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Behavior of the Dedekind’s Function over First Order Theta Function
According to Conditions Modular Form
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Abstract: The effect Dedekind’s etha function on theta functions is analyzed according to the
characteristics of theta functions under modular group conditions.
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INTRODUCTION

By SL, we mean the group of 2x2 matrices with
determinant 1. We write SL,(R) for those elements of
SL, having coefficients in a ring R. In practice, the ring
R will be integers Z, rational numbers Q and real
numbers R. We call SL,(Z) the modular group I".

If L is lattice in complex numbers-C, then we can

.
always select a basis, L = ( @, ®, ) such that 7=—2= is
2
an element of the upper half-plane X, i.e. has imz >0
which is not real. If D consist of all ue X such that

3

0 -1
S=(1 0 ]e I" then D is a fundamental domain for

—lSReusl, |u| =1 and
2 2

modular group I' in X, Then, S,T €I generate
£

modular group T''". We define characteristic [ l
£

where &,€' are integers according to characteristics

{1E{l},{l}{o}{o}(modz) but 9{1}(077)50 for theta
e' 1]10][1]]0 1

function @. If n is any positive integer we define

I';(n) to be the set of all matrices A = [“ /3] in
y o

modular group I' with ¥ =(modn) and but
r,(n) = {[a s ]e I'(1): 7 = (mod n)} (23]
y 0
It is easy to verify that I' /(n) is a subgroup I'.
If We consider the congruence subgroup I'(2), Then
L,2={wel'(): W=I , W=X(mod2) }

where 1 is the wunit matrix and for matrices
X=§8, X=T, X=U the three subgroups I';(2),

I''(2) , T',(2) are conjugate subgroups of I'(1) for

_(o —1) [1 1] [1 oj [o —1)
S= s T = » U= » V= .
1 0 01 11 1 1
We shall need to study such groups when we
introduce theta functions.
We note that the above matrices, defined V = ST =
(0 ‘lj and 2 :[‘1 ‘lj: I, U= TST form a set coset
11 1 0
representatives of I" (1) modulo I" (2)!*.
The subgroup g(n) of I'(1) is generated by V>

and S where k is an odd positive integer and the set of
elements in @(k) of the form (a 'g j .
/4

Theorem 1: ILet n be any prime and

1
St=—1,
T

Tt=7+1 be the generations of the full

modular group I', then for every W:(a bJeF,
d

c

W ¢ I',(n) there exists an element K = [p r]e Ir,(n).
st

Proof: If =(“

bje r where ¢ is not ¢ =0(modn)
c d

a b

then we wish to find W:( Jer, with
d

Cc

s =0(modn) and an integer q,, 0 < g <n, such that
vt
c d st )
p r)(0 -1)(1 q p r)(0 -1
o) i
All matrices here are nonsingular so we can solve for

[p r] to get
s t
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a b)(0 -1
d

w

P ]’1

ga—b a

o

S R v
(e e

Choose q to be that solution of the congruence
qc=d(modn) with 0< g <n . This is possible since ¢

C

c gc—d c

isnot ¢ =0(modn), now take s=qs-t,p=wp-r,r=a
p r

,t=c,then s=0(modn) so K = . el,(n).
s

We define the first order theta function with

I3
characteristic { } , u € C and theta period T by
&

£
0[ }(M,T)
&

oo

Z exp

{(N +E zirromiiN+ S+ L
et 2 2

£
)
where N is a integer..
It has been seen at several points that the theta
functions whose characteristics are pair of integers

£
[ } satisfy simpler identities than those for which
£

&,&' are general real numbers. As £,&' are residue
classes (mod2) it is natural to concentrate attention on

the four functions 9{ }(u Q> 6{ }(u q 0[ }(u ¢) and

K
o 0} (u,q) which we shall call the four principal theta

functions. For any integers m,n, when &,&' are

integers, we have
[e+2m e
}(H Q=D 9[ }(u q).

| €'+2n
When &, &' are integers , the theta series defined by

can be converted into fourier series by pairing off the

6

o

g = Zq("”

n=—oo

1 e'n
2 Y u——=
z(n+2)(u 2 )

0

. £ .
terms which n+§ has equal and opposite values, n

with -n if £=0 and n with -(n+1), leaving in the

former case an unpaired term for n= 0, whose values is
£

(n+—

1. The terms so paired have a common factor g "

the of their

1

2Cos(2n+é&)(u —%) . Thus we have the four series

d

and sum remaining factors is

(u,q) = 22( 1) q" ' Sin(2n+u

n=—oco

402

1 > by
o, wq)=23 ¢"" Cos2n+u
0] = .
] X (,q)=1+2) (-1)"¢" Cos2nu
0] S
o 0 (u,q)=1+22 q" Cos2nu .
Moreover,
o | =6|u+?)
u)= u+—
0 1 2
0 L
0| || =—ig'c"6| | + 75
1 2
o °] () = i (u+’”’”)
o1 2

