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Abstract: This study was concerned with the characterization of solutions in the matching problem. 
The general mixed-integer programming problem is given together with the definition of the convex 
hull of the integer solutions. In addition, the matching problem is defined as an integer problem and an 
algorithm is described to find the optimum matchings. Some illustrative examples are introduced to 
clarify the presented theory in the study. 
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INTRODUCTION 

 
 Shortly after the development of his simplex 
algorithm for linear programs, Dantzig[1] pointed out 
the significance of solving integer programming 
problems. Many problems involving nonconvex region 
or functions can be converted into integer programs, 
e.g. linear programs with separable, piecewise linear, 
but nonconvex objective functions. The challenge 
raised by Dantzig was to develop effective procedures, 
such as his simplex method was proving to be for linear 
programs, to handle these more difficult integer 
programs. 
 Today, there are codes, including commercial 
codes, which effectively solve a small, but important, 
class of integer programs. This class is not well defined 
but can be said to include integer programs with linear 
programming relaxations, i.e. up to several thousand 
rows and columns, but with a small number of integer 
variables xj, j∈J, or a strong linear programming 
relaxation. 
 
Mixed-integer programming problem: The general 
mixed-integer programming problem can be formulated 
mathematically as follows[2]: 
Maximize z = cx, 
Subject to 
Ax = b, (1) 
xj ≥ 0, (j = 1, 2,…,n)  (2) 
xj integer, j∈J ⊆ {1, 2,…,n}, J ≠ φ. (3) 
 An integer programming problem is a pure integer 
problem if J = {1, 2,…,n}. The linear programming 
relaxation of the integer programming problem is the 
corresponding linear program with constraints (1) and 
(2) imposed, but not (3). 
 
Strong linear programming relaxations: The 
considerations given here turn out to be very important  
 

practically. Any method that solves linear programs as 
part of a method to try to solve integer programs will 
profit from a better linear programming formulation. 
 Earlier, we defined the integer programming 
problem and its linear programming relaxation. 
Correspondingly, define the convex hull of integer 
solutions to be 
PI = conv{xxj ≥ 0, j = 1, 2,…,n; xj integer, j∈J; Ax = b }(4) 
and the linear programming polyhedron to be 
 PL = {xxj ≥ 0, j = 1, 2,…,n; and Ax = b } (5) 
Clearly, PI ⊆ PL. 
 There are many linear programs giving the same PI 
but different PL

,s and this is illustrated in the following 
examples: 
 
Example 1: Consider 
PI = conv{(x1, x2)  2x1 ≤ 7, 4x2 ≤ 9, x1 ≥ 0, x2 ≥ 0 and 
integers}, 
and 

1LP  = {(x1, x2)  2x1 ≤ 7, 4x2 ≤ 9, x1 ≥ 0, x2 ≥ 0}, 

2LP  = {(x1, x2)  x1 ≤ 3, x2 ≤ 2, x1 ≥ 0, x2 ≥ 0}. 

 The polyhedra PI, 1LP and 
2LP  are shown in Fig. 

1a and 1b. 
 It is clear that PI = 

2LP , while PI ⊂ 
1LP . 

 
Example 2: Consider the constraints: 
x1 + x2 ≤ 2y, 0 ≤ xj ≤ 1, j = 1, 2 and y = 0 or 1. 
 The two polyhedra PI and PL are shown in Fig. 2a 
and 2b. 
PI = {(x1, x2, y)0 ≤ x1 ≤ y, 0 ≤ x2 ≤ y, 0 ≤ y ≤ 1}. 
If we had originally stated the problem as having 
constraints 
0 ≤ x1 ≤ y,  0 ≤ x2 ≤ y, y = 0 or 1, 
then the linear programming relaxation would have had 
PL = PI. 
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Combinatorial Polyhedra: Now, we defined PI to be 
the convex hull of integer solutions (xj integer for j∈ J) 
of a linear program. Here, we consider PI to be the 
convex hull of some combinatorially defined polyhedra. 
 The prototype of this study is Edmonds[3,4] work on 
the matching polytope. His work went beyond the 

network flow class and yet converted a combinatorial 
optimization problem into a linear program. Even 
though that linear program has an enormous number of 
inequalities, he described a good (polynomially 
bounded) algorithm for solving the matching problem. 
 In what follows, the matching problem formulation 
is given and the solution concept is defined. 
 
