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Some Fast Methods for Fitting Some One-parameter Spatial Models

R. J. Martin
Department of Mathematics and Statistics, UnivemsitOtago, Dunedin, New Zealand

Abstract: It is common in geographic modelling to use a paemeter spatial model to specify the
inverse covariance matrix in terms offW, for some known matrix W. Exact Gaussian maximum
likelihood estimation of3 requires evaluation of the determinant of the cavae matrix. For large
data sets, this evaluation of the determinant carslow and good approximations can be useful.
Seventy regional configurations are used to considme approximations to the determinant giN-
that are fast to evaluate, and their usefulnessrigoared.
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INTRODUCTION -BOX{D i(vi H}X) “IX{D j(vi 1) }wWX| can be used,

. . . . where the second term can be calculated as beliogy us
In much geographical spatial regression modelling

it is assumed that for n sites or regions the revegf  the eigenvalues of (X'{Mvi"H)}X) IX{D(vi-1pwx.
observations yias mean E(y)=& for an xp matrix of  Thus, the most time-consuming element in calcuatin
regressors X and a p-vector parameferand has the log profile likelihood is usually the evaluatiof |T|,

covariance matrix szvar(y), whereo® is a scale considered here in the fomw(;m(l-rrl/rb:
parameter. Usually, one-parameter spatial modeth, w -n'1In|T|

V depending on T-BW for a known weights matrix _
W (e.g. [1]) and Gaussian maximum likelihood  Letthe eigenvalues of W bai{W)}, or {Ai} when

estimation, are used. it is clear what W is, and lef\=max{Aj} and
ThenB= (X'VX) X'V ¥ , whereV usesT = Amin=mini{Aj}. Then J@) can be found using the\}
In—[f’;W. Exact estimation db (e.g. [2]) minimizes with ~ Since [T[¥1(18Aj) and IB)=-n"1zIn(1-BAj). However,

respect toB the profile likelihood |\71|'1/n ><(e'V'1e), the {Aj} need to be found,. which can pe very slow for
. . 5 , L large n and each evaluation offY)fequires an n-fold
or its logarithm, where e=y-f. Iterative estimation of product, or, more accurately but slower, the sunm of
® and B is usually needed. This requires numerougog terms.
evaluations of the quadratic form ed and the Some quicker numerical methods for obtainirfg) J(
determinant |¥1|. Neglecting this determinant term can exactlg/nhave been d'SCUSSG_d by Mé?]u_and Pace and
lead to inconsistency in the estimatorgt and serious Barry"”. However, good quick approximations t@)(
bias for finite n. If p/n is not small, REML estitizn should suffice in preliminary investigations, fostance

may be better (e.g. [4]), wheteis estimated as above when different sets of regression variables animint
but is estimated b'y mi}limizing ' forms of the spatial dependence, are being coresider

: g Griffith® considered approximations topj(using a
{xv - Ixpv-LpY-Ph(erv-le).  This  additionally specified functional fom. Apart from Ba)l(post%Iated
requires the evaluation of [X¥X|. general form, those in Griffifl require the 4} to be
The simultaneous autoregression (SAR) model haﬁound first, or |T| evaluated for a set of valudsBo
V-1=TT, so [V1=[TR. The conditional (CAR) form, Martin® considered some approximations based on
with conditional variance varﬂ{/yj,j;ti}):vic2 for  using the first few terms of the series expansiod([).

known {i}, has V"1={D;(vi"1)}T, where O(s) denotes  The 4M-order approximation is

diag(sy,....s1), and so [VH={Mvj "1} x|T|. In both cases, JB) = lz:_l{tr(w k) Bk/ K}, (1)
p k=

e'vle is easy and quick to calculate. For the SAR, .
estimation of 8, for a given B, can use where tr(W) denotes the trace of W. MaftiM05

ordinary least squares on the transformed model fo?enceforth), looked at the theoretical resu_lts latbe
or known types of graphs. Some comparisons of the

which Ty has mean T& Unless p is large, |X¥X| timings of some different approximations are inft@h
can be calculated quickly. If necessary ftve ;.4 gonkol Berry and Pa ] give a Monte Carlo
CAR, [X'V-IX| =X {Dj (vi1)} X| x
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method for estimating Bf for a sparse stochastic PROPERTIES OF GEOGRAPHICAL ONE-
matrix W. PARAMETER PROCESSES

Another possibility for approximating () is to
regard the i} as a discrete probability distribution on

[Amin, A] of the random variablé, with a probability ,
elements yj which reflect the dependency between

of ri/n at each different valuaj (where eachhj is . ) . .
. _ o regions i and j. Often only a small proportion foé t j
repeatedjrtimes) and then to approximate this d|screteare NON-Z€r0 '

distribution by a continuous distribution (o)t*) with Here, for simplicity, the two main forms of W
probability density function (pdf) f(x) onAmin, Al which are frequently used in practice, are coneted

Then, JB) is the average value on¢1-BAj), which is  ©ONn (other W may be better for a given data setg Th

. binary symmetric contiguity or adjacency matrix,
approximated by J&, the expected value of denoted C, hasj¢=1 if sites (or regions) i and j are

Assume, as usual, that W has zero diagonal
elements, so thafAj=0 and non-negative off-diagonal

*
-In(l-B/\A), connected in some sense, assumed here to be arjjacen
" or sharing a common boundary, and O otherwiseclLet
J(B)= I In(1-Bx)f (x)dx. be the vector of row sums of C, g, where § is an

Armin n-vector of ones and let D%(@j). Then the asymmetric

The use of JB) for a suitable approximate pdf f(X) o\, sandardized form of C is R=D1C. The C matrix s
may  produce worthwhile —approximations —for o4 ivalent to a graph, with ¢he vertex degree. The

geographical regions. Since approximate results may. .
suffice, the integral can itself be approximatedrivus |ge_nvalue (sp_ectral) properties of C and R haenbe
studied theoretically - see M05.