If N is a positive integer then theta function order n
or n" is defined by

0"[ }(u T)=
)7

where 0SM <N-1 .
In fact, An theta function order n my be found by
taking the product of n first theta functions. Its

7

2(M +

Zce

M=—co

(Nu,NT)

U

characteristic {ﬂ} is given by the matrix sum of the n

£
characteristic{ }. The Cy is indepent on u put my
&

depenton 7 .
CM Satisfy CNK+M = CM exp( 711) . CI)(K)
where
2
M +£) M +5 .
®(K)=Nt|K+——2 | +N| K+——2 5

0
Functions 0{0}(%1) has zeros at the points

1 1 . .
u =E—Er+r1 +r,7. These points form a lattice, that

1-exp[(2k—1)f+2u] has zeros at points u where

(2k—1D7=1(mod2) or equivalently. Hence function
theta order n defined by

®(u,7) = ﬁ{1+exp7ri[(2k—1)f—2u]}

ﬁ{1+expm'[(2k —-Dr+2ul}
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has precisely the same zeros as first order theta

0
9{0}(14,2') provided the product converges. Thus we

have absolute and uniform convergence of the first
infinite product for im7 > 0. For periods 1 and 7 , we
have

du+l,7)= ﬁ{l+expﬂ'i[(2k ~Dr+2u+2]}

oo

[T{1+expzi[2k -1z —2u—2]} = P(u,7)

1

d(u+7,7) = ﬁ{1+exp7ri[(2k—l)r+2u]}
1

ﬁ{1+expm[(2k -z —2u]}
1
Setting ¢ = €Xp /W T we may write

du,7) = ﬁ[l +q™ " exp 27ziu]
1

ﬁ [1 +q*! exp(—Zm'u)J
1

It was introduced by Dedekind function 7(7) and
is defined by the equation

TT oo

77((1) — eﬁu(l_ezmnr) .
n=1
The Dedekind function 7(7) is cups form of

weight % on I'(l) and satisfy

1
1N(AT) =V, (A)(yr+6)*1(7)

o
for all A = ( ﬂ]e ',
y o
Dedekind proved the following law oh
transformation of log7(7) under the action of the
- a B
elliptic modular group. If A = s eI then we
/4

have 10g77(A(r))=log77(r)+é7ziﬂ for y=0

and
1 +J
log 7(A(z)) = log7(z) + - log [ij
L7[1'(0!+ 0)—rmig(y,0), for ¢>0
12y
where A(7) = at+p , all logarithms are taken with
+

respect to the principal branch and g(7,d) is

Dedekind sum!”".

a

403

0
An important connection between 6{0} (0,7) and
n(z) is given by
0
eMm,n = UZ(TTH)/U(T+1) .

The infinite product has the form H(l—u")

27t

where u =e™ . If 7€ X then |u| =<1 so the product

converges absolutely and non-zero.

Moreover, since the convergence is uniform on
compact subsets of X, 7(7) is analytic on X . This
result and other properties of 7(7) following from
transformation formulas which describe the behavior of
17(7) under elements of the modular group I'.

i.  For the generator 77 =7+1 we have

Zi(7+])

77(T+ 1) =e 12 H(l_ eZIl’[n(rH) )

n=l1

. 1
ii. For the other generator S7=—— we have the

T
1 N
77(—;) =(-ir)2 (7).

For proof, let 7 =iy where y >0 and then extend

the results to all 7€ X by analytic continuation. The

transformation formula becomes
1

nGily)=y*niy) for t=iy and this is equivalent
to log(i/y)—logn(iy) = %log y.
and
] -
logn(iy) =——xy+1lo 1—e™
gniy) = =7 gg( )

n=1 m=1

—27mny

e

1 - 1
=——7ay+y (1-e?™)=——7xy—
2" Z;( =R m

—27my

1
we obtained 77(—1) =(—ir)2 (r) since
T

S s )
—m l_eZmn,\' ~m 1_627[n1/)' 2]
1 1 1
-—n(y-—)=-<lo
PO =y leey

Lemma 1: Let I' be a subgroup of I'(1). If ¢(7) is a
modular form of weight for I" with multiplier system ¢
then we write @(7)e A(I',n,t).If ¢(z)e A([,n,t) then
the

Y -transform ¢, of ¢ is defined by

9,0 =)y ={£Ww. D)} oy 1)
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Here, £(w,7) = (yr+0)" where A:U/ ;j

