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INTRODUCTION 

 
 By SL2 we mean the group of 2x2 matrices with 
determinant 1. We write SL2(R) for those elements of 
SL2 having coefficients in a ring R. In practice, the ring 
R will be integers Z, rational numbers Q and real 
numbers R. We call SL2(Z) the modular group Γ . 
 If L is lattice in complex numbers-C, then we can 

always select a basis, L = ( 1 2,ω ω ) such that 2

2

ωτ
ω

=  is 

an element of the upper half-plane ℵ , i.e. has 0imτ �  
which is not real. If D consist of all u ∈ℵ  such that 

1 1
Re , 1

2 2
u u− ≤ ≤ ≥  and T= 1 2

0 1
� �

∈ Γ� �
� �

, 

S=
0 1
1 0

−� �
∈ Γ� �

� �
 then D is a fundamental domain for 

modular group Γ  in ℵ , Then, S,T ∈ Γ  generate 

modular group Γ [1]. We define characteristic 
'

ε
ε
� �
	 

� �

 

where , 'ε ε  are integers according to characteristics 
1 1 0 0

, , , (mod 2)
' 1 0 1 0

ε
ε
� � � � � � � � � �

≡	 
 	 
 	 
 	 
 	 

� � � � � � � � � �

 but 1
(0, ) 0

1
θ τ� � ≡	 

� �

 for theta 

function θ . If n is any positive integer we define 
)(0 nΓ  to be the set of all matrices A = α β

γ δ
� �
� �
� �

 in 

modular group Γ  with (mod )nγ ≡  and but  

0 ( )nΓ  = (1) : (mod )n
α β

γ
γ δ


 �� �� �∈ Γ ≡� �� �
� �� �� �

[2,3]  

 It is easy to verify that 0 ( )nΓ  is a subgroup Γ . 
If We consider the congruence subgroup (2)Γ , Then  

 { }(2) (1) : , (mod 2)X W W I W XΓ = ∈ Γ ≡ ≡  
where I is the unit matrix and for matrices 

, ,X S X T X U= = =  the three subgroups (2)SΓ , 

(2)TΓ  , (2)UΓ  are conjugate subgroups of Γ (1) for 
0 1
1 0

S
−� �

= � �
� �

 , 1 1
0 1

T
� �

= � �
� �

 , 1 0
1 1

U
� �

= � �
� �

, 0 1
1 1

V
−� �

= � �
� �

. 

 We shall need to study such groups when we 
introduce theta functions.  
 We note that the above matrices, defined V = ST = 

0 1
1 1

−� �
� �
� �

 and 2 1 1
1 0

V
− −� �

= � �
� �

= I , U = TST form a set coset 

representatives of Γ (1) modulo Γ (2)[4]. 
 The subgroup ( )n℘  of Γ (1) is generated by V2 
and S where k is an odd positive integer and the set of 

elements in ( )k℘  of the form α β
γ δ
� �
� �
� �

. 

 
Theorem 1: Let n be any prime and 

1
, 1S Tτ τ τ

τ
= − = +  be the generations of the full 

modular group Γ , then for every a b
W

c d
� �

= ∈ Γ� �
� �

, 

0 ( )W n∉ Γ  there exists an element 0 ( )
p r

K n
s t

� �
= ∈ Γ� �
� �

. 

Proof: If a b
W

c d
� �

= ∈ Γ� �
� �

 where c  is not 0(mod )c n≡  

then we wish to find a b
W

c d
� �

= ∈ Γ� �
� �

, with 

0(mod )s n≡  and an integer q , 0 q n≤ ≤ , such that  
p r

  
s t

p r 0 -1 1 q p r 0 -1
s t 1 0 0 1 s t 1 q

qa b
W ST

c d
� � � �

= =� � � �
� � � �

� �� �� � � �� �
= =� �� �� � � �� �
� �� �� � � �� �

. 

