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Abstract: Problem statement: Pressure and velocity decoupling have been sourqgaodblem in
solving Navier-Stokes and continuity equation gaittirly in complex collocated grid. The problem of
pressure velocity decoupling is usually reducedubyng momentum interpolation to calculate mass
flux at face of control volume. Equation of momantinterpolation was derived by assumption that
the face of cell is equidistant from two neighbetl centers and face of cell is collinear with two
neighbor cell centers. This assumption is not validnany unstructured grid and cause significant
error. Approach: In this article a simple improvement of momentunteipolation for using in
unstructured grid was proposed. The improvement dea®e by added a correction term to original
equationResults: The method was compared with original method ivd&znay’s flow and Laminar
Poisseulli Flow. The method was found able to redercor about 40% in both cas€anclusion: The
correction added to original momentum interpolai®able to reduce error in Navier-Stokes equation
solver on unstructured grid.
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INTRODUCTION only very limited number of study related to acoyra
of application of the Rhie and Chow (1983)

It is well known that numerical solving of Navier- interpolation method on unstructured grid have been
Stokes equation in primitive variable on collocaged  Published. A popularly used method to implementeRhi
produce checkerboard oscillation if central diffeseis ~ and Chow (1983) interpolation method on unstructure
used to approximate face velocity in discretiseddrid is based on the way proposed by Mathur and
continuity equation and pressure gradient in moment Murthy (1997). Mathur and Murthy (1997) applied
equation (Yu and Kawaguchi, 2002). The oscillafipn Momentum interpolation to unstructured grid by
caused by decoup"ng of pressure and Ve'ocity ira.ssum|ng the face !S |a|d dOWI’] |n||ne and n thddm
discretised equation (Miller and Schmidt, 1988)ieRh between two neighbor cell centers where the
and Chow (1983) first solved this problem for interpolation was claimed formally second orderthk
structured collocated grid by modifying the intelgied face is not inline and in the middle of two neighbell
face velocities so as to recognize the pressuferdifce ~ @s the case of most unstructured grid the accusécy
across the face. The momentum interpolation of Rhidnterpolation will down to first order. Therefore this
and Chow (1983) is popularly used to calculate facétudy a simple modification to interpolation of Mat
velocity in discretised momentum equation for SINFPL and Murthy (1997) in order to solve this problem is
based algorithm since. Later, it was found that the?roposed.
original Rhie and Chow method had some drawback In this study, two examples are used as test case
related to dependence of calculation result on undednd solve in unstructured grid:
relaxation factor and time step size influence on Kovasznav's flow
convergence of the solution as reported by Majumdar . > .

(1988) and Choi (1999). The way to solve this peabl ° Laminar Poisseulli flow
also been proposed by some author (Yu and
Kawaguchi, 2002; Niet al., 2000). MATERIAL AND METHODS

Improvement of Rhie and Chow interpolation in Flow equation: The governing equation of 2D laminar
order to improve accuracy was reported bysteady flow of incompressible Navier-Stokes fluids
Papageorgakopoulas al. (2000) and Ywet al. (2002).  arbitrary domain is continuity and Navier-Stokes
But both methods are for used in structured gradfe®  equation:

265



J. Math. & Stat., 6 (3): 265-270, 2010

divpV =0 (1) to surface grid cell. For numerical solution, these
equations require discretisation so that they may b

) . oP applied to the finite volume cells of an unstruethr

divpV, V =div(uiV,) = (@) mesh overlaid on the solution domain. The equafim,

a finite volume grid cell with a finite number f of

divpV,V =div(uV,) _? 3) identifiable plane faces, may be discretised as:
y - -
2 (peV).nA, =" (MOQ) .NA +,Q (8)
Where: ' '
Viand \, = Cartesian component of velocity vector  where the subscript f denotes value of the variafde
pandy = Density and viscosity respectively the face f. A is the surface area of face f, whilst

The momentum equation can then be written inquantities such agx and V: are interpreted as face

form of general transport equation for scagar average values of the scalgrand velocity vector
V respectively.
divp@V =div(uOg) +q 4) ¢ can be approximated through reconstruction
¢ from upstream cell value as following:
where, @ is velocity component Vand \s. o in this 0 =@ +(Dcp)-r: (9)
case, represent a gradient of pressure in momentum

equation which known as source term. @ and r; are @ at upstream cell centre and distance

vector from upstream cell centre to centre of face
respectively as shown in Fig. 1.