S'm?'e r.1umer|call rules of the form B= For four configurations the row-standardization U
-2wi f(xj) In(1-xj) could be used (for example, 810 of ¢ 5 symmetric weight matrix G is also considered,

Froberd?). Griffith's"™® approximation of the form \here the weights are based on inter-centroid g
w1gM)IN(1-BA)-w2g(Amin)IN(1-BAmin) with weights  Both R and U have all row sums equal to 1,/
w1, wp, can, if f(x) is finite at the endpoints and and so arestochastic matrices. Their eigenvalues are
g(x)=f(x), be regarded as a 2-point rule using thereal and\(W)=1. For all of C, R, UANmin(W)| < A(W),
endpoints (or a 3-point including x=0). Tha(B) need  unless the graph is bipartite (M05), i.e. the oatiges
not be of the form @0IN(1-BA)-gAmin)!N(1-BAmin). are between two disjoint sets, which is very uriiker

for a function g(x), can be seen for equidistaritfsoon two-dimensional .geographical configurations (except
a line (the path graphpP MO05, 84.2), for which [) for rectangular grids). 1

tends to M[{1 + (1'32[52)1/2}/2] as N (a=4 or 1 for For the one-parameter CAR, {®j +)}W must be

W a contiguity or standardized contiguity matrix, S)_/r_nr.netr_lt.:,. so that W must be ]asymmetng .W'th
respectively) W jVj=wj,jvj unless the jvare constafif!. Although it is
usually preferable that the conditional varianoezvis

As well as the CAR and SAR models, other one-smaller for interior regions, geographic modellisften

parameter assumptions using T could be tried. Thesgses W=C, implying thejvare constant. If W=R is
include having V=T (T symmetric), or V=T'T. Provile

IB| is not too large, T can be approximated by, for

example, IBW + B°W?, to give a quick approximation appealing. Then j¥cj, V-1=D-BC=D(In-BR) and |V

to e'vle. 1|:{I'Ici}><|In-BR|. Using W=U is similar. Since T must
In this paper, seventy readily available regionalbe positive definite3 must lie between 1Xmin(W)}

configurations are used to suggest and compare sond@d 1/ (W)}. For the one-parameter SAR, W does not

need to be symmetric or positive definite and ah¢,0

R, U can be used. Oftghis restricted to the CAR range
shape of the eigenvalue distributions. The W mes$ri©  to avoid [T|=0 wheB=1/{AjW)}.

used, var(y{yj, j#}) must beozlci, which seems more

possibilities for K@), with particular interest in the

be considered are defined in section 2. The

configurations are given in section 3, their st THE REGIONAL CONFIGURATIONS

properties described in section 4, and their eigkmrv The possible relevance of the exact and

properties discussed in section 5. Section 6 giles @pproximate results in MO5 is considered and the
distribution of the eigenvalues for geographic oegiis

possible approximations, and section 7 contains tweyqy investigated. The 70 regional configurationsoivh
examples. are used to consider approximations t®) Hre listed,
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with their abbreviations, in Appendix 1. They were spectra, were discussed in M05. Note that soméeof t
chosen by their availability and may not begraphs in M0O5 are bipartite (883.2, 3.3, 3.7, 391)
representative of all regional sets. but, as noted earlier, this would be unusual for
The exact and approximate results on graphs thajeographical regions. Two descriptive measures of
are available may be very limited for geographicalgraphs are used in MO05. Thiadex of (planar)
applications because of the structures of the graph  connectedness is Ic={1n'C1s-2(n-1)}/{2(2n-5)}, which

the small value of n, or the number of badly-cote@c ranges from 0 for a tree (a minimally connectedbya

regions (end-vertices). Because of the nature ltiggd  to 1 for a triangulation (a maximally-connectednala

regions, no precise general results are possible. graph). Thendex of regularity, which can be defined as
Forty-four of the configurations are census tractghe sample standard deviation of the degrees (nuafbe

for enumeration districts in Canadian cities in 1927 neighbours), isFQ:\/{c‘c/n-(c‘Lq/n)z}. The values of ¢

cities) or 1986 (18 cities) (compiled using centast i . . . .
maps) from (Statistics) ( Calrjlada). %nother 12and R for the 70 configurations are given in Appendix

configurations are formed from the 73 municipios ofl.

Puerto Rico and its subregions (the five agricaltur Other functions of the degrees which may be of

administrative regions and six adjacent pairings ofhterest are the extremes mgj} and max{ci}, the

these). The remainder are for China (provincespade range r(c)=ma)ci}-minj{ci} and the standardized

pr(glligce in China (counties); Eire (counties, Cgif’ﬁg third and fourth moments 1@0):%(0)/{m2(c)}3’z,

Ord™’); Ghana (subregional units, Cliff and - 2. -

Fig. 8.4); Nigeria (subregional units, Cliff and d9?', bzl(c) m4(c)/{m2(c).} 3, where r¥(c) .

Fig. 8.5?; plus Columbus, Ohio (neighborhoods,NZ(ci-1n'c/n)f, with my(c)=IR?. Note that in the

Anselif*®, Fig. 12.1, p. 188); Houston (census tracts following descriptions of sample distributions, tean

US Bureau of the Census, 1980); South-Western Ohiand standard deviation (sd) are used as measures of

(counties, Anseli®, Fig. 12.2, p. 204); three sets using centrality and spread respectively when there are n

Syracuse (US Bureau of the Census, 1990)arge 'outliers'. Otherwise, the median and intrtle

Syracuse:CT (143 census ftracts), Syracuse:BG (44iange (IQR) are used, respectively.

block groups), Syracuse:CB (7249 census blocks);

Buffalo police precincts (Annual report of the Balfi  Index of (planar) connectedness Ic: Ic ranges from

Police Department, 1978) and Thiessen polygong 348 (PR4) to 0.971 (C86:1), with mean 0.712 ahd s

formed from weather stations in part of Kansas-0.125. Only 7 values are below 0.50. This suggésis

Nebraské'. results in MO5 for trees and other graphs with low
Most configurations have relatively few regions connectedness may not be appropriate for irregular

(between 11 and 53). There are a few larger onks (7geographical regions. Also, the very high conneusd

73, 76, 77, 79, 99, 101, 101, 143, 192), four muchhf some graphs in MO5 rarely occurs in practice.

larger (351, 363, 447, 731) and one extremely large

(7249). There are C and R matrices are for all 7Qndex of regularity IR: IR ranges from 0.877 (C71:4)

configurations. Four of the configurations (Eire, (5 5 402 (012), with mean 1.414 and sd 0.305. There
Houston, Ottawa-Hull:86, Puerto Rico) also have Uy suggestion of a small increase in the meaafith

matrices. . . . .
. Using a log-log regression with and without

Henan province has some unusual properties. It h i = .
five city counties, each completely within another’ yracuse:CB (n=7249) suggests trRtapproximately

county. It has three outlying counties, each onlylncreases with . of the graphs in MOS5, only the
adjacent to one other. It also has two 'peninsuladrisher (§3.9.4) and Reduced Fisher (§3.9.5) grapés

(attached path graphs), one of two counties andobne consistent with a constant, but non-zero Wwhilst none
three. are consistent with a very slight increase with n.

