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Abstract: Problem statement: In this research, we studied parametric p-valemromorphic
functions Pf by considering two classed;(B) and M(A,A) . Approach: With the help of Jack’s
Lemma an inclusion relation for the clabk, was obtained and it is shown that this classdsed by

an integral operator.| Results: A subordination result for the clas$!;(A,A) was proved.

Consequences of main results with the results gecial values of the parameternwere discussed.
Conclusion/Recommendations. Our results certainly generalized several resuiftsained earlier as
well as generate new results.
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INTRODUCTION Fi@)
Let M, denotes a class of functions of the form: =(f Oy, )(2)= 2"+ g a_, b, ([a]) 27 (1d)
© = (9, Of) ()
f(z)=z"+) a_,2",00 N= {1,2,3,..} (1a)
=}

where, *' stands for convolution or Hadamard produ

which are analytic and p-valent in the punctured un We have:

disk U = {z: 0<z|<1} = U\{0}. We say that a function

f(z) O M, is in the class M (B) if f(z) # 0 and: P (z)= Z°P +i(a;kj a_,h,(a]) £°
k=1
zf '(z)}
R <-B,0<B< p, 20 U '
e{ f(Z) Fora = _p, |:9(+11:(Z)E _Z(Fﬂ;(z))
Functions in the class M(B) are called p-valent
meromorphic starlike of ordéx Using (1c) and (1d), we can easily obtain the
Let g, (z) OM,, be of the form: identity related to parametric p-valent meromorphic
functions:
=77+ 2 1b
%0227 o) P er@r=arier s pp i (1e)
whose coefficient fy, ([a]) has a parameter which is Several subclasses of p-valent meromorphic

either -p or a positive real and it satisfies rilation: functions involving various convolution operatoavh

been defined and studied in (Aouf, 2008; Liu and
b, ([ar +]])=[°‘+kjbk_p([a]) (1c)  Srivastava, 2001; 2004; Raina and Srivastava, 2006;
a Srivastava and Patel, 2006; Srivastataal., 2008;
Wang et al., 2009; Yang, 2001). The purpose of this
For g (z) given by (1b), a parametric convolution study is to unify the results obtained earlier émgjive
operator P: M, M,, on the function f(z) of the form some new results. Motivated with these earlier work
(1a) is defined by: especially the work of Cho (Srivastava and Owa,2199
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Yang, 2004), in this study, in order to study mae&ric Lemma 2: Let the (non-constant) functionz) be
p-valent meromorphic functionf(z)of the form analytic in U withw(0) = 0 Jack (1971) Lemma. If
(1d), we consider classe®Ii(B) and M3(A,A) of |ox(2)] attains its maximum value on the cirdtg= r<l
at a point gJU, then zw'(zg) = yuX(zo), wherey is a real

f(z)OM, satisfying following conditions respectively:
number andgy=1.

+1
Re{azf f(z)}< @+p-B)Z21 U (1fy  Theorem 1: For a parametric convolution operatdt P
@) defined in (1d)Me OM¢ .

and forA>p JA<[al:
Proof: Letf OM7™, we have:

(a +1) P21 (2)
Re{apmf D [° @+ 1+ p) (2a)

@-MNazZ?Pf(z)+Aa Z P*lf(z)<cx+( 3%) Az, 71 L(1Qg)

where, <’ stands for subordination between two
analytic functions in U.

We say Kg, if there exists a Schwartz function «0) = 0, by:
w(z), which is analytic in U withw(0) = 0 andw(z)|<1, - U0y
zOU such that f(z) = g(z)), ZJU. Indeed it is known
that f(z) < g(z), ZJU=f(0) = g(0) and f(U)X g(U).

Clearly, ifa = -p, the classe#;(B) and M;™(B)
are respectively the classes of p-valent meromorphi
starlike and convex functions' |(z) of orderf(0<p<p)
if P f(z), P"**f(2) # 0. We denot1%(0) = M2 .

Define an analytic functiony(z) in U such that

aP**'f(z) _
Pf(z)

(2b)

(@+p)- p{l—w(z)} _a+(a+2p)w(z)

1+ w(z) *+w(z)

To show:

e{aP“+1f(Z)}< @+ p)
MATERIALSAND METHODS Pf(z)

To prove our main results, we need following 1-0(z) _
Lemmas: We need to ShOV\Re{1+ ( )}> 0 or, [(z)<1 in
' w(z

] ) o U. Differentiating logarithmically (2b), we get:
Lemma 1: Let q(z) be univalent in the unit disk U and

