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Abstract: Problem statement: In the literature, the most studied of fuzzy time series for the purpose 
of forecasting is the first order fuzzy time series model. In this model, only the first lagged variable is 
used when constructing the first order fuzzy time series model. Therefore, such approaches fail to 
analyze accurately trend and seasonal time series which is an important class in time series models. 
Approach: In this paper, a hybrid approach is proposed in order to analyze trend and seasonal fuzzy 
time series. The proposed hybrid approach is based on Winter’s model and weighted fuzzy time series. 
The Winter’s model and the WFTS model are used jointly, aiming to capture different forms of pattern 
in the time series data. The order of this model is determined by utilizing graphical order fuzzy 
relationship. A real time series about tourist arrivals data is analyzed with this method to show the 
efficiency of the proposed hybrid method. Results: The results obtained from the proposed method are 
compared with the other methods, i.e., Decomposition, Winter’s and ARIMA models. As a result, it is 
observed that more accurate results are obtained from the proposed hybrid method. Conclusion: The 
empirical results with tourist arrivals data clearly suggest that the hybrid model is able to outperform 
each component model used in isolation the pattern of time series data. Moreover, these empirical 
evidences suggest that by using dissimilar models or models that disagree each other strongly, the 
hybrid model will have lower generalization variance or error. Additionally, because of the possible 
unstable or changing patterns in the data, using the hybrid method can reduce the model uncertainty 
which typically occurred in statistical inference and time series forecasting. 
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INTRODUCTION  

 
 The definitions of fuzzy time series were firstly 
introduced by Song and Chissom (1993a; 1993b) and 
they developed the model by using fuzzy relation 
equations and approximate reasoning. Furthermore, 
Song and Chissom (1994) divided the fuzzy time series 
into two types, namely time-variant and time-invariant, 
whose difference relies on whether there exists the 
same relation between time t and its prior time t-k 
(where k = 1, 2,…,m). If the relations are all the same, 
it is a time-invariant fuzzy time series; likewise, if the 
relations are not the same, then it is time-variant. 
 Recently, Liu (2009) proposed an integrated fuzzy 
time series forecasting system in which the forecasted 
value will be a trapezoidal fuzzy number instead of a 
single-point value and effectively deal with stationary, 
trend and seasonal time series. Later, Egrioglu et al. 

(2009) proposed a new hybrid approach based on 
SARIMA and partial high order bivariate fuzzy time 
series for forecasting seasonal data. Elaal et al. (2010) 
introduced fuzzy clustering to select membership 
functions in fuzzy time series model. Additionally, Lee 
and Suhartono (2010) also proposed a new weighted 
fuzzy time series for forecasting time series with 
seasonal pattern. 
 In this paper, a new hybrid model based on the 
Winter’s model and weighted fuzzy time series is 
proposed to improve the forecast accuracy in trend and 
seasonal data. This approach follows the idea from 
Zhang (2003) who proposed a hybrid model based on 
ARIMA and Neural Network model. In this new hybrid 
model, a linear chronological weight from Yu (2005) is 
expanded to a uniform and/or exponential chronological 
weight as Lee and Suhartono (2010) for forecasting the 
error series from Winter’s model. This study shows that 
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the graphical order fuzzy relationship could be used 
effectively to select an appropriate order of fuzzy time 
series. Additionally, this study also shows that by using 
a series of monthly tourist arrivals to Bali, Indonesia, 
the hybrid approach with an exponential chronological 
weight (Lee and Suhartono, 2010) outperforms the hybrid 
fuzzy time series proposed by Chen (1996); Yu (2005) and 
Cheng et al. (2008) and some classical methods, i.e., 
Decomposition, Winter’s and  ARIMA models. 
 