Note that some common boundary lengths in the
mapped configurations are very small and may be duSimple functions of the degrees: The min{cij} is 1, 2

to inaccuracies in the diagram that has been usegy 3, with mean 1.93 and sd 0.688. Apart from four

Conversely, a true adjacency Wlth a _small COMMON4rge values of 17 (O11), 23 (C86:11), 26 (012,

bounqlary may not be apparent in the diagram. Fer th C86:23), mayci} ranges from 5 to 13, with median 8

exercise it should not be important whether all

adjacencies are correct or not. and IQR 2. The value of r(c) ranges from 3 to ¥ara
from the four large values of 16 (011), 22 (C86;H

SIMPLE DESCRIPTIONSOF THE (012, C86:23), with median 6 and IQR 2.25.
CONFIGURATIONS

) ) ] ) The standardized third and fourth moments. The
The properties of the 70 regional configuratiores a Vvalue of 3(c) ranges from -0.846 to 3.554, with median

summarized and compared with those for the graphs i .
MO5. Several ways of summarising the graphs and th8'313 and IQR 0.564. There are 13 negative vakies.
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values are below 1.63 except for: 2.447 (012), 2.59 intermediate positive value. Most histograms sugges
(C71:6), 2.737 (C86:11) and 3.554 (C86:23). something like a typical Gamma-distribution shape
The value of b(c) ranges from -1.087 to 27.490, (with shape parameter bigger than 1). Some histogra

with median -0.161 and IQR 1248, There are 4ciud9st @ non-nedligible non-zero density at eiter
negative values. There are four very large val@e305 As examples srﬁoothed (3-pt MA) histograms for
(012), 13.699 (C71:6), 16.338 (C86:11) and 27'4QQNin '

X : : : nipeg:71 (n=101), Syracuse:CT (n=143) and
(C86:23), with the remainder being below 2.57. Syracuse:CB (n=7249) are shown in Fig. 1, 3, 54@)

THE EIGENVAL UE DISTRIBUTIONS 2,4, 6 (R), respectively.

The above measures relate to the graph, the gxtreme eigenvalues. The largest values of(C) are

\ ne grapn, round 7 (7.375 for 012, 7.084 for C86:23, 6.822 fo
matrix and the degrees. Here, the distribution haf t C86:11) and the smallest values are around 3.533.3
eigenvalues of W is investigated and some measires for PR4, 3.686 for PR1). The median value is 5.00 a

the distribution considered. These measures may b[ﬂe IQR is 0.862. As for, there is evidence tha(C)
useful in themselves, for example to characterise o '

different types of geographical structures. Howetlee Sl'ghﬂ% mcreasesfl;l g-enera_l with n. I ith th
distribution may also be useful if it can be appmated The range ofAmin(C) is even smaller, with the

to give an approximation to the required determinanlowest around -5 (-5.025 for 012, -4.080 for C86:11
term, as discussed later. -3.563 for O7) and the highest around -2 (-2.120 fo

Of particular interest in approximating the PR1, -2.125 for PR4, -2.199 for PR3). The median

distribution of the eigenvalues are the extremaiaml Value is -2.81 and the IQR is 0.497. Agakmin(C)|
A(C), Amin(C) andAmin(R). Simple descriptions of the appears to slightly increase in general with n.
distribution of the eigenvalues are given by the-lo The smallest values Bfin(R) are around -0.9
order moments and standardised moments - the0.936 for 012, -0.845 for C71:5, -0.798 for C7argl
measures of skewness and kurtosis. Recall thda4) and the highest around -0.5 (-0.510086:7,
sAiK=tr(WK). Since tr(W)=0, the mean is always 0 and-0-524 for C71:24, -0.526 for C86:1). The mediatuga
is -0.63 and the IQR is 0.119.

the formulae for the moments are simplified, In MO5, it is noted that the second largest

?rz(W):h 1tr(W|§);(]v\?ve)re (r\;ﬂv(z\;\/l) (_1rehnotes g({gi(\/\g})ﬁ' . eigenvalue\(2)(C) may be of interest. Tiefelsdorf and
e variance is =tr(W?)/n. The standardised thir 18] - ,
moment, BW)=n"2r(W3/{tr(W?}*?, describes the Boots . show that A(2)(C)/1n Cln =A@ CINC) is
skewness. The standardised fourth ~momentdPProximately the largest possible value of Mordn's
by(W)=ntr(W)/ftr(W 2} 2-3, describes the kurtosis of For many of the graphs in MO_5, there is a large gap
the distribution. Some other intuitively appealing PetweenA(C) andA(2)(C), but this occurs for none of
characteristics are also considered. These inclbde the 70 configurations. For small a2)(C)/A(C) or

ratio of the extreme eigenvalues A(2)(R) can be around 0.7, but for the larger n they ar
rmm(W)=-Amin(W)/A(W), and the ratio of the number usually at least 0.95, with usualhR)R) >
of positive to negative eigenvaluegnfW). The 70 ’

P g 9 pfW) A@)C)YAQ).

values of A(C), Amin(C), b1(C), 2(C), Amin(R),
b1(R) and k(R) and the four dmin(V), b1(U) and

Variance: Since tr(@)/n is just R CLyn= 'c/n, the C-
bo(U), are given in Appendix 1. (©) Just HCly/n=In

variance is related to the overall connectedneds@n

. - . o It ranges from 3.00 (PR4) to 5.45 (Syracuse:CThwit
Histograms: Firstly, consider the distributions for each mean 4.57 and sd 0.542.

of the 70 C and R matrices and the four U matriEes. )

each of the 144 distributions, a histogram, usiggaé  The R-variance uses tfR the sum over
width classes (usually 10), of the eigenvalues wa§e€ighbouring vertices (ij) of 14g). It ranges from
formed. These were also smoothed, using a 3-poirfd.182 (C86:8) to 0.329 (PR4), with mean value 0.225
moving average (3-pt MA) with weights (1, 2, 1)dda and sd 0.032. The four U's have three very sméliega
kernel density estimates (see later) were congidéer  (0.121, 0.130, 0.164) and one larger value (0.275).