All matrices here are nonsingular so we can solve for 
p r
s t
� �
� �
� �

 to get 
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1a b 0 -1
  

c d 1 w

a b w 1
c d -1 0

p r

s t

qa b a

qc d c

−
� � � �� �

=� � � �� �
� � � �� �

−� �� � � �
= =� �� � � �−� �� � � �

. 

 Choose q to be that solution of the congruence 
qc (mod )d n≡  with 0 q n≤ ≤ . This is possible since c  
is not 0(mod )c n≡ , now take s = qs-t , p = wp-r , r = a 

, t = c , then 0(mod )s n≡  so 0 ( )
p r

K n
s t

� �
= ∈ Γ� �
� �

. 

 We define the first order theta function with 

characteristic 
'

ε
ε
� �
	 

� �

 , Cu ∈  and theta period τ  by 

 
2

( , )
'

'
exp ( ) 2 ( )( )

2 2 2N

u

N i i N u

ε
θ τ

ε
ε ε επ τ π

∞

=−∞

� �
	 

� �


 �= + + + +� �
� �

�
 

where N is a integer[5]. 
 It has been seen at several points that the theta 
functions whose characteristics are pair of integers 

'
ε
ε
� �
	 

� �

 satisfy simpler identities than those for which 

',εε  are general real numbers. As ',εε  are residue 
classes (mod2) it is natural to concentrate attention on 

the four functions 1
( , )

1
u qθ � �

	 

��

, 0
( , )

1
u qθ � �

	 

� �

, 1
( , )

0
u qθ � �

	 

� �

 and 

0
( , )

0
u qθ � �

	 

� �

 which we shall call the four principal theta 

functions. For any integers m,n, when ',εε  are 
integers, we have  

2
( , ) ( 1) ( , )

' 2 '
nm

u q u q
n

εε ε
θ θ

ε ε
+� � � �

= −	 
 	 
+� � � �
. 

When ',εε  are integers , the theta series defined by  
21 1 '

( ) 2 ( )( )
2 2 2( , )

'

n i n u

n

u q q e
ε πε

θ
ε

∞ + + −

=−∞

� �
=	 


� �
�  

can be converted into fourier series by pairing off the 

terms which 
2

n
ε+  has equal and opposite values, n 

with -n if 0ε =  and n with -(n+1), leaving in the 
former case an unpaired term for n= 0, whose values is 

1. The terms so paired have a common factor 
2

(
2)

n

q
ε+

 
and the sum of their remaining factors is 

'
2 (2 )( )

2
Cos n u

ε πε+ − . Thus we have the four series 

21
( )

2
1

( , ) 2 ( 1) (2 1)
1

nn

n

u q q Sin n uθ
∞ +

=−∞

� �
= − +	 


� �
�  

21
( )

2
1

( , ) 2 (2 1)
0

n

n

u q q Cos n uθ
∞ +

=−∞

� �
= +	 


� �
�  

20
( , ) 1 2 ( 1) 2

1
n n

n

u q q Cos nuθ
∞

=−∞

� �
= + −	 


� �
�  

20
( , ) 1 2 2

0
n

n

u q q Cos nuθ
∞

=−∞

� �
= +	 


� �
� . 

 
Moreover, 

1 1
( ) ( )

0 1 2
u u

πθ θ� � � �
= +	 
 	 


� � � �
 

1
4

0 1
( ) ( )

1 1 2
iuu iq e u

πτθ θ� � � �
= − +	 
 	 


� � � �
 

1
4

0 1
( ) ( )

0 1 2
iuu q e u

π πτθ θ� � � � += +	 
 	 

� � � �

. 