Data sources: A real monthly datasets about the 
number of tourist arrivals to Bali, Indonesia, from 1989 
to 1997, is used as case study. This series was obtained 
from the Indonesia Central Bureau of Statistics (see 
www.bps.go.id). Bali is the main destination of the 
international tourists who visit Indonesia and these data 
also have trend and seasonal pattern. Ismail et al. 
(2009) analyzed these tourism data using intervention 
analysis and recently Suhartono (2011) also used these 
data for evaluating the effect of additive or 
multiplicative order in SARIMA model. For this 
datasets, the last 12 observations are reserved as the test 
for forecasting evaluation and comparison (out-sample 
dataset or testing data).  

  
MATERIALS AND METHODS 

 
 Chen (1996) improved the approach proposed by 
Song and Chissom (1993a; 1993b). Chen’s method uses 
a simple operation, instead of complex matrix 
operations, in the establishment step of fuzzy 
relationships. The algorithm of Chen’s method can be 
given as follows: 
 
Step 1:  Define the universe of discourse and intervals 
for rules abstraction. Based on the issue domain, the 
universe of discourse can be defined as: U = [starting, 
ending]. As the length of interval is determined U can 
be partitioned into several equally length intervals.  
 
Step 2: Define fuzzy sets based on the universe of 
discourse and fuzzify the historical data. 
 
Step 3:  Fuzzify observed rules. 
 
Step 4:  Establish Fuzzy Logical Relationships (FLRs) 
and group (FLRG) them based on the current states of 
the data of the fuzzy logical relationships.  
 
Step 5:  Forecast. Let iF(t 1) = A− .  

Case 1: If the fuzzy logical relationship of Ai is empty; 
A i→∅, then F(t), forecast value, is equal to Ai.  

Case 2:  There is only one fuzzy logical relationship in 
the fuzzy logical relationship sequence. If Ai→A j, then 
F(t), forecast value, is equal to Aj.  
 
Case 3:  If 

1 2 ki j j jA A ,A ,…,A→ , then F(t) , forecast 

value, is equal to 
1 2 kj j jA ,A ,…,A .  

 
Step 6: Defuzzify. If the forecast of F(t) is 

1 2 kj j jA ,A ,…,A , the defuzzified result is equal to the 

arithmetic average of the midpoints of 
1 2 kj j jA ,A ,…,A .  

Yu’s method: Yu (2005) proposed weighted models to 
tackle two issues in fuzzy time series forecasting, 
namely, recurrence and weighting. The method 
proposed by Yu applies a linear chronologically 
weights and produces more accurate forecasts than 
Chen’s first order fuzzy time series method. The steps 
of the algorithm of the weighted method proposed by 
Yu (2005) can be given below. 

 
Step 1:  Define the discourse of universe and 
subintervals. Based on min and max values in the data 
set, Dmin and Dmax variables are defined. Then choose 
two arbitrary positive numbers which are D1 and D2 in 
order to divide the interval evenly, 

min 1U = [D D ,− max 2D D ]− . 

 
Step 2: Define fuzzy sets based on the universe of 
discourse and fuzzify the historical data. 
 
Step 3:  Fuzzify observed rules. 
 
Step 4:  Establish fuzzy logical relationships (revised 
Chen’s method). The recurrent FLRs are taken into 
account by revising Step 4 in Chen’s method. For 
example, there are 5 FLRs with the same LHS, 

1 2 1 1A A ,A A ,→ → 1 1 1 3 1 1A A ,A A ,A A→ → → . 

These FLRs are used to establish fuzzy logical 
relationship group as: 1 2 1 1 3 1A A ,A ,A ,A ,A→ . 
 
Step 5:  Forecast. Use the same rule as Chen’s.  
 