If ¢(r)e Al,n,,t,)) and @,(t)e A(l',n,,t,)

we have

0,(0).0,(0)e AT, n, +n,,1,1,)

G

®,(7)
Let kK be a prime number greater than 3. If O is a

even integer such that o(k—1)=0(Mod24) then

0
O(7) ={M} is a modular function on the group
n(7)
I', (k) . The multiplier system o of ®(7) is given by
_[61 where 4_[% Ale T (k) and [5
orff] e (s B

is
:
Legendre’s symbol.

then

e A(l',n, —n,,

by
t

2

>

Lemma 2: The functions 3{0}0,1) , 9{0}(0 r) and
1 0]

1
9{0} (0,7) are entire modular form of weight % for the

groups I';(2),I',(2) and I';,(2), respectively. Further,

00 0,7) 1K = 0 (0,7)
0| B I

0 0 0,7) |K2—e’”7i9 ! 0,7)
o] B o]

Also, forn = 0
The functions gn {0}(0,1) > 9" {0}(0 r) and 0’[1}(0 7)
1 0 0]

i

e 0

are entire modular form of weight % for the groups

I(2),T,(2) and I, (2), respectively.

Theorem 2: Let kK be a prime number greater than 3
and O is a even integer such that

o(k—1)=0(Mod?24) and putr = np where n is a

£
positive integer. If the characteristics [ } and [,u}
£
U 1

U
£ 0 0 .
h [5}{/1}E[O}L}’[O}(mwz)’ the @, (7) is a

modular function on the group I'j(k). The multiplier
5 P
system P of O(T) is given by p(A)= {;} where

(%
/4

5] € I'y(k) and [%} is Legendre’s symbol.

404

Proof: ¢, (7) #0 is regular in X
integers O , n and even positive integer r =npP.

. If each positive

Therefore, the characteristics rm order theta functions

T

ru
o {ﬂ(O,kr) 0" { }(0, kT)
&' _ 0 _
¢, ()= 0" {ﬂ}«m 6" H(o, 7)
np
7 (kT;k)/ﬂ(k1+k) " [

n [r+l)/’7(7+1)

0
} { }(mod 2) , then we have

kTt +k 2 L-H
> j/ ()
n (kp)/ﬂ(f+1)

Setting A= TTH and observing that
P 2 n
D) = [%} , we obtained ¢, (7) = {;((2/2)}
n
By Lemmal and from the equation
P
D(A7) = {%} P(7), we have
s n
—| @'
(AL | ( ) g
¢k,(Az'):Lp2( /1)} _|\k _ :(EJ 9, (7)-
24) ) k
(;) D(21)

Finally, we consider the expansions of @, (7) at

the parabolic cusp oo and O . Hence, We have

P(7)= exp [W |:1 + ZCN g 2miNT
N=1

Fourier expansion of ®(A) function at oo .

} as the

9, (1)

has the Fourier expansion at o of the form
P(1) =1+ C, .
N=1

zi(k=1)p

1+ H —Zﬂ'iN/k‘L'
12kt H Z

as the Fourier expansion at 0. Hence

ri(k —1) S 27N Ikt
(t)=exp| —————=||1+ > R, e
%) p[ 8ke }[ 2R

It follows that ¢, (7) is a modular function on I'j (k) .

P
d(r)=k ? exp[

ar+ f
yr+d

where (0’ gjer , ¥>0and
/4

a+§+q(—5, 7)}
/4

12

Theorem 3: 77[ j P(a, B, 7,5)[—i(7r+5]% n(7)

P(a, B,7,0) =exp {ﬂ'i{

and
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k-1

q(hk)=Y

r=1

Iy (AL
k| k k 2
Note: The sum g(h, k) is called a Dedekind sum .

Theorem 4: The set of modular forms, the entire
modular forms and the cups forms each of same
dimension for I'(l), form vector space over the
complex field.

Let g be a homogeneous modular form of
dimension -k for the group I' in the variables @,,®, .