 If N is a positive integer then theta function order n 
or nth is defined by  

2(
2( , ) ( , )

'
n

M
M

M
u C Nu N

N

µ
µ

θ τ θ τ
µ

µ

∞

=−∞

� �+	 
� �
= 	 
	 


� � 	 

	 
� �

�  

where 0 1M N≤ ≤ −  . 
 In fact, An theta function order n my be found by 
taking the product of n first theta functions. Its 

characteristic
'

µ
µ
� �
	 

� �

 is given by the matrix sum of the n 

characteristic
'

ε
ε
� �
	 

� �

. The CM is indepent on u put my 

depent on τ .  
CM satisfy CNK+M = CM .exp( )iπ . ( )KΦ   
where 

2

( ) ( ) '2 2( )
M M

K N K N K
N N N

ε ε
ετ

� � � �+ +� � � �
Φ = + + +� � � �

� � � �� � � �
� � � �

. 

 Functions 
0

( , )
0

uθ τ� �
	 

� �

 has zeros at the points 

1 2

1 1
2 2

u r rτ τ= − + + . These points form a lattice, that 

1-exp [ ](2 1) 2k uτ− +  has zeros at points u where 

(2 1) 1(mod 2)k τ− ≡  or equivalently. Hence function 
theta order n defined by  

[ ]{ }
1

( , ) 1 exp (2 1) 2u i k uτ π τ
∞

Φ = + − −∏  

[ ]{ }
1

1 exp (2 1) 2i k uπ τ
∞

+ − +∏  
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has precisely the same zeros as first order theta 
0

( , )
0

uθ τ� �
	 

� �

 provided the product converges. Thus we 

have absolute and uniform convergence of the first 
infinite product for 0imτ � . For periods 1 and τ  , we 
have  

[ ]{ }
1

( 1, ) 1 exp (2 1) 2 2u i k uτ π τ
∞

Φ + = + − + +∏  

[ ]{ }
1

1 exp (2 1) 2 2i k uπ τ
∞

+ − − −∏ = ( , )u τΦ  

[ ]{ }
1

( , ) 1 exp (2 1) 2u i k uτ τ π τ
∞

Φ + = + − +∏  

[ ]{ }
1

1 exp (2 1) 2i k uπ τ
∞

+ − −∏  

Setting τπiq exp=  we may write  

2 1

1

( , ) 1 exp 2ku q iuτ π
∞

−� �Φ = +� �∏  

2 1

1

1 exp( 2 )kq iuπ
∞

−� �+ −� �∏  

 It was introduced by Dedekind function ( )η τ  and 
is defined by the equation 

( )212

1

(( ) 1
i

in

n

e e
π τ

π τη τ
∞

=

= −� . 

 The Dedekind function ( )η τ  is cups form of 

weight 
1
2

 on (1)Γ  and satisfy 

1
2( ) ( )( ) ( )A Aηη τ ν γτ δ η τ= +  

for all A = (1)
α β
γ δ
� �

∈ Γ� �
� �

[6].  

 Dedekind proved the following law oh 
transformation of log ( )η τ  under the action of the 

elliptic modular group. If A = 
α β
γ δ
� �

∈ Γ� �
� �

 then we 

have ( ) 1
log ( ) log ( ) 0

12
A i forη τ η τ π β γ= + =  

and  

( ) 1
log ( ) log ( ) log

2
1

( ) ( , ), 0
12

A
i

i ig for c

γτ δη τ η τ

π α δ π γ δ
γ

+� �= + � �
� �

+ − >
 

where ( )A
ατ βτ
γτ δ

+=
+

, all logarithms are taken with 

respect to the principal branch and ( , )g γ δ  is a 
Dedekind sum[7].  

 An important connection between 
0

(0, )
0

θ τ� �
	 

� �

 and 

( )η τ  is given by  

20 1
(0, ) ( ) / ( 1)

0 2
τθ τ η η τ� � +≡ +	 


� �
. 

  The infinite product has the form (1 )nu−∏  

where τπieu 2= . If τ ∈ℵ  then 1u �  so the product 

converges absolutely and non-zero. 
 Moreover, since the convergence is uniform on 
compact subsets of ℵ , ( )η τ  is analytic on ℵ . This 
result and other properties of ( )η τ  following from 
transformation formulas which describe the behavior of 

( )η τ  under elements of the modular group Γ . 
i. For the generator 1Tτ τ= +  we have  

( )
( 1)

2 ( 1)12

1

( 1) 1
i

in

n

e e
π τ

π τη τ
+ ∞

+

=

+ = −�  

ii. For the other generator 
1

Sτ
τ

= −  we have the 

( )
1
2

1
( ) . ( )iη τ η τ

τ
− = − . 