Step 6:  Defuzzify. Suppose the forecast of F(t)  is 

1 2 kj j jA ,A ,…,A . The defuzzified matrix is equal to a 

matrix of the midpoints of 
1 2 kj j jA ,A ,…,A : 

 

1 2 kj j jM(t) = [m ,m ,…,m ] 

 
where, M(t) represents the defuzzified forecast of F(t). 
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Step 7:  Assigning weights. Suppose the forecast of 
F(t)  is 

1 2 kj j jA ,A ,…,A . The corresponding weights for 

1 2 kj j jA ,A ,…,A , say 1 2 kw ,w ,…,w′ ′ ′  are specified as: 

 

i
i k

h
h=1

w
w  = 

w

′

∑
  

 
where, 1 i i-1w =1, w =w 1+  for 2 i k≤ ≤ . We then obtain 

the weight matrix as: 

 

1 2 k

k k k

h h hh=1 h=1 h=1

W(t) = [w ,w ,…,w ]

1 2 k
        = , ,…,

w w w

′ ′ ′

 
 
 
 ∑ ∑ ∑

 

 

where, wh is the corresponding weight for 
hj

A .  

 
Step 8:  Calculating the final forecast values. In the 
weighted model, the final forecast is equal to the 
product of the defuzzified matrix and the transpose of 
the weight matrix: 
 

TF̂(t) = M(t)×W(t) =
1 2 kj j j[m ,m ,…,m ]× 

T

k k k

h h hh=1 h=1 h=1

1 2 k
 , ,…,

w w w

 
 
 
 ∑ ∑ ∑

 

 

Where: 
×   =  Matrix product operator 
M(t)   =  1 k×  matrix  

TW(t)  =  k 1×  matrix, respectively 

 
Cheng’s method: Cheng et al. (2008) proposed fuzzy 
time series based on adaptive expectation model for 
obtain forecasts. The method proposed by Cheng et al. 
produces more accurate forecasts than Chen’s and Yu’s 
method on two real data, namely TAIEX and the 
enrollments of the University of Alabama. The steps of 
the algorithm of the method proposed by Cheng et al. 
(2008) are given below. 
 
Step 1:  Define the discourse of universe and 
subintervals as Yu’s. 
 
Step 2: Define fuzzy sets based on the universe of 
discourse and fuzzify the historical data. 

Step 3:  Fuzzify observed rules. 
 
Step 4:  Establish fuzzy logical relationships (revised 
Chen’s method). The FLRs with the same LHSs can be 
grouped to form of FLR Group. For example, there are 
5 FLRs with the same LHS, 1 2 1 1A A ,A A ,→ →  

1 1 1 3 1 1A A ,A A ,A A→ → → . These FLRs are used to 

establish fuzzy logical relationship group as: 

1 2 1 1 3 1A A ,A ,A ,A ,A→ . All FLRs will construct a 

fluctuation-type matrix. Hence, the fluctuation-type 
matrix is: 
 

[ ]1 2 5W(t) [w ,w ,…,w ] 1, 1, 2, 1, 3= =  

 
Step 5:  Assigning weights. The matrix from Step 4 is 
further standardized to nW  and multiplied by the 

deffuzified matrix, dfL , to produce the forecast value. 

These weights should standardized to obtain the weight 
matrix, i.e. n 1 2 kW (t) = [w ,w ,…,w ]′ ′ ′ . This weight should 

be normalized by applying the standardize weight 
matrix equation as follows: 
 

1 2 k
n k k k

h h hh=1 h=1 h=1

w w w
W (t) = , ,…,

w w w

 
 
 
 ∑ ∑ ∑

 

 
Step 6:  Calculate forecast value.  

From Step 5, we can obtain the standardized 
weight matrix, to get the forecast value by using: 

  

df nF(t) L (t 1) W (t 1)= − ⋅ −  
 
where, dfL (t 1)−  is the deffuzified matrix and 

nW (t 1)−  is the weight matrix.  

 
Step 7:  Employ the adaptive forecasting equation to 
produce a conclusive forecast. 
 
Lee’s method: Lee and Suhartono (2010) proposed a 
uniform and exponential chronologically weights to 
tackle two issues in fuzzy time series forecasting, 
namely, recurrence and weighting, as extension of Yu’s 
method. This method produces more accurate forecasts 
than Chen’s, Yu’s and Cheng’s methods. The steps of 
the algorithm of the weighted method proposed by Lee 
and Suhartono (2010) are given as follows. 
 
