZ iand the range of a spherical variogram model with
partial sill=10 and nugget=Qp) Relation between the number of parameter&iand the range of a
spherical variogram model with nugget. In both saiee number of PC explain the 75% of the totatiap
variation over a (1910) lattice
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Fig. 12: Boxplot of the temporal series for 1998 206-1=0bserved data; 2=Complete VAR; 3=Nearest iNeigr
VAR; 4=Common Components VAR

In particular, we can see that for a ¥10) lattice, both other hand, the situation slightly improves for the
procedures are characterized by (approximativeig) t nearest-neighbourmethod when a nugget effect is
same number of parameters for a range.®f 2 considered (Fig. 11b) since, in this case, it sthdaé

For larger ranges the common component methogreferred to the common component approach (with a
leads to a more parsimonious parameterization.H@n t quadratic trend) until the range reaches the @t
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Fig. 14: Predicted common components for the lastknof December 2001

FITTING AND FORECASTING RESULTS predicted distributions. With respect to the obedrv
data distribution, as expected, the plots highlight
To examine the effectiveness of our model we havesmoothing effect. This could be due to the difficd
applied the Kalman filter and compared the fittedess  of the Kalman filter in fitting extreme values.
with the observed data. Figure 12 shows the bogilo Furthermore, to test the model ability to perform
the distributions of the observed and predicte@ dat temporal predictions, the last week of the obsedagd
each monitoring station. As it can be noted, a# th set has been taken out from the analysis. Figure 13
procedures perform similarly vyielding analogouscompares the observed and predicted spatial sieries
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the period 25-31 December 2001. As previously noted

even for the temporal forecasts all the procedigad

to similar results. 4.
Focusing the attention to the Common Fields

domain, Fig. 14 allows to stress the good perfoaan

of the VAR model in forecasting the Common 5.

Components for the last week of December 2001.

DISCUSSION

The dynamic model described here offers a flexibl
approach to modelling a large-class of environnmenta *
space-time processes. However, as usual, the model
must be tailored to the problem at hand. For exanipl g
our goal is in predicting at a future time, our eggzh
is useful; differently, further details must be yided if
we are trying to predict the process at unobserved.
spatial locations. In particular, giverZ , if such
prediction is required at timd, t<T and at an
unmonitored sites,, a straightforward approach might
use equation (11) to obtain

K m
2(s0,0= Y Bj(0fj(s0) + Y 9v (DD (s0) (13)
j=0 v=1

Where fj(so) and ¢,(sp) are the estimated

common fieldsat site s,. Their prediction is not a
difficult task and since they are non-stochastisuging
orthogonality, we could apply some relatively simpl 1
interpolation schemes. To that end, Marelial™ and
Wikle and Cressld, provide two alternative
approaches.

We have also seen that the crucial
modelling spatial structure involves a trade-oftveen
the structure of the VAR autoregressive parameter

matrix and the level of independence among thel6.

elements of the driving noise. In order to gaineapker
understanding further work is needed to consider

additional parameterizations. In this context, even 17.

one loses the computational efficiency and simlici
realized by the Kalman filter, a full Bayesian mBtf&!
provides a useful approach. In this context, spatia
predictions can also be obtained following Tonelf

The final point is related to the typology of tihata
structure. For instance, of particular interestlddoe
those phenomena characterized by a persisteng)-(
memory temporal autocorrelation. Thus, the
investigation of VARFIMA modef8! represents a
natural extension of the present approach andapia
for future work.

20.
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