n small it is difficult to determine the smoothed

behaviour of the eigenvalues, particularly at the® t Transformed mean and variance: Transforming from
extremes. All histograms suggest a positive skewhe interval kmin, A) to the standard interval (0, 1), the
distribution ~and none demonstrate any of themean (m) for the seventy C matrices ranges fro@3.3
pathological behaviour that can occur with somehef to 0.405, with mean 0.358; and the variance ranges

graphs in MO05. Most histograms for larger n are .
unimodal, but quite a number of the histograms,from 0.032 to 0.099 with mean 0.072. The meanfHer t

especially for R, suggest another possible modanat Seventy R and four U matrices ranges from 0.338 to
329
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0.483, with mean 0.392; and the variance ranges fro Kurtosis: Large values of W), which is always at
0.045 to 0.124 with mean 0.082. least -2, are associated with a large number of
eigenvalues concentrated in a small range (e.gyman

Skewness: Since tr(3)/6 is the number of triangles in tg,sggr(;rteedq?rilnﬁh? ;‘Sg S‘ few (even just 1) eigersa
the graph and R can be regarded as a probabili S
transition matrix on the graph, both() and B (R) are MOS notes that 4C) is highly related toR. The
non-negative. They are zero if the graph contains nfange of n(C) is from 19.00 (_PRA'.) to 83.50 (C86:1)
triangles, which includes all bipartite graphs. ©thise, vthSrSe?DnRsf'% g%%?d é§'45’, ‘a’h”g(b) rag%%ss fromd q
the distribution must be positive skew, wiijn| <A, 0:889 (PR4) to 0.037 (O3) with mean -0.388 and s
. 0.164. Just onedfC) is positive.
The range of m(C) is from 3.43 (PR4) to 11.10

] . , The range of pfR) is from 0.080 (O13) to 0.203
(C86:1) with mean 7.34 and sd 1.63. The standaaid|ze(PR4) with mean 0.114 and sd 0.026; whilgR)

b]_(C) ranges from 0.509 (C716) to 0.910 (C861) WithrangeS from -1.128 (PR4) to -0.397 (C861) witam
mean 0.750 and sd 0.082. -0.751 and sd 0.140. The fouy() are 0.043, 0.045,

The range of (R) is from 0.038 (012) to 0.115 ( ggg 0.150 and the(b) are -1.017, -0.478, -0.336,
(PR4) with  mean 0.068 and sd 0.0135. The.p.092.
standardized f{R) ranges from 0.401 (C71:6) to 0.837  Almost all distributions had negative kurtosis.eTh
(C86:1) with mean 0.638 and sd 0.0915. kurtosis is always larger for the C distributiomnhthat
The four values of g(U) are 0.029, 0.029, 0.043, of R, i.e. B(C)>(R). The difference HC)-by(R)
0.049 and those of 1fU) are 0.342, 0.618, 0.644, ranges from 0.163 (C71:10) to 0.697 (O3), with mean
0.694. 0.363 and sd 0.118. The rati@(@)/bz(R) ranges from
All distributions are moderately positively skew, -0.056 (.03) 10 0.788 (PR4), with mean 0.504 and sd
with the distribution for C always more skew thaatt 0-178, with only one other value below 0.15 (C86:1)
of R, i.e. B(C) > B(R). The difference HC)-by(R)
ranges from 0.036 (C86:4) to 0.267 (O6), with mean USING AN APPROXIMATE EIGENVALUE

0.112 and sd 0.048. The ratig(®)/b,(R) ranges from DISTRIBUTION TO APPROXIMATE J(B)
1.052 (C86:19) to 1.443 (0O6), with mean 1.184 ahd s ] .
0.097. Introduction: Although the eigenvalues A{(W)}

themselves may be of interest in some applicatithres,
Ratio of minimum to maximum eigenvalues. The  aim here is to approximateR)( Approximations may
ratio rmm(C) ranges from 0.477 (C86:1) to 0.681 (O12)be possible which are quite coarse, but still sigfitly

with mean 0.559 and sd 0.049. It is smaller tharnyood to allow reasonably accurate estimatef tf be
rmm(R)=-Amin(R) in all but two cases (C71:7, C86:7). found.

The difference Amin(R)-rmm(C) ranges from -0.071 to Two different situations can be envisaged with
0.255, with one exceptional value of 0.398 (O6)isT8  gifferent levels of knowledge. In the first, alleth

caused by the two ‘peninsulas’ in Henan province,; | (W K d iust ick f
(MO05). Without Henan, its mean is 0.085 and itsssd igenvalues Xj(W)} are known and just a quick way o

0.061. The two measuresni(C) and Amin(R) are approximating J§) is required. In the second, there may
reasonably well correlated (0.685 without Henan). originally be no eigenvalue information and a good
estimate of J§) is required. Since usually there are
Ratio of numbers of positive to negative eigenvalues:  good quick approximations ®min(W) andA(W), they
The ratio pp(W)={number of Aj(W)>0}{number of  can be assumed known (see later). The second €ase i
Ai(W)<0} is the same for C and R (MO05), but diffecs f  perhaps the most realistic and would apply whemdt
U. It is 1 for bipartite graphs and can exceedrisfame  exploratory regression models with a large data set
graphs (M05, §5.3.2). For C and R, it ranges frob%6 where spatial dependence is possible but not peiifai
(C71:1) to 0.889 (C71:21) with mean 0.702 and sdhe fast method of fitting suggests spatial depeoele
0.071. It is only fairly lowly correlated withpjm(C) ~ MOre accurate methods may then be worthwhile.
(0.372) and Amin(R) (0.318). It is unusual for a Assume then that it is reasonable to approximate
geographical configuration to have any Zerothe distribution of the eigenvalues by a pdf oves t

eigenvalues. This occurs in just 5 cases: China 2"9€ Rmin, A]. Extensions are possible to cases with a

Columbus, Henan and Winnipeg:71 have 1 (ChinafeW isolated eigenvalues. In particular, n shoull b
Columbus and Winnipeg:71 each have 2 regions witifufficiently large, at least 30, say. For smalletivere
the same neighbours, so C and R have two rows tH&€ few problems in evaluating@)(either directly, or
same (MO5, 84.1); for Henan, one region has theesanpy using the eigenvalues of W.

neighbours as two others combined and these twe hav

no neighbours in common, so one row of C is the surﬁo‘II t.he eigenvalues {)‘i(W_)} khown: In this ca_se, the
of two others), but Syracuse:CB has 70. continuous pdf approximation to the eigenvalue
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distribution can be estimated by histograms (aegpr method. These rules only need the pdf value and can
or more sophisticated methods of density estimatioroften give very accurate results with only a vema#
Particular families of distributions could be usdo; ~ Number of points.
example the Beta or Gamma distributions which are S
discussed later. Beta and Gamma distributions: The Beta Bef1, v2)