The matching problem formulation: Given an 
undirected graph with vertices V and edges E, the 
matching problem is to find subset M of edges so that 
no two edges of M meet the same vertex and maximize 

( )
e M

c e
∈
�  over all such M, where (c(e), e∈E) is given as 

the objective function. 
 The matching problem can be formulated 
mathematically as the following integer program 
Maximize )e(x)e(c

Ee
�
∈

  (6a) 

Subject to 
1)e(x

vmeetse
≤�  ,  (6b) 

x(e) ≥ 0 and integer, e∈E. (6c) 
However, the matching polytope PI is 
PI = conv{x(e), e∈E x(e) = 0 or 1 and M = {e x(e) = 
1} is matching}.  
 There are various linear programming relaxations 
of the matching problem, but the focus here is to begin 
with PI and try to learn as much as possible about it. In 
particular, we would like to characterize all of its facets. 
This characterization was given by Edmonds as  

( )

1
( )

2e D S

S
x e

∈

−
≤� , (7) 

where S is a subset of nodes of odd cardinality and 
D(S) is the subset of edges e∈E with both ends of e 
meeting nodes of S. That is, PI is equal to the solution 
set 
{x(e), e∈E x(e) ≥ 0, 1)e(x

vmeetse
≤�  and 

( )

1
( )

2e D S

S
x e

∈

−
≤� }. 

 When we refer to the matching polytope, we mean 
the convex hull of incidence vectors of sets M which 
are matchings. When we say the linear characterization 
of the matching polytope, we mean the description of 
all additional inequalities to convert the problem to a 
linear program as Edmonds did for the matching 
problem. 
However, Edmonds’ algorithm for finding optimum 
matchings did not depend on knowing which were 
actually facets. In any case, the facets were among the 
set given. 
 Other polytopes whose linear characterizations 
have been found are the polytope of subsets M of E 
which are independent in two matroids M1 and M2 over 
E[5] and the polytope of collections of edges which are 
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of even degree at certain nodes and of odd degree at the 
other nodes[6]. 
 
Example 3: At the end of an academic year, each 
student has to take an examination with each of his or 
her teacher. How many examination period are 
required?  
 We can see what is involved if we consider a 
simple example with four students and three teachers. 
We represent the students and teachers by the vertices 
of a bipartite graph and join a student-vertex to a 
teacher-vertex whenever the student needs to be 
examined by the teacher. An example of such a graph 
is:  
Students tutors 
1 A 
 
2 B 
 
3 C 
 
4 
 
 If two edges meet at a common vertex, then the 
corresponding examination cannot take place 
simultaneously. So the problem reduces to that of 
splitting the graph into subgraphs in which no two 
edges meet in a common vertex-that is, into matchings. 
In this particular case, the minimum number of 
matchings which decompose the graph is 3 and a 
suitable timetable is as follows: 
 
Students tutors 
1 A 
2 B 
3 C 
4 

9 am 
Students tutors 
1 A 
2 B 
3 C 
4 

10 am 
 
Students tutors 
1 A 
2 B 
3 C 
4 

11 am 
 
The corresponding edge decomposition is 
{1A, 2B, 4C}, {1C, 2A, 3B}, {2C, 3A, 4B}. 
 
 
 
 

Note that this can also be thought of as an edge-
coloring problem. If we color the 9 am edges red, the 
10 am edges yellow and the 11 am edge bleu, then the 
colors appearing at each vertex (student or teacher) are 
different. 
 In these scheduling problems the graphs under 
consideration are all bipartite graphs. The problem 
therefore reduces to that of finding the chromatic index 
of a bipartite graph and this problem is answered 
completely by König’s theorem (theorem 12.8)[7] the 
smallest number of matchings needed is equal to the 
largest vertex-degree in the bipartite graph. Thus the 
matching problem is solved in this case. 
 

CONCLUSION 
 
 It has been shown that the matching problem can 
be converted into a pure integer programming problem. 
The characterization of solutions for such problem has 
been given. Some illustrative examples have been 
introduced to clarify the developed theory in the study. 
However, there are many other aspects should be 
studied in the area. Some of these points are: 
A computer code is needed to test how the procedure 
works for the characterization of solutions in the 
matching problem. 
 A study is required to deal with the matching 
problem under randomness and fuzziness. 
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