 For proof, let iyτ = where y >0 and then extend 
the results to all τ ∈ℵ  by analytic continuation. The 
transformation formula becomes 

1
2( / ) ( )i y y iy for iyη η τ= =  and this is equivalent 

to 
1

log( / ) log ( ) log
2

i y iy yη− = . 

and  

2

1

2
2

1 1 1

1
log ( ) log (1 )

12

1 1
(1 )

12 12

ny

n

mny
ny

n n m

iy y e

e
y e y

m

π

π
π

η π

π π

∞
−

=

−∞ ∞ ∞
−

= = =

= − + −

= − + − = − −

∏

� ��
 

= 
2

2
1

1 1
12 1

my

my
m

e
y

m e

π

ππ
−∞

=

� �
− − � �−� �

�  

we obtained ( )
1
2

1
( ) ( )iη τ η τ

τ
− = −  since  

2 2 /
1 1

1 1 1 1
1 1

1 1 1
( ) log

12 2

my m y
m mm me e

y y
y

π π

π

∞ ∞

= =

� � � �−� � � �− −� � � �

− − = −

� �
[2] 

 
Lemma 1: Let Γ  be a subgroup of (1)Γ . If ( )ϕ τ  is a 
modular form of weight for Γ  with multiplier system t  
then we write ( ) ( , , )A n tϕ τ ∈ Γ . If ( ) ( , , )A n tϕ τ ∈ Γ  then 
the  
ψ -transform ψϕ  of ϕ  is defined by  

{ } 1( ) ( ) / ( , ) ( , )ψϕ τ ϕ τ ψ ξ ψ τ ϕ ψ τ−= =  
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Here, ( , ) ( )nξ ψ τ γτ δ= +  where * *
A

γ δ
� �

= � �
� �

 

If 1 1 1 2 2 2( ) ( , , ) ( ) ( , , )A n t and A n tϕ τ ϕ τ∈ Γ ∈ Γ  then 
we have 

1 2 1 2 1 2( ). ( ) ( , , . )A n n t tϕ τ ϕ τ ∈ Γ +  

1 1
1 2

2 2

( )
( , , )

( )
t

A n n
t

ϕ τ
ϕ τ

∈ Γ − . 

 Let k  be a prime number greater than 3. If σ  is a 
even integer such that ( 1) 0( 24)k Modσ − ≡  , then 

( , )
( )

( )
k

ρ
η ττ
η τ

� �
Θ = 	 


� �
 is a modular function on the group 

0 ( )kΓ . The multiplier system ρ  of ( )τΘ  is given by 

( )A
k

ρδρ � �= 	 

� �

 where A
α β
γ δ
� �

= � �
� �

∈ 0 ( )kΓ  and 
k
δ� �
	 

� �

is 

Legendre’s symbol.  
Lemma 2: The functions 0

(0, )
1

θ τ� �
	 

� �

 , 0
(0, )

0
θ τ� �
	 

� �

 and 

1
(0, )

0
θ τ� �
	 

� �

 are entire modular form of weight 
1
2

 for the 

groups (2)SΓ , (2)TΓ  and (2)UΓ , respectively. Further, 

 
0

(0, )
0

θ τ� �
	 

� �

 | K = 4
0

(0, )
1

i

e
π

θ τ
− � �

	 

� �

 

0
(0, )

0
θ τ� �
	 

� �

 | K2 = 2
1

(0, )
0

i

e
π

θ τ
− � �

	 

� �

 

Also , for n ≥  0 

The functions 0
(0, )

1
nθ τ� �
	 

� �

 , 0
(0, )

0
nθ τ� �
	 

� �

 and 1
(0, )

0
nθ τ� �
	 

� �

 

are entire modular form of weight 
2
n

 for the groups 

(2)SΓ , (2)TΓ  and )2(UΓ , respectively. 
 