A simple possibility if a numerical integrationleu  distribution on (0, 1) can be transformed to therival
is to be used is to use a hand drawn (or distobdfiee  (Amin, A). The pdf is asymmetric if1 # v2. AT Amin.

estimated) density to estimate its values at the fe e pdf is unbounded ¥ < 1 and is 0 i1 > 1, and its
points needed. '

gradient is +o if 1 <vq < 2. Similar properties hold at

At most Amin(W) and A(W) known: If Amjn(W) and in terms ofvp. Efficient estimation ofv1, v2 is not
A(W) are not known, it is usually possible to getye simple and as only a guide is needed here, the less
good approximations to them quite quickly. For Rl an efficient method of moments has been used. Let
other row-standardized V¥=1. For C, the power M=Amin/(A = Amin)=rmm/(1+mm and
method Xr)=Cx(r-1) (MO5, 84.1.2) gives upper _and t=-MAmin/tr(W2)-1. ThenV 1=tm, V 2=t(1-m).

lower bounds forA(C) and usually converges quickly A A i
from x(0)=1n (with an improved lower bound from the Although v L YZ). may be usefu-l s.umr-narles of
Rayleigh quotient, A(ry=x(r)CX(r)/X(ryX(r), MOS, the eigenvalue distribution, the Beta distributicrually
§4.1.2). Some simple lower bounds are often goodits badly. A large number of th® i are less than 1,
approximations (M05, 84.1.2). It is not usuallytguso  giving the wrong behaviour &ipjn or A. In many of the
easy to approximatemin(W). One method is the power
method on W-g, for some a, with the initial vector
having some negative elements, e.g. the alternatin
vector. The value of a>0 must be large enough for
{Amin(W) + a} to be the largest of theM{{W)-a|}, but
otherwise as small as possible. Assunpgn(W) < ) ]
2MW)/2, a reasonable value for a AéW)/4. Unless the interval Amin, A), may be better. However, this
Amin(W) is a repeated eigenvalue, this method willwould require the estimation 81, 3 also.

converge tAmin(W)-A(W)/4, but convergence will be The Gamma Ga( ) distribution (shape parameter
slow if, as is usual, there is another eigenvallesec v, scale parametdf, meanvl) can be transformed to
toAmin(W). It can be better to use Wml the interval §min, ). The pdf at\min is unbounded
)‘(W)X(W)X(_W)' where  x(W) IS the  eigenvector for v<1 and is 0 forv>1. Again, using moments for
corresponding ta(W). ForAmin(R), it may be betterto 5 5 5 >

use the symmetric RDY2CD1/2 which has the Simplicity, V =mMmjn</tr(W ) and { =-tr(W4)/(Mmin).
same eigenvalues as R. An alternative method, which The estimated Gamma distributions are more
usually converges quicker, but needs a matrix segs ~ satisfactory than the estimated Beta distributiorse

to use the power method on (W)Ll Another fitted pdf usually appears to be an adequate, afsm
method, usually slower, is to use a numerical reuto apprOX|mat_|0n_ to _the e|genva!ue_d|str|but|on. E stieal
minimise x'Cx/X'x. Gamma distributions for Winnipeg:71, Syracuse:CT

) and Syracuse:CB are shown in Fig. 1, 3, 5 (C) ardd 2
As§ume now - that ia”d Amin hav_e been 6 (R), respectively. For all four combinations of R
determined, or well approximated. A possible method " ° - )
for using J*@) is to approximate the pdf by using an with vV, (, there appears to be a good linear log-log

appropriate family whose parameters can easily beelationship with n (correlations of 0.859, 0.789.659,

estimated. Families which may have the right shapep 824). ForV the approximate relationship is 0X4n
include the Beta, Gamma and lognormal distributions ] ] S
None of these would lead to a simple theoreticafor both C and R. The approximate relationship &or

integral for J*@). is 2114 for C and 0.5r/8 for R. Alternatively,
Two possible strategies would be either to cateula 3 _ . ~ .

the means of the n order statistics for the fitted{can be obtaned for a givenV using

distribution and use these as approximations toAthe -~ 3

or to use a numerical rule to aggroximate the iraiﬁeg v ZZ:tr(WZ)/n_ o

The order statistics are usually not easy to cateul . The Gamma distribution could be truncated to the

exactly. Even the approximation to these using thénterval Amin, A), but the incomplete gamma integral

inverse cumulative density function (cdf) at i/m,(e.g., Would have to be estimated. Again, to allow a nerez

. ; density atAmin, but, forv>1, a mode bigger thaxmin,
(i-0.5)/n) is not easy to calculate for the Betadan e Gammrglrgjistribution could be transforme I'Po the

Gamma distributions except when the shape parasnetej,iarval min-5, =) for somed > 0, but truncated to the

are integers, since the cdf does not have a sifopte.  jhterval ©) or Amin. A). This would require the
This suggests that a numerical rule may be the be%tstimationmc;% a|)so_ Amin A) g
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remaining cases, botti 1 and V 2 are between 1 and 2,
hich results in the pdf having a 'hump' shape ctviig
dgain inappropriate.
Transforming the Beta distribution to the interval
(Amin-01, A +d2) for somedq, d2 > 0, but truncated to
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0.25 . . . . 1E
0.2}
0.15} r
0.1}
0.5¢
0.05}
0
4 -2 0 2 4 6 0
-1 0.5 0 05 1
Fig. 1: Plot of smoothed histogram (solid) andefitt Fig. 4: Plot of smoothed histogram (solid) andetitt
Gamma (dashed) for C for Winnipeg: 71 Gamma (dashed) for R for Syracuse:CT
1.2 , , , Estimating J(B) by numerical quadrature: Although
the Gamma fits do not appear to be too bad, istout
1t that biases in the fitted pdf can seriously affeet
estimation of J§). This seems to be because
0.8 In(1Bx)f(x) is both positive and negative over the
range, having the sign offix. For example, for
0.6 Winnipeg:71, the R matrix, the true valug of J(G$)
0.0452. The fitted Gamma f,jn=-0.7267,V = 2.593,
0.4- ( = 0.2803) and a 3-pt MA smoothed histogram (from
a histogram centred at 0.7(0.1)1) estimate of the
0.2 eigenvalue distribution, are shown in Fig. 2. Thed
0 Gamma has area 0.9655 over the range. The mode is