Step 1:  Define the universe of discourse and partition 
it into intervals as Yu’s method.  
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Step 2: Establish a related fuzzy set (linguistic value) 
for each observation in the training dataset. 
 
Step 3:  Establish fuzzy relationship. 
 
Step 4:  Establish fuzzy relationships groups for all 
FLRs.  
 
Step 5:  Select the best order of FLRs. The graphical 
orders for FLRs and fluctuation-type matrixes are used 
to identify the best order of FLRs. 
 
Step 6:  Forecast. 
 
Step 7:  Defuzzify. Use the same rule as Yu (2005). 
 
Step 8:  Assigning weights. Suppose the forecast of 
F(t)  is 

1 2 kj j jA ,A ,…,A . The corresponding weights for 

1 2 kj j jA ,A ,…,A , say 1 2 kw ,w ,…,w′ ′ ′  are: 

 
2 k-1

k k k k

h h h hh=1 h=1 h=1 h=1

1 c c c
W(t) = , , ,…,

w w w w

 
 
 
 ∑ ∑ ∑ ∑

 

 
where, i-1

1 iw =1, w = c  for c 1≥ ,  2 i k≤ ≤  and wh is 

the corresponding weight for 
hj

A . This proposed 

weights become an exponential weights when c 1>  and 
tend to give the recent FLRs as more important than the 
older ones and generally higher values than Yu’s 
weigth. Additionally, these proposed weights also show 
that when c 1=  then the weigths will have uniformly 
chronological pattern which imply the same important 
time of chronological relationship. 
 
Step 9:  Calculate the final forecast values. The final 
forecast is equal to the product of the defuzzified matrix 
and the transpose of the weight matrix: 
 

TF̂(t) = M(t) × W(t)  =
1 2 kj j j[m ,m ,…,m ] ×  

T
k-1

k k k

h h hh=1 h=1 h=1

1 c c
 , ,…,

w w w

 
 
 
 ∑ ∑ ∑

 

 
Where: 
 ×  =   Matrix product operator,  
M(t)  =  1 k×  matrix  

TW(t)  =  k 1×  matrix 

 
Proposed Model and Algorithm: Both Winter’s and 
Weighted Fuzzy Time Series (WFTS) models have 

achieved successes in their own linear or nonlinear 
domains, particularly for forecasting trend and seasonal 
time series. However, none of them is a universal 
model that is suitable for all circumstances, particularly 
WFTS only worked well for stationary or seasonal time 
series with no trend. Zhang (2003) stated that since it is 
difficult to completely know the characteristics of the 
data in a real problem, hybrid methodology that has 
both linear and nonlinear modeling capabilities can be a 
good strategy for practical use. By combining different 
models, different aspects of the underlying patterns may 
be captured. 
 As proposed by Zhang (2003), it may be 
reasonable to consider a time series to be composed of a 
linear structure and a nonlinear component. That is: 
 

t t tY  = L  + N                                                              (1) 

 
Where: 
Lt = The linear component  
Nt = The nonlinear component 
 
 These two components have to be estimated from 
the data.  
 In this paper, first, we let Winter’s model to model 
the linear component particularly trend and seasonal 
components, then the residuals from Winter’s model 
will become stationary series and may contain only the 
nonlinear relationship. Thus, we propose to consider the 
forecast of time series to be composed of two 

components, 1,tŶ  and 2,tŶ , as follows: 

 

t 1,t 2,t
ˆ ˆ ˆY  = Y  + Y                                                          (2) 

 

Where:  

1,tŶ  = Forecast value for time t  from the Winter’s 

model 

2,tŶ  = Forecast value from the WFTS for the residual 

at time t from the Winter’s model 
 
 The four equations used in multiplicative Winter’s 
model are as follows (Hanke and Wichern 2009): 
 