Theorem 2: Let k  be a prime number greater than 3 
and σ  is a even integer such that 

)24(0)1( Modk ≡−σ  and put r = nρ  where n is a 

positive integer. If the characteristics 
'

ε
ε
� �
	 

� �

 and 
'

µ
µ
� �
	 

� �

 

are 
1 0 0

, , , (mod 2)
' ' 0 1 0

ε µ
ε µ
� � � � � � � � � �

≡	 
 	 
 	 
 	 
 	 

� � � � � � � � � �

, the )(τφkr  is a 

modular function on the group )(0 kΓ . The multiplier 

system ρ  of )(τΘ  is given by ( )A
k

ρδρ � �= 	 
� �
 where 

A
α β
γ δ
� �

= � �
� �

∈ 0 ( )kΓ  and 
k
δ� �
	 
� �

is Legendre’s symbol.  

 

Proof: ( )krφ τ  ≠ 0 is regular in ℵ  . If each positive 
integers σ  , n  and even positive integer r = ρn . 

Therefore, the characteristics thr  order theta functions 

are 
0

, (mod 2)
' ' 0

r r

r r

ε µ
ε µ

� � � � � �
≡	 
 	 
 	 


� � � � � �
 , then we have  

( )krφ τ = 

2 2 2

2
2

0
(0, ) (0, )

' 0
0

(0, ) (0, )
' 0

1
/ ( ) / ( )

2 2 2
1 ( ) / ( 1)/ ( 1)

2

n n

n n

n n

k k

k k k k
k k

k

ρ ρ

ρ ρ

ρ ρ

ε
θ τ θ τ

ε
µ

θ τ θ τ
µ

τ τ τη η τ η η

τ η ρ η τη η τ

� � � �
	 
 	 

� � � �= =
� � � �
	 
 	 

� � � �

� + � � + + �� � � �+� � � �	 
 	 

� � � �	 
 	 
=

+ +� �	 
 	 
+� �	 
 	 
� �� � � �

 

Setting 
1

2
τλ +=  and observing that 

( )
( )

( )
k

ρ
η λλ
η λ

� �
Φ = 	 


� �
, we obtained   ( )krφ τ =

2

2

( )
(2 )

n
λ
λ

� �Φ
	 
Φ� �

 

By Lemma1 and from the equation 

( ) . ( )A
k

ρδτ τ� �Φ = Φ	 
� �
, we have 

 

2
2

2

2

( )
 ( )

( ) ( )
(2 )

(2 )

n

kr kr

A kA
k

k

ρ

ρ ρ

ρ

δ λ
λ δφ τ φ τ
λ δ λ

� �� � Φ	 
� �� �Φ � �� �	 
= = =	 
 � �	 
Φ � �� �� � Φ	 
� �
� �� �

.  

 Finally, we consider the expansions of )(τφkr  at 
the parabolic cusp ∞  and 0 . Hence, We have  

 2

1

( 1)
( ) exp 1 .

12
iN

N
N

i k
C e π τπ ρτ

∞
−

=

− � �� �Φ = +	 
	 

� �� �

�  as the 

Fourier expansion of )(λΦ  function at ∞  . ( )krφ τ  
has the Fourier expansion at ∞  of the form 

 2

1

( ) 1 . iN
N

N

C e π τφ τ
∞

=

= +�  

 2 /2

1

( 1)
( ) exp 1 .

12
iN k

N
N

i k
k H e

k

ρ
π τπ ρτ

τ

∞− −

=

− � �� �Φ = +	 
	 

� �� �

�  

as the Fourier expansion at 0. Hence  

 ( )krφ τ = 2 /

1

( 1)
exp 1 .

8
iN k

N
N

r i k
R e

k
π τπ

τ

∞
−

=

− � �� � +	 
	 

� �� �

� . 