1 05 0 05 1 shifted to the right with respect to the eigenvalue
distribution. Using a quadrature routine with thiged
i i i i Gamma, the value of J(0.6) is estimated to be @200
Fig. 2: Plot of smoothed histogram (solid), fitted  However, numerical methods on approximate
Gamma (dashed) and kernel density estimatelistributions can give good results - see the exesnp
(+) for R for Winnipeg: 71 In practice, only a rough estimate of the distritnut
would be available and it may not be convenienide
Nonparametric density estimation: If a numerical rule  Many evaluation points. Possibilities would be alsm
is to be used, then a simple nonparametric estimite p?f_ln_t Swgpson_rule ordthe more complicated but more
the pdf may suffice. Possibilities include a histog, a € |c§_nt alﬂssl|an (1ua r_ature. i f <0 d
smoothed histogram (see earlier) and a kernel gyensi >ince n( 'BX)_(X) Isnegative for {3 o an
estimate. A kernel density estimate using a GanssiaP0Sitive for fx>0, it may be better to estimate the
kernel with smoothing parameter h close to thaegiv Ntégrals for x<0 and x>0 separately. For example,
by equation (3.31) in Silverm&f has been tried. USINg two 3-point Simpson rules would approximate
Figure 2 shows a kernel density estimate (h=0.16~,]([3) by
limited to Pmin, A]) with the Gamma fit and the -{f(AIN(1-BA)+ 4f(A/2)In(1-BA/2)-
smoothed histogram for the R-distribution for #Aminf(Amin/2)In(1-BAmin/2)-

Winnipeg: 71. Aminf(Amin)IN(L-BAmin)}/3.
Two 3-point Gaussian rules for a quadratic would
0.2 . - : - approximate J§) by
0.2 -{5f(a1A)In(1-a1BA) + 8f(A/2)In(1-BA/2) +
' Sf(aA)In(1-a2BA)-SAminf(a2Amin)IN(1-a2BAmin)-
0.1% BAminf(Amin/2)In(1-BAmin/2)-
S5Aminf(@1Amin)In(1-a1BAmin)}/18, where g = 0.8873,
0.1r ap=0.1127.
0,05 Unfortunately, these do not appear to work well.
' For Winnipeg:71, R, the estimated values of f(xhgs
0 the 3-pt MA smoothed histogram (Fig. 2) would be
4 ) 0 2 4 6 approximately 0.31, 0.32, 0.62, 0.74, 1.10, 0.35ha
Fig. 3: Plot of smoothed histogram (solid) andefitt PCINtS @A, M2, @A, &@Amin, Amin/2,  @Amin,
Gamma (dashed) for C for Syracuse:CT respectively. Then the Gaussian rule estimate$)Jé3.
0.007.
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0.2 : T T T . : 1
0.8}
0.15f 1
0.6}
0.1} 1
0.4}
0.05} 1 0.2l
0 0
-6 -4 -2 0 2 4 6 8 -1 -0.5 0 0.5 1
Fig. 5: Plot of smoothed histogram (solid) andefitt Fig. 6: Plot of smoothed histogram (solid) andefitt
Gamma (dashed) for C for Syracuse:CB Gamma (dashed) for R for Syracuse:CB
Table 1:  JB) approximations for Winnipeg:71, C matrix
B -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0.05 0.1 0.15
true .2973 1677 .0988 .0534 .0235 .0059 .0066 5029 .0821
trl .2820 .1766 .1038 .0550 .0237 .0059 .0066 .0287 .0719
tr2 .2696 1710 1018 .0545 .0236 .0059 .0066 .0290 .0757
SS .1870 1100 .0616 .0294 .0093 .0004 .0118 .0388 .0934
SK .2253 .1298 .0745 .0381 .0147 .0022 .0090 .0326 .0810
Table 2:  JB) approximations for Winnipeg:71, R matrix
B -1 -0.8 -0.6 -0.4 0.2 0.4 0.6 0.8 0.9
True .1052 .0644 .0355 .0157 .0043 .0182 .0452 2094 .1360
trl .1078 .0658 .0359 .0158 .0043 .0180 .0436 .0840 .1110
tr2 .1067 .0654 .0358 .0157 .0043 .0181 .0439 .0861 .1168
SS .0942 .0576 .0313 .0135 .0048 .0188 .0456 .0941 1364
SK .0831 .0487 .0249 .0093 .0064 .0218 .0492 .0970 .1376
Table 3:  JB) approximations for Syracuse:CT, C matrix
B -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0.05 0.1 0.15
true .3082 1797 .1067 .0580 .0256 .0065 .0074 6033 .0987
trl .3168 .1964 1145 .0603 .0260 .0065 .0073 .0325 .0823
tr2 .3056 1914 1127 .0598 .0259 .0065 .0074 .0327  .0869
SS .2013 1181 .0659 .0313 .0097 -.001 .0134 .0445 1115
SK .2323 1321 .0748 .0373 .0136 .0013 .0110 .0387 .0981
Table 4:  JB) approximations for Syracuse:CT, R matrix
B -1 -0.8 -0.6 -0.4 0.2 0.4 0.6 0.8 0.9
True .0885 .0555 .0310 .0139 .0038 .0165 .0410 3085 1224
trl .0930 .0573 .0315 .0140 .0038 .0163 .0395 .0762  .1007
tr2 .0922 .0570 .0315 .0140 .0038 .0164 .0397 .0777 .1048
SS .0789 .0487 .0265 .0113 .0045 .0173 .0413 .0836 .1186
SK .0738 .0448 .0237 .0095 .0054 .0190 .0436 .0865 1217
EXAMPLES Gamma (SG) distributions; and the earlier kernel

density estimate (SK). The SB and SG estimates were
The approximations to B were compared for a usually very bad and the SH estimates were usually
range of for two moderately large configurations: much worse than the SS ones. The SB, SG and SH
Winnipeg:71 (n=101) and Syracuse:CT (n=143). Themethods are therefore no_t discussed fl_thher.
following were calculated: the true valueB)](the 4- Tables 1 to 4 give, respectively, thep)(

order trace approximation (1) (trl); an improvedappr_oximatio_ns_for the C matrix for Winnipeg:71etR
version if A is known which is always better if matrix for Winnipeg:71; the C matrix for Syracuse;C