The diffusive term is approximated according to
Mathur and Murthy (1997) as following:

Finite volume discretisation: According to SIMPLE
algorithm the continuity equation is discretisedidom

pressure correction equation. For unstructured tped
equation is (Mathur and Murthy, 1997):

(% -9 A*A |

8,P'= 2 8 Pyt ¢ (B)  (HO@.NA =y = Ae
o (10)
— - - A*A
b:_pj(ijan)é:A Hf[(D(P)f *A=(0oy .eSM]
(8 + n)ds A @ (6)
a, =) a, Gradient of field variable on face centrélgf;, is
nb calculated as average of gradient at cell centand®

cell neighbor, nb (Fig. 1). The cell centre gratlieself

a and amare point coefficient of dicretised 'S €stimate as:

momentum equation (Eq. 13p, and Q,;, are volume

of cell P and cell neighbor nA and e, are face area
vector and unit vector from cell P to cell neighlmdr
respectively.

Finite volume discretisation of general transport
equation is done by integrating the equation using
Green-Gauss'’s transformation yielding:

m:%qu (11)
f

a is a limiter used to avoid introducing Local extia.

j (p9V).ndS= j Oe).ndSr j ge (7)

where the surface integrals are taken over the deyn

of a control region, which for numerical solutioiile

a grid cell and the source terris integrated over the

volume of this regionn in Eq. 7 is unit vector normal Fig. 1: Finite volume grid
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The last part of discretised equation is a source

term which can be estimated as:

Q= p A (12)
f

Where:
i Unit vector in Cartesian coordinate

l.
|
Il

Unit vector in X direction

Unit vector in Y direction

I

P

estimate using linear interpolation from pressur
of cell P and cell neighbor nb

The face velocity vectorv, of convective term

Pressure at face of control volume which can b

\7P +\7nb
2

_ pf (AQp + Ath)
&t o

A A

A'és
where, ds anck; are distance and unit vector from cell
centre P to centre of neighbor cell. First part of
Mathur’'s equation is linear interpolation estimatiof

face value velocity, V:in Rhie and Chow (1983)
equation, Eq. 14. Similar to the first part thewet part

§s linear interpolation estimation of second pdrRbie

€and Chow's equation. Because of it was based eaiin
interpolation, to be second order accurate, the fac
should be in the midway of line from cell centred®
neighbor cell nb, the face also should be inlinthwne
P-nb or gradient of line P-f and gradient of linefrare

mf:pﬂ-[ ]
P-P
ds

(15)

©-0p * e

Eq. 8) or in form of mass fluxm, = (pV),.nA, is ) h ;

(Ea. 8) ) ) i _(p ) r_]Af ) same. But, It is not a case in most technical bl
calculated using momentum interpolation which W&l \yhere unstructured grid is used in order to
discussed in the momentum interpolation subsection. 5ccommodate a complex geometry. So that accuracy of

Substitute Eq. 9, 10, 12 and 15 to Eq. 8 and aftefyomentum interpolation will be down to first order.
some mathematical arrangement dicretised momentum

equation can be written as following form: I mprovement of momentum interpolation: Mass flux

on face f of unstructured mesh (Fig. 2) can be

0= Z:%b‘P L+ Db (13) calculated using velocity on the face as following:
nb

m, =pA,U; +pA VY, (16)
Momentum inter polation:

Current momentum interpolation: It is well known  where, A, A, U Vv are component of face area
that the combination of a collocated grid arrangetme normal to x and y direction and face velocity iand y
with the use of linear interpolation for estimatioh  direction respectively. ;tand v can be reconstructed

face velocity in continuity equation and estimatioh  form face velocity of imaginary face f, mass fithen
pressure gradient in momentum equation (Eq. 9)ecauscan be written as:

checkerboard oscillation. Rhie and Chow (1983}t firs
solved this problem for structured collocated griys
modifying the interpolated face velocities by added
diffusive term. Rhie and Chow idea can be written a
following:

fhy, =pA,, (U +0u. + dD)+pA, (v + 0y« dr)  (17)

(14)

Q and a,represent average of cell volume and
centre coefficient of discretised momentum equaiion
left and right of face f.q is average of velocity in left
and right face f. Mathur and Murthy (1997) applibd
Rhie and Chow (1983) idea to unstructured grid and

write the equation in form of mass flux insteadfade
velocity:

Fig. 2: Unstructured mesh
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Equation 13 is rearranged to be:

oe )Y
h/{h

mf = (pAnxuf' + pAnyvf‘) + (18) v=0 (21)
A, U, edr+pA [v,. «dr V,
(p nx— f p ny f ) p:p0_8\p I%]rgaxx
In Eq. 18dris a vector from centre of imaginary _
face f' to centre of face fllv.and Ou . are gradient of Where:
f f = A constant

velocity on the imaginary face f which is calcdtas ho
average of left and right cell value. The firstrnteof
Eq. 18 is flux on the face f' which can be calcetht
using Mathur’'s equation which accurate to second
order. The flux then can be written as:

High of channel
Maximal x velocity which is selected to
YIELD Reynolds number of 200 based on
high of channel

Vimax =

o =R Ve+Ve| p(0Q, +0Q)
=P 5 2+,
[(Beobe-p, 2 22 (19
ds A‘ES

(PA U, dr +pA, Ov,dr)

The first and second term of right hand side of
Eq. 19 is a original Mathur's momentum interpolatio
and the third is a correction term.

