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ABSTRACT 

When independent variables have high linear correlation in a multiple linear regression model, we can have 
wrong analysis. It happens if we do the multiple linear regression analysis based on common Ordinary Least 
Squares (OLS) method. In this situation, we are suggested to use ridge regression estimator. We conduct some 
simulation study to compare the performance of ridge regression estimator and the OLS. We found that Hoerl 
and Kennard ridge regression estimation method has better performance than the other approaches. 
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1. INTRODUCTION 

Main goal of multiple linear regression model is to 
determine the best set of parameters, βi, so that the 
predicted value of dependent variables close to the real 
values (Orlov, 1996). In multiple linear regression 
models, we normally assume that the independent 
variables are independent. However, in practice, the 
explanatory variables may be correlated between each 
other. This inter-relation between the explanatory 
variables is called multicollinearity. It is the undesirable 
situation and can happen when the correlations among 
the independent variables are strong. It has several 
effects as has been described by Judge et al. (1988). One 
of them is that it increases the standard errors of the 
coefficients. In this situation, the independent 
assumptions are no longer valid in multiple linear 
regression models. The regression coefficients which are 
based on Ordinary Least Square estimator (OLS) tends to 
become unstable in the presence of multicollinearity. 
Wethrill (1986) also mentioned that multicollinearity is a 
serious problem when we make inferences for a model 
so that it must be handled appropriately. 

Except due to strong natural linear correlation 
between independent variables, multicollinearity can 

happen due to the present of high leverage points. Recent 
researches focused on high leverage points correspond to 
outlier are Bagheri and Midi (2009). 

Ridge regression estimator methods have been 
proposed as alternatives to the OLS estimators when the 
independent assumption has not been satisfied in the 
analysis. Several methods have been proposed for 
estimating the ridge parameter k and consider a criterion 
for comparison of the estimators. We present several 
methods based of ridge regression estimators. 

Hence, ridge regression estimator has been proposed 
as an alternative to the OLS estimators when the 
independent assumption has not been satisfied in the 
analysis. The ridge estimator constrains the length of the 
regression coefficient of the estimator in the presence of 
multicollinearity. Ridge regression will be able to 
minimize the variance of the estimators when the design 
matrix is not invertible. The modification of design 
matrix to make its determinant different form 0 causes 
the estimator to be biased. This method is significantly 