B>0°(tr2): the C matrix for Syracuse:CT. The valid rangeg &ér
' 1 the CAR are (-0.305, 0.174), (-1.376, 1) (-0.30866)
L3 w23 gk -1 {In(1BA) + BAY; (-1.666, 1) respectively.
n ) ) ) . The values in Tables 1 to 4 confirm that the trace
2'9“;(‘;9#6 e_?ﬁ;aetedeggo ounSIgghiltg]ggorg S(Srllfll)e ;uzlé?l:\% methods give simple accurate approximations pravide
-point). Wi i ; - ; .
smoothed histogram (SS); the fitted Beta (SB) an Pl is noj[ too large _betv_veen about 0%in and
0.6/A), with tr2 better ifA is known. For the larger
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values of >0, the SS and SK approximations are DISCUSSION
usually quite good. Although it is normally unimpeomt
if B is appreciably negative, these two approximations  Simple quick methods for approximating the
are less good then, possibly because it is difffoulthe  determinant term in Gaussian maximum likelihood
histograms to pinpoint the start of the distribotand  appear to be possible given either all the eigemsbf
the fast ascent in the density there. W, or a good approximation to their distributionyt b

It is also necessary to know what effect anmych more problematic otherwise. It appears to be
approximate J{) may have on the estimate @fUsing  gjfficult to find good summaries of the eigenvalue
the Winnipeg:71 R matrix and taking e'We/e'e as 0'1distributi0n for a general regional configuratiohhe

0.2, 0.5, the effect of a 10% or a 20% relativerein trace approximations are easy to use and go@disf
J(B) was considered for a CAR model (with y1The pp S are easy . 9
not too close to its limits and n is not too large.

10% error led to the relative errors in the estanat X ) o
about 8, 5 and 0.6% respectively and the 20% erroplumerical quadrature using an approximation to the
gave approximately double these. Thus relativergiro eigenvalue distribution can be satisfactory if the
approximating J§) do not appear to be so serious forestimated pdf is not too bad and sufficient poats
large B, although for the CAR substantial spatial used in the numerical rule.

dependence means tifflaiust be near its upper limit.

Appendix 1: Values of n, ¢, IR, A(C), Amin(C), b1(C), bx(C), Amin(R). b1(R), bp(R), for the 70 configurations (plus, in the R cohs,
-Amin(U), by(V), bp(V) for the four U matrices)

Region n (@ IR AC) Amin(C) b1(C) p(C) Amin(R) b1(R) p(R)

PR1 11 0.471 1.052 3.686 2.120 0.737 -0.623 0.719 5320 -1.041
PR2 13 0.476 1.389 3.948 2.199 0.741 -0.475 0.685 .5310 -1.035
C71:4 13 0.667 0.877 4.238 2.564 0.635 -0.615 0.620 0.554 -0.851
C71:1 14 0.783 1.116 4.800 2.363 0.828 -0.341 0.553  0.740 -0.712
o1 14 0.696 1.245 4.552 2.312 0.813 -0.428 0.551 682. -0.826
C71:12 14 0.783 1.237 4.700 2.655 0.782 -0.400 0.59 0.703 -0.651
PR4 14 0.348 0.926 3.373 2.125 0.660 -0.889 0.630 .6080 -1.128
C71:17 14 0.696 0.915 4.364 2.384 0.762 -0.545 .55 0.717 -0.742
Cc71:7 16 0.593 1.166 4.266 2.613 0.688 -0.611 0.576  0.630 -0.960
PR3 16 0.630 1.225 4.410 2.279 0.844 -0.406 0.568 7140 -0.785
C71:16 16 0.778 0.935 4.740 2.644 0.746 -0.494 10.67 0.625 -0.692
C86:12 17 0.724 1.234 4.746 2.680 0.738 -0.423 10.62 0.663 -0.745
C71:21 17 0.724 1.135 4.703 2.500 0.738 -0.473 .66 0.597 -0.746
C71:19 18 0.774 1.461 5.070 2.627 0.823 -0.221 D.57 0.724 -0.642
C86:4 19 0.818 1.250 5.051 3.035 0.705 -0.378 0.602  0.669 -0.670
PR5 19 0.394 1.163 4.158 2.285 0.696 -0.578 0.754 .5200 -1.044
C71:20 19 0.667 1.673 4.643 2.651 0.731 -0.542 8.62 0.633 -0.857
C71:24 19 0.667 1.151 4.862 2.654 0.841 -0.162 .60 0.659 -0.731
C86:1 20 0.971 1.646 5.767 2.751 0.910 -0.027 0.526  0.837 -0.397
C71:10 21 0.811 0.971 4.982 2.684 0.825 -0.354 0.59 0.772 -0.517
C86:17 21 0.757 1.330 4.945 2.729 0.760 -0.411 .60 0.660 -0.745
C86:19 21 0.784 1.084 4.933 2.809 0.794 -0.354 8.57 0.754 -0.555
C71:18 22 0.744 1.269 5.006 2.571 0.788 -0.430 0.57 0.687 -0.757
C71:22 23 0.854 1.488 5.534 2.804 0.898 -0.101 10.55 0.828 -0.478
010 25 0.689 1.386 4.994 2.536 0.806 -0.401 0.588 .67 -0.800
PR7 25 0.467 1.414 4.532 2.482 0.738 -0.475 0.694 .5620 -1.055
04 26 0.702 1.599 5.131 2.587 0.808 -0.287 0.634 6460. -0.776
04U 26 * * * * * * 0.798 0.342 -1.017
C86:24 26 0.915 1.527 5.720 2.872 0.868 -0.200 £0.52 0.799 -0.525
PR6 27 0.612 1.297 4.789 2.413 0.815 -0.426 0.580 .7080 -0.802
PR9 27 0.510 1.499 4.662 2.406 0.757 -0.452 0.594 .6180 -0.944
C71:13 28 0.667 1.315 4.789 3.079 0.660 -0.430 0.74 0.523 -0.757
C86:20 28 0.863 1.557 5.475 3.025 0.807 -0.309 0.55 0.740 -0.581
C86:22 28 0.804 1.747 5.646 3.001 0.801 -0.112 .59 0.705 -0.570
C71:15 29 0.755 1.744 5.357 2.894 0.856 -0.146 .56 0.711 -0.651
02 29 0.679 1.867 5.281 2.835 0.826 -0.147 0.673 630. -0.727
PR8 30 0.455 1.306 4.604 2.448 0.732 -0.479 0.754 5220 -0.983
PR11 30 0.491 1.209 4.546 2.408 0.776 -0.522 0.630 0.668 -0.923
C86:7 32 0.898 2.016 5.893 3.422 0.795 -0.143 0.510 0.742 -0.598
PR10 32 0.644 1.467 4.968 2.719 0.775 -0.382 0.654 0.613 -0.821
C86:16 33 0.820 1.403 5.413 2.973 0.788 -0.325 .58 0.725 -0.627
C71:25 35 0.708 1.358 5.102 2.769 0.737 -0.473 10.60 0.641 -0.821
C86:10 36 0.701 1.091 4.867 3.064 0.634 -0.580 £.64 0.558 -0.790
C86:18 39 0.753 1.270 5.267 2.948 0.694 -0.473 0.71 0.582 -0.724
05 40 0.720 1.476 5.385 2.783 0.793 -0.348 0.660 669. -0.748
C71:8 40 0.653 1.136 5.044 2.637 0.748 -0.515 0.622 0.670 -0.750
08 41 0.766 1.323 5.402 2.591 0.814 -0.404 0.561 7160. -0.721
C71:5 42 0.532 1.290 4.555 3.082 0.600 -0.564 0.845  0.427 -0.960
C86:13 43 0.630 1.490 4.899 3.167 0.620 -0.487 .78 0.441 -0.863
C71:26 45 0.765 1.475 5.492 2.898 0.788 -0.362 8.64 0.637 -0.733
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C71:14 48 0.637 1.201 4.953 3.020 0.710 -0.433 0.66 0.606 -0.774
03 49 0.731 1.946 5.908 3.097 0.903 0.037 0.651 140.7 -0.660