• The exponentially smoothed series: 
 

t
t t-1 t-1

t-L

Y
A  = α( ) + (1 α)(A +T )

S
−    (3) 

 
• The trend estimate: 
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t t t-1 t-1T  = β(A A ) + (1 β)T− −    (4) 

 
• The seasonality estimate: 
 

t
t t-L

t

Y
S  = γ( ) + (1 γ)S

A
−    (5) 

 
• Forecast p periods into the future: 
 

t+p t t t-L+pŶ  = (A + pT ) × S    (6) 
 
 Let et denote the residual at time t from the 
Winter’s model, then: 
 

t t 1,t
ˆe  = Y Y−                                                            (7) 

 
where 1,tŶ  is the forecast value for time t from the 

estimated Winter’s model. Residuals are important in 
diagnosis of the sufficiency of linear models. A linear 
model is not sufficient if there are still linear correlation 
structures left in the residuals. However, residual 
analysis is not able to detect any nonlinear patterns in 
the data. In fact, there is currently no general diagnostic 
statistics for nonlinear autocorrelation relationships. 
Therefore, even if a model has passed diagnostic 
checking, the model may still not be adequate in that 
nonlinear relationships have not been appropriately 
modeled. By modeling residuals using WFTS, 
nonlinear relationships can be discovered.  
 In summary, the proposed methodology of the 
hybrid system consists of two steps. In the first step, a 
Winter’s model is used to analyze the trend and 
seasonal part of the problem. In the second step, a 
WFTS model is developed to model the residuals from 
the Winter’s model. In this second step, we apply four 
WFTS models proposed by Chen (1996); Yu (2005); 
Cheng et al. (2008) and Lee and Suhartono (2010). The 
results from the WFTS can be used as predictions of the 
error terms for the Winter’s model. The hybrid model 
exploits the unique feature and strength of Winter’s model 
as well as WFTS model in determining different patterns. 
Thus, it could be advantageous to model trend, seasonal 
and nonlinear patterns separately by using different 
models and then combine the forecasts to improve the 
overall modeling and forecasting performance.  
 To validate the methodology of hybrid model for 
forecasting trend and seasonal time series data, a new 
algorithm is proposed as follows. 
 
Step 1: Apply Winter’s model at Eq. 3-6 to get the 

first forecast component, 1,tŶ  and the residuals, te . 

Step 2: Apply WFTS method to model the residuals 
from the Winter’s model and get the second forecast 

component, 2,tŶ . In this step, four WFTS methods 

proposed by Chen (1996); Yu (2005); Cheng et al. 
(2008) and Lee and Suhartono (2010) are applied to 
find the best forecasted values. 
 
Step 3: Calculate the final forecast values by adding 
the forecast values at the first and second steps as Eq. 2. 
 

RESULTS 
 

 To demonstrate the effectiveness of this hybrid 
method, we use data about the number of tourist 
arrivals to Bali, Indonesia, via Ngurah Rai airport from 
January 1989 until December 1997 as a case study. The 
time series plot at Fig. 1 illustrates that the data have 
both trend and seasonal pattern. To assess the 
forecasting performance of different models, each data 
set is divided into two samples of training and testing. 
The training data set that contains 96 records (January 
1989 until December 1996) is used exclusively for 
model development and then the last 12 records 
(January 1997 until December 1997) as test sample is 
used to evaluate the established model.  

 In this study, all hybrid modeling is implemented 
via two package programs, i.e., MINITAB for Winter’s 
model at the first step and MATLAB for WFTS model 
at the second step. The results are compared with three 
classical time series models, namely Decomposition 
method, ARIMA and Winter’s models. Only the k-step-
ahead forecasting is considered. The Root Mean 
Squared Error (RMSE) is selected to be the forecasting 
accuracy measures. 