Test case:

Kovasznay flow: In order to test performance of
momentum interpolation, 2D Burgers equation in
domain -0.5< x<1- 0.5 y< 1.twas used as test case. Fig.
Because of it has complexities and non linear &ffiec

is a good tool to test accuracy of Navier-Stokdseso

The analytical solution of this flow was reporteg b
Kovasznay (1948):

3: Geometry and mesh for Kovasznay flow test
case

u=1-¢&*cosry
v=Ae¥sin2y/ 2t

p=(1->)/2 (20)
)\=R—e Ee—4Tt
2\ 4

Re in this equation is Reynolds number.

The test is carried out on square domain which has
two different number of unstructured mesh i.e., @50
and 1000 as shown in Fig. 3 at Re = 40.

Fig.

Laminar Poisseulli flow: Laminar Poisseulli flow is

used to test accuracy of momentum interpolation in

distorted mesh (Fig. 5). The domain of 0.5 m higd &

m long have rectangular mesh with distorted mesh in

the middle. The analytical solution of the flow is: Fig. 5: Geometry and mesh for Poisseulli flow tzste
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Solving of Kovasznay flow (Fig. 4) and Laminar

Accuracy of both momentum interpolation in caltala

Poisseulli flow is done by using standard SIMPLEIlaminar Poisseulli flow is shown through contour of
algorithm of Patankar (1980) and Spalding (1980)velocity and velocity distribution along centrediof flow
which also used by Mathur and Murthy (1997). Thechannel as shown in Fig. 6 and 7 respectively.

solution procedure of SIMPLE algorithm is consigtin
of five steps:

(a) Assume initial value of pressure and velocttala
cell centers

Obtain temporary velocity field by solving
momentum equation, Eq. 8

(b)
()
(d)

correction equation, Eq. 5

velocity field using following equation:

YR A

p=p+a,p’ ¢=¢ -—— (22)
b

where p and @ are initial value of pressure and
temporary velocity field respectively
Repeat steps (b)-(d) where corrected pressone f
step (d) is used as new pressure guess until
converged solution is obtained

(€)

RESULTS

Accuracy of standard momentum interpolation ang\esh size

modified momentum interpolation in calculate

Kovasznay flow can be compared through the value of,

L1 error of x and y velocities as shown in Table 1.

@)

(b)
Fig. 6: X-Velocity contour around distorted mesh) (

Calculated using standard Mathur's momentum

interpolation; (b) Calculated using modification
of momentum interpolation

DISCUSSION

The present research confirms that there are

differences of calculation result using standardl an

modified momentum interpolation.
In Kovasznay’s flow solution, face centre of grid

Obtain pressure correction by solving pressuréJSEd in calculation is lied down almost in the ndd

between two neighbor cells, so that error of faakie

Use pressure correction to update pressure arRf flow variable calculated through linear intergiobn

as it in Equation 15 is quite low. Both of standardi
modified momentum interpolations produce quite
similar velocity field and the velocity fields qgeiclose

to exact value. The differences of both velocigidi
calculated using standard and modified momentum
interpolation, is visually indistinguishable. The
differences can be shown through L1 error of véjoci
field. From Table 1 it can be shown that L1 errér o
velocity field calculated using standard interpiolatis
&@most two fold of it calculated using modified one

Table 1: Error in Kovasznay flow test (Land L1, are L1 error of u
and v velocity)

0.00565

Mathur’s Improved Mathur's
momentum intp. momentum intrp.
1500 Llu=1.1e-2 Llu =6.5e-3
L1v = 5.8e-3 Llv =2.7e-3
Llu =2.1e-2 Llu =1.4e-2
L1v = 9.8e-3 L1lv =5.3e-3
0.00585 4
A
0.00580
000575 !..‘,;::"‘;"”"w
— ij,.r"
- . 0.00870 s ~
2 7
) vff

0.00580

0.00555 H

000550
X (m)

. 7: Velocity along horizontal centre line ofacinel.
(A)Velocity distribution without distortion on
the mesh. (B) Velocity distribution calculated
using modification of Mathur's momentum
interpolation.  (C)  Velocity  distribution
calculated using standard Mathur's momentum
interpolation

Fig
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