0 ande be analytic in a domain E containing q(U) with . ,
d(w) # 0 when vidq(U) (Eenigenburgt al., 1984). Set: z(P1(2) ~ AP 1@) _ (a+2p)a0'(2)
P*f(2) Pf(z) o+(a+2)w(2)
Q(2) = zq'(zp (a(2)), h(z=6 (a(z)y Q(z _zw'(z) _ 2paw '(z)
1+w(z) [a+(o+2p)w()|[1+w(z)

(2c)

and suppose that either Q(z) is starlike or h(zpisvex

in U. In addition, assume that: Applying the identity (1e) fo anda+1 in (2c)
and using (2b), we get:

zh'(z)
T @+DP1(z)_ Ly, pf 200
P (2) 1+w(z)
If p(z) is analytic in U with p(0) = q(0), p(UE and: 2pz0(2)

¥ [a+(a+2p)w(2)|[ 1+w(z]
B(p(2))+ zp'(zh (p(2)x 6 (a(2)¥ zq'(®) (a(z ) )
Let there exists a poingZU such thaju(zg)| = 1,
then by lemma 2,08(z¢) = yaX20), w(zo) = €°, y=1.
Then p(z)<q(z) and q(z) is the best dominant. Therefore:
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(a+1)P**?f(z,) _ 1-w(z ) aP**f(z)
T Mg 41+ p- R 2
Pt (2) a+l+p o) Pt (2) <@+p) (2)
.\ 2pz,0'(3 ) . _ . .
[a+(a+2p)w(z)|[1+w (3 ] Define an analytic functionyz) in U such that
. : w(0) =0, by:
_ p{l—e‘"} 2y &
=o+1+p- ot ~ .
1+é |:G +(G +2p)é :“:l"’ g] aPa+lICf(Z)_(a+ )_ 1_0)(2) (2 )
Pt P TP e g
Hence: _a+(a+2p)w(z) (2h)
(@ +DP ()| (a+ 1+ 1+ w(2)
P ' (2)
To show:
+R 2pye’
[a+(a+2p) ée:||:1+ €:| RQ{WU(Z)}< (a+ p)
2(a+1+p),a=-pom >0 PIf(2)
which contradicts (2a), this proves tHafz)|<1 in U We need to showre! 1= o or (z)<1 in
and hence Theorem 1 is proved. 1+ w(z) ’
Taking a = -p, in Theorem 1, we get following u. Differentiating logarithmically (2h), we get:
result.
+1 ' ' '
Corollary 1: Let Pf(z)0M, be defined in (1d) with Z(P]ﬂ @) AP LiE) _ (a+2p) 20
o =-p and P1(2), 2(F*f(2)) % O, if PR PI@  ar(ar2de@ ()
3 zw'(z)= 2pa '(z)
é{ z(P"f(z))"} 1+w(2) [a+(a+2p)w(@)|[1+w(z]
Re: 1+ —-:< 0
(Pﬂf(z)) Using the series expansion @f(2) given in (2e),
we get the identity:
Then:
z(P'1f(2))'= cP f(z)- (c+ p)P I f(Z (2))
2(Pt(2))
R PiE) <0 Applying the identity (2j) fom anda+1 in (1e) for
If(z) in (2i) and using (29g), we get:
Theorem 2: Let an integral operator;:|M,—M, be aPf(z) _a Pt ILf(2)
defined for c>0 by: Pif(z) P Lf(z)
C (2 cp z(P'1f(2)) _ z(P Lf(2))’
1f(z) = C+pjot P (1) dt (2d) P f(z) PUIf(2)
Z ca . c =+ p- p
z(P*I.f(2)) +(c+p)
o PY1 f(2)
=zP +Z(L) a, pauls (26) c
ci\ctk 1-w(z) + 2pa '(z)
1+w(z)] [a+(a+2pw )] *w(zZ]
The clasM; , defined in (1f) is closed under the
integral operatorcl Let there exists a poin@U such thafw(zo)| = 1,
then by lemma 2, @(zo) = yoXzo), (zo) = €°, y=1.
Proof: Let f DM, we have: Therefgre; (20) = yXzo), &(z0) v
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aP"M(z) L [1rw(z) Pt (2)= 77 p{ : A d}
Pz p{lﬂo(zo) @=2" e R
1-¢° 2y &

:(G+p)_p{1+ée}+[c+(c+ 23@][3 -@] Corollary 2: Let f(z)IM, be in the classM;(A,A) ,

defined in (1g), thefaz’P*f(z} >|a| - | A .