 

 
 
Fig. 1:  Monthly data about the number of tourist 

arrivals to Bali 
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Table 1: Comparison of RMSEs both in training and testing datasets 
  Training  Testing 
  -------------------------------- ----------------------------------  
 Method RMSE Ratio RMSE Ratio 
 
Decomposition  5.512 0.990 10.767 1.016 
Winter's α,β, γ= 0.2  5.557 0.998 10.157 0.958 
Arima (0,1,1),(0,1,1)12  5.568 1.000 10.601 1.000 
 
Hybrid model: Winter's+WFTS models      
The 1st order Chen's1996 5.263 0.945 10.198 0.962 
 Yu's (2005) 5.205 0.935 9.961 0.940 
 Cheng's (2008), α=0.99 5.244 0.942 9.618 0.907 
 Lee's (2010), c=10 8.257 1.483 9.174 0.865 
The 12th order Chen's (1996) 5.095 0.915 13.050 1.231 
(seasonal) Yu's (2005) 5.158 0.926 13.033 1.229 
 Cheng's (2008), α=0.99 5.092 0.914 13.106 1.236 
 Lee's (2010), c=1.60 5.469 0.982 12.686 1.197 
 

 
 The results of RMSEs obtained using the hybrid 
models and three classical time series models, both in 
training and testing data, are listed in Table 1. Column 
ratio illustrates the ratio between each method to the 
result of ARIMA model. The value is less than 1 show 
that the result is better than ARIMA. 
 

DISCUSSION 
  
 The results at Table 1 in general show that the overall 
forecasting errors can be significantly reduced by using the 
hybrid models (by combining two models together), both 
in training and testing datasets. In terms of RMSE, the 
performance evaluation in training data shows that hybrid 
model, i.e., a combination between Winter’s and Cheng’s 
WFTS methods at the 12th order FLR yields the most 
accurate forecasted values than other models. 
Additionally, these results also show that most of hybrid 
models yield more accurate forecasted values than 
ARIMA and two other classical time series models. 
 Moreover, the hybrid model between Winter’s and 
Lee’s WFTS methods at the first order FLR yields the 
best forecasted values than other models at testing 
dataset. Additionally, the results in testing data also 
show that all the proposed hybrid methods in the first 
order FLR yield more accurate forecast than other 
hybrid methods and two classical time series models, 
i.e. Decomposition and ARIMA models. The results 
also show that Winter’s model could reconstruct well 
the trend and seasonal component of the series and the 
WFTS could fit well the residual from Winter’s model 
to improve the forecast accuracy.  
 

CONCLUSION  
 
 Time series analysis and forecasting is an active 
research area over the last few decades. The accuracy of 

time series forecasting is fundamental to many decision 
processes and hence the research for improving the 
effectiveness of forecasting models has never stopped. 
With the efforts of Box and Jenkins (1976), the ARIMA 
model has become one of the most popular methods in 
the forecasting research and practice. More recently, 
WFTS have shown their promise in time series 
forecasting applications with their nonlinear modeling 
capability.  
 In this study, we propose to take a hybrid 
approach based on Winter’s and WFTS models and 
apply for forecasting trend and seasonal data, i.e., 
tourist arrivals data. The Winter’s model and the 
WFTS model are used jointly, aiming to capture 
different forms of pattern in the time series data. The 
empirical results with tourist arrivals data clearly 
suggest that the hybrid model is able to outperform 
each component model used in isolation the pattern 
of time series data. 
 Various combining methods have been proposed in 
the literature. However, most of them are designed to 
combine the similar methods. Zhang (2003) stated that 
theoretical as well empirical evidences in the literature 
suggest that by using dissimilar models or models that 
disagree each other strongly, the hybrid model will 
have lower generalization variance or error. 
Additionally, because of the possible unstable or 
changing patterns in the data, using the hybrid method 
can reduce the model uncertainty which typically 
occurred in statistical inference and time series 
forecasting. Furthermore, by fitting the Winter’s model 
first to the trend and seasonal data, the fitting problem 
with higher order related to fuzzy time series model can 
be eased. 
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