It follows that ( )krφ τ  is a modular function on 0 ( )kΓ . 
 

Theorem 3:  [ ]
1
2( , , , ) ( ( )P i

ατ βη α β γ δ γτ δ η τ
γτ δ

� �+ = − +� �+� �
 

where α β
γ δ
� �∈ Γ� �
� �

 , γ >0 and  

( , , , ) exp ( , )
12

P i q
α δα β γ δ π δ γ

γ

 �� �+� �= + −� �	 

� �� �� �

 

and 
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1

1

1
( , )

2

k

r

r hr hr
q h k

k k k

−

=

� �� �= − −� �	 

� �� �

�  

Note: The sum ),( khq  is called a Dedekind sum . 
 
Theorem 4: The set of modular forms, the entire 
modular forms and the cups forms each of same 
dimension for (1)Γ , form vector space over the 
complex field. 
 Let g be a homogeneous modular form of 
dimension -k for the group Γ  in the variables 1 2,ω ω . 

We write this in the form 1

2

g
ω
ω

� �� �
	 
� �
� �� �

 and consider 1

2

ω
ω
� �
� �
� �

 

as a matrix. We define the function Bg  by  

 1

2
Bg

ω
ω

� �� �
	 
� �
� �� �

 = 1

2

g B
ω
ω

� �� �
	 
� �
� �� �

  

where 
0

M
α β

δ
� �

= � �
� �

 , α >0 , αγ = n and 1

2

im
ω
ω

>0 

and call it a transform of g  of order n. It satisfies the 
following equations 

 1

2

k
Bg

ω
λ λ

ω
−� �� �

=	 
� �
� �� �

 1

2
Bg

ω
ω

� �� �
	 
� �
� �� �

 for , 0Cλ λ∈ ≠  

 1

2
Bg M

ω
ω

� �� �
=	 
� �

� �� �

1

2
Bg

ω
ω

� �� �
	 
� �
� �� �

 for BM
α β
λ δ

−� �
= ∈ Γ� �−� �

 

 1

2
MBg M

ω
ω

� �� �
=	 
� �

� �� �

1

2
Bg

ω
ω

� �� �
	 
� �
� �� �

 for BM
α β
λ δ

−� �
= ∈ Γ� �−� �
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and 
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− = , so f  is invariant under every 

transformation in Γ . Also, f  is analytic and non-zero 
in ℵ  because ( )τ∆  is analytic and non-zero and ( )η τ  
never vanishes in ℵ . Next we examine the behavior of 
at i∞ . We have  
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where ( )I x  denotes a power series in x  with integer 

coefficients. Thus, 24 ( )η τ  has a first order zero at 
0x = [8]. 

At first we see the infinite products  
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which it converges absolutely. 
 
Theorem 6: We have the relations 
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Dedekind's η -function which defined by the infinite 
product 
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where τIm > 0 and k is a integer. 
 
Proof 
a. Let us recall the formula  
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If k integer, then we have 
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According to above, we have 
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from the Dedekind's η -function defined by the infinite 
product 
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where m = 'n . 
b. According to the equation, 
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where iux eπ=  for x < 1 ,and 1
2 (3 1)n n +  are known as 

the pentagonal numbers n= -1,-2,...  
 This results play a role of key stone in the 
forthcoming work concerning relation between the θ -
theta function and Dedekind'sη -function. In fact, if the 
application of theorem(6-b) on the relation obtained 
with the theorem(-a) which known as the equation 
between Dedekind's η -function and L.Euler's theorem 
on pentagonal numbers is done, we obtain 
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 As a result, the relation has been obtained between 
theta and Dedkind's - ( )η τ  functions by using the 

characteristic 
0
1
� �
	 

� �

 and the variable 
4

4
u +

 instead of the 

characteristic 
0
0
� �
	 

� �

 and the variable 
1

2
u +

 which were 

previously used by Jaccobi. 
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