Hence:
e{aP““f(z)}:( 3+ Re 2y & Corollary 3: Let f(z)OM, be in the classM;(A,A) ,
P12 Ta+(a+2p) € 1+ €] defined in (1g), theni‘ak_phk_p([a])‘ <A, The result
k=1

a

2(a+p),a=—-pora>0 . . .
(o+p) P is sharp for the extremal function given by:

which contradicts (2f), this proves thpt(z)|<1 in U

and hence Theorem 2 is proved. f(2)=z"+ A

= P k=1
a

1
) . ‘bk_p([a])‘
Remark: The results obtained in Theorems 1 and 2,
coincide fora = n + p>0, with the results obtained by RESULTSAND DISCUSSION
Cho in(Srivastava and Owa, 1992).

Some consequences of the results are discussed

Theorem 3: Let (z)M, be in the classMy(A.A) , along with some special cases as follows:

defined in (19), thenz’P*f(z) < a+Az.
For positive real numbers &(i = 1,2,...,q) and for

Proof: Let p(z) = az’P'f(z), we have positive integers A B(i = 1,2,...,q) such that
p(z)+%zp'(z)<a+[1+§) Az. Consider q(z) =a+Az Zq:(Bi—Ai)zo, taking:

i=1
which is univalent, convex in U. Consider forp:

_ _Hlf@+AKrh)
b =b Al) =
B(w) :W,cb(w):%,(wDC) o{[a]) = bsl[arAl) ﬂ F(b +BKI(g)

which are analytic in C so that: We get for f(z)IM, and fora>0:

L r(b)

' A ' = =7 — 1
8(p(@)+ 2p'(2h (P@)F Py 02 Pi=w(a.A])f=2T] Fa) @0 (3a)
Set: where, q.14(z) is Wright's (psi) function which is a
o ) generalized hypergeometric function (Srivastavad an
Q@)= za'zp (a(2)), h(zF8 (a2} QE Manocha, 1984) and its series representation isngiv
We obtain that: by:
A e1Wa(@LAD. (@ A0 B). (B B )i
Q(2)=—-12q9'(2) o g
a =y M(a + Ak) K
L L k=it (b +BK)
which is starlike in U and:
h) - and:
zh'(z a zq"(z
R =Re—+ *+——"> og=- (
e{ Q(z)} %A ' q'(z)}> P b, ([a+1) =b,,([a+ 1A
Ak (3b)
Hence on applying Lemma 1, we get that 3:%bk-p([a¢+1vﬁ])

p(2)<q(z) or az’P*f(z)<a+Az, a+Az is the best
dominant and the result is sharp with extremal fionc ~ Hence, from:
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w([a,A]f=wW(@,A),..(a . A) 0, B)..( .B) which is studied by Cho in (Srivastava and Owa,2199
([a1 1]) ( A3 A8 : %) Uralegaddi and Somanatha, 1992; Joshi and Srivastav
1999; Aouf, 1993) and its special case is studigd b

d:
an Aouf and Hossen (1994).
From Theorem 1, we directly get following
+1LA),.(3.4)
W([a1+1,Al])f.:W @+ LA).-@ A‘)f results.
(b,B)....(, .B)

Corollary 4: Let for f(z)IM, the operator W@A])f
with the help of relation (3b), we can easily ge¢ t be defined in (3a). If:
identity:

. RQ{W([%+ 27A1])f}< (2, + 1+ pA)
Az(W([a,A])f) = a,W([a+ 1A]) f W([a, +1,A])f @ +1)

- (a,+ pA)W([a ,A]) f
Then:

_(a+pA)
a

1
(1e). The operator W([aA))f, is itself a generalized W([a,A)f

operator and is a meromorphic version of the operat

considered in (Dziok and Raina, 2004; 2009; Aouf an Corollary 5: Let for f(z)OM, the operator W([@f be
Dziok, 2008a; 2008b; Sharma, 2010; Dziokt al.,  defined in (3c). If:

2004). Taking A=B; =1, i=1,2,...,041Pq(z) reduces

which can directly be obtained by takirttg=';\i in Q{W([aiJrl’Al])f}

to the generalized hypergeometric functipmF, and F([q+ 2])f (@ + 1+
denote: a p)
we denote Q{F([ai+]])f}< @+
Pf=F f=2° ,F(z0f 3c
(a]) 72" R @ (3¢) Then:
Where:
R&{F([%”])f L(@+p)
i (@) = iR (@3 L .. F([al])f a,

The operator similar to F(Bf, has been studied Corollary 6: Let for f(z)IM, the operator Gaa, by)f
recently by Wanget al. (2009); Raina and Srivastava be defined in (3d). If:
(2006); Aouf (2008) and Liu and Srivastava (2004).