09 50 0.800 1.575 5.654 2.834 0.805 -0.304 0.569 714. -0.662

C71:9 51 0.763 1.358 5.399 2.899 0.702 -0.453 0.691  0.580 -0.735
C86:26 53 0.802 1.523 5.624 2.980 0.775 -0.386 0.59 0.673 -0.726
C86:9 71 0.737 1.407 5.480 3.017 0.703 -0.459 0.733  0.605 -0.760
PR 73 0.716 1.544 5.502 2.762 0.812 -0.340 0.601 6990. -0.737

PRU 73 * * * * * 0.618 0.644 -0.477
C86:8 76 0.884 1.686 5.923 3.274 0.788 -0.259 0.598 0.702 -0.576
C71:2 77 0.785 1.243 5.461 3.351 0.660 -0.506 0.656  0.600 -0.688
C71:3 79 0.693 1.146 5.168 3.327 0.597 -0.585 0.742  0.507 -0.802
C71:6 99 0.606 1.401 5.422 3.426 0.509 -0.534 0.798 0.401 -0.864
C71:11 101 0.777 1.650 5.742 3.384 0.726 -0.342  09D.7 0.626 -0.708
C71:27 101 0.756 1.594 5.738 3.279 0.684 -0.411  20.7 0.580 -0.713
06 130 0.804 1.888 6.111 3.029 0.868 -0.111 0.894 .6010 -0.637

013 143 0.883 1.590 6.059 3.250 0.767 -0.355 0.600 0.708 -0.616
C86:11 192 0.831 2.334 6.822 4.080 0.733 -0.124 24.6 0.627 -0.728
C86:11U 192 * * * * * 0.627 0.618 -0.336
C71:23 351 0.746 1.277 5.582 3.434 0.615 -0.547 40.7 0.542 -0.752
o7 363 0.756 1.341 5.702 3.563 0.618 -0.536 0.778 .5390 -0.756

o7uU 363 * * * * * 0.648 0.694 -0.092
o1 447 0.855 1.866 6.522 3.826 0.739 -0.295 0.696 0.664 -0.657
C86:23 731 0.776 1.819 7.084 4.749 0.651 -0.366 7M.7 0.573 -0.710
012 7249 0.711 2.402 7.375 5.025 0.590 -0.115 0.936 0.432 -0.756

Region codes (U for U matrix) - seethe earlier text for details

Canada 1971 (C71) and Canada 1986 (C86): C71:1 & C86:1 Brantford; C71:2 Calgary; C71:3 Euhton; C71:4 & C86:4 Guelph; C71:5
Halifax; C71:6 Hamilton; C71:7 & C86:7 KingstonC71:8 & C86:8 Kitchener-Waterloo; C71:9 & C86:9ridon; C71:10 & C86:10

Oshawa; C71:11 & C86:11 & C86:11U Ottawa-Hull; 1CI2 & C86:12 Peterborough; C71:13 & C86:13 Regif¥1:14 St. Catherines -
Niagara Falls; C71:15 St. Johns; C71:16 & C86816John's; C71:17 & C86:17 Sarnia; C71:18 & C86Shskatoon; C71:19 & C86:19
Sault Ste. Marie; C71:20 & C86:20 Sherbrooke; 2T1Sudbury; C71:22 & C86:22 Thunder Bay; C71&886:23 Toronto; C71:24 &

C86:24 Trois Rivieres; C71:25 Victoria; C71:26086:26 Windsor; C71:27 Winnipeg.

Puerto Rico: PR & PRU: Puerto Rico; PR1: Arecibo; PR2: CaguBR3: Mayaguez; PR4: Ponce; PR5: San Juag;Arétibo/Mayaguez;
PR7: Arecibo/Ponce; PR8: Arecibo/San Juan; PR@u@s/Ponce; PR10: Caguas/San Juan; PR11: MayBguee.

Others: O1: Buffalo; O2: China; 0O3: Columbus, Ohio; &44U: Eire; O5: Ghana; 06: Henan, China; OD&U: Houston; O8: Kansas-
Nebraska; O9: Nigeria; 010: South Western Ol@)d;1: Syracuse:BG; 012: Syracuse:CB; 013: SyraClse

With ever increasing computer power and the REFERENCES

availability of better algorithms, it becomes easiaed
quicker to evaluate the determinant term for a ming
but at the same time, researchers then want taaise 2.
sets with increasingly large n. Thus, approximaist f
techniques are always likely to have a use. Atgrgs

for a large n, a coarse approximation is recommeole 5
see if significant spatial dependence is presemt an
perhaps to choose a more appropriate form of trgeio 4-
(e.g. CAR or SAR), followed by exact methods ifsit

The Monte Carlo approximation of Berry and Péte 5
which also involves finding or estimatingC), would

also be worth considering in many cases.
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