)

We write this in the form gK :

w . o,
and consider |
. o,

2

as a matrix. We define the function g, by

a)l a)l
85 g| B
wZ wZ
where M =(z 'g] , >0, &Y =n and imﬂ>0

2
and call it a transform of g of order n. It satisfies the

following equations

() af[#)] e aec . 200
(-] (S Fem

B A PR

Therem 5: A(7) = (27) 7% (7) = (27[)12xfl(1— Xy
n=1

a -p
-1 6

Proof: Let f(7)=A(z)/n** (7). Then f(z+1)= f(7)
and f (—l)= f(r), so f is invariant under every
T

transformation in I". Also, f is analytic and non-zero
in X because A(7) is analytic and non-zero and 77(7)

never vanishes in X . Next we examine the behavior of

at i . We have
24

)

- xﬁ(l—x" ) = x(14+1(x)

where I(x) denotes a power series in X with integer

)

?724 (’Z') — eZﬂirH(l

n=l1

_ eZm‘nr

coefficients. Thus, 7°*(zr) has a first order zero at
x=08
At first we see the infinite products

405

90(
0 u,T)

= ﬁ (1 _ eznﬂir).ﬁ (1 + e(2n*1)7ri‘r+27riu ).ﬁ (1 + e(2n71)7ﬁ‘r*27riu ).

n=l1 n=l1 n=l1

which it converges absolutely.

Theorem 6: We have the relations

O(
0

u) = eiﬁn(u).ﬁ (1— @ iny
n=1

Tiu

n(u) = e .0

oL

0 0
between the functions@ {O} u,7), 6 { J (u,7) and

u+l
PR

3u+2k)

utd 3
4 22

Dedekind's 77-function which defined by the infinite
product

TiT o

nwy=e? JJa-e"")
n=1
where Im7 > 0 and k is a integer.

Proof
a. Let us recall the formula

490(
0 u,T)

— ﬁ (1 _ eZn/n'T) ﬁ (1 + e(2n—1)7rir+27riu ) ﬁ (1 + e(2n—1)7rir—27riu )
n=1 n=1

n=1

If k integer, then we have

0
9|:(J(%,3u+2k)

o o utl e
. Qn=D)7i(3u+2k)+27i(*—) 1) B 2k )2 (2L
2n7i(Bu+2k (2n=1)7i(3u+2k)-2mi(*1)
=[Ta-e= = ]Ja+e O JTa+e™ )
n=1 n=l n=1

_esnm'u )INI (1+esnﬂiu—Zﬂiu—(Zk—])ﬂi)‘ﬁ (1+esnltiu—4ﬂiu—(2k+l)m)

n=1

1 _ eGnmu )fI (1 _ eGniriu—Zm’u )l:I (1 _ eﬁniriz4—47riu ) .

n=1
27iu

n=1

a
n=1
I1¢
n=l1
If we set R= ¢
0
7]
o
On the other hand, we may set 7 = n'+1, then

0 u+l
6| |¢5h3u+2k) =

n=1

, then we obtain

(%,3u+2k) = ﬁ(l—RM )_ﬁ(l_R3n—l)_ﬁ(l_R3n_z) )

n=1 n=1 n=1

[1

n'=l

(1_R3nv+3)~fl(l_R3nv+2)~H(1_R3nv+])

n'=l

=(1-R)(1-R)(A-R*)(1-R")

ﬁ(l_Rn1)=ﬁ(l_e2mﬂiu)

m=1 m=1

According to above, we have

0
)
from the Dedekind's 77 -function defined by the infinite
product

zit
nw)y=e.6| (5

3u+2k)
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ZT oo

N =e? JTa-e"")

where m= n'.
b. According to the equation,

0 oo
6 X (u,7)= Y (=1)" exp(n’zit + 2n7iu)
we_h_ave

_0_ u+4 3 — S n 1 .
] X (2 2y = Z(—l) exp[ +n(3n+1)7iu |

=1+ i (=" {exp[ 1 n(3n—1)miu]+exp[ L n(3n+ Diu |}

n=1
=t 3 (=1 [ e 1
n=1
X=X +x =x" ="+
0
0
1

where x =™ for |x| <1 ,and 1n(3n+1) are known as

utd 3

4 22

W= (1-x)(1-x)1-x°)... =ﬁ(1—x")

the pentagonal numbers n=-1,-2,...

This results play a role of key stone in the
forthcoming work concerning relation between the & -
theta function and Dedekind's 77 -function. In fact, if the
application of theorem(6-b) on the relation obtained
with the theorem(-a) which known as the equation
between Dedekind's 77 -function and L.Euler's theorem

on pentagonal numbers is done, we obtain

Gmw 1) i D" exp[; n(3n+ l)ziu}
fl[l_e(%*l)m‘f} ﬁ[l_e(Zn—l)m‘rJ
n=l n=l
ﬁ |:1 _ enm’r .
— wn[l :| =H[1_eznmq=e—%.n(,€)
H 1— e(Zn—l)mr n=1

406

As a result, the relation has been obtained between
theta and Dedkind's -7(7) functions by using the

utd instead of the

0
characteristic L} and the variable

... 10 i u+1 i
characteristic 0 and the variable T which were

previously used by Jaccobi.
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