Taking q = 2 and b= 1, we get the operator, involving Re{e(aiJr 2,3 b )f}< @+ * p

Gauss's hypergeometric functigify:

G(a+13 .,h)f @+ D
Pf=G(a.a.h)fs 2, F(@.a;:p;2) Gd)  rhen:
Further, taking g = 1, we get: e{(3(31+1e} b))l  (a+ p
a 3 © ’ , ’ ’ f }<
P =L (a,b)f = Z°,F(a LR ;2] (3e) s :

o . : : . Corollary 7: Let for f(z)IMgthe operator l(a, b,)f be
which is studied extensively by Liu and Sr'vaStavadefined in (3e). If:

(2001); Liu (2000); Aouf and Srivastava (2006) and

Srivastaveet al. (2008). If a =n + p, mIN and i = 1,

we get, Ruscheweyh derivative operator foraihss: Re{'-p(aﬁ 2vb1)f} (& +1+p)
L@ +1,b)f (a+1)

-p
Pf=DP =t 3
@-z)° 30 Then:
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L,(a,+1b)f _@+p) Convolution condition follows for the class
L (@b, a Mp(AA) -
Corollary 8: Let for f(z)OM, the operator O*'f be ~ Corollary 12: Let for A>p, |Al<|al, f(z) OM{(A,A) if
defined in (3f)(Srivastava and Owa, 1992f: and only if:
R D™ . (n+1+2p) .
Do (n+1+p) a+[1+ )Aé E{a +Z(a +Ak) 3, b, ([a]) }
Then: #£0,z0U,0€0< 2t
D™ | (n+2p) From Theorem 3, we get following results.
e{D”*”‘lf} (n+p)

Corallary 13: For p <A1< Ay, |A [<al:
Corollary 9: Let the operator.lbe defined by (2d) and . .
the parametric classM? be defined in (1f), if Mp(AzA) DM(A,A)

If OM ™, then 16 OM . _
Proof: Let f(z)OM;(A,A) . Consider:

Proof: By Theorem 2, ifif OM{™, 11f = 1 OM§*™
and further, by Theorem 1, we get the result. A-A)aZ P f(2)+ Ao 2 B f(z)=[ })‘1]0{ 2P f(2)
A

2
Corollary 10: Let the parametera be positive in the

. Ao
definition of parametric class? defined in (1f): }\—1[(1 A)aZ P f(2)+ A a2 P f(z) < a +( BEJ Az

a a+l
fOM; < I f DM On using the given hypothesis and the result of

Theorem 3. This proves the result.
Proof: Taking ¢ =a>0, we see from (1d) and (2d),

that:
Corollaryl4: Forp<i <2

|A[<laf:

P f(2) = P*f(2)

M2(NA) OM?
This directly proves the result. p(MA) AP

From Theorem 2, we get following special case: ~ Where:

Corollary 11: Let for f(z)OM, the operators 2/q| +A‘A‘
W([a,A])f and Lf be defined by (3a) and (2d) B:p_l a
respectively. If: AL A
a
[a,+1A] + pA)
Re{ (([a1 A]) ) al a, A Proof: With the given hypothesis and from Corollary 2
Y

of Theorem 3, we get:

Then:

0z’ (2)-a 2 P f(z)= M AaZ? P (2)-a 2P £(

1{(1—)\)azpp'f(z)+ }
Z

RQ{W([@+ LA]) 'cf}< (3, + PA)
w([a, A1 3 4| 2al A
X ‘zpF"f(z

Similar to Corollaries 5-8, we can further find H
special results of the Corollary 11.
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Hence:
A
aPH(z) 1 2\a\+a\A\
P*f(z) A 1_5
o
Or:
aP**f(z)
R —
e{ P ) }<a+p B
Where:
| 2]+ 1A
=p-— a
A 1_5
a

which proves the result.

Corollary 15: Let f(z)OM;(A,A) defined in (19),
thenlf(z) OM(p -1) , where:

1f(2) = j t7F (t)dt

Proof: From Corollary 3 of Theorem 3, we get:

g‘ak-p bk-p([a])‘ I

Therefore:
aPlf(z) _ | £ Z 1‘ “’([am <1
P*1Lf(2) - mi

1=l e (])

1k +

which proves the result.
Results for suitable values of parametebased on
Corollaries 12-15 can also be obtained.

CONCLUSION

An inclusion relation for the clask!; is obtained

and it is shown that this class is preserved utider
operator I, (c>0). The subordinate condition for the

class M;(A,A) provides a convolution condition and a

subordination which gives an inclusion relatiorsharp
259

coefficient  inequality. It is verified that
MJ(A,A) OM (P for some B and the operator
MI(AA) ~MYp-1). The results verify the

inclusions related to starlike, convex and close-to
convex classes. Necessary and sufficient coefticien
conditions for the classes1; and M;(A,A) can also be

obtained fora,_, > 0,k> 1. With the help of coefficient
conditions several more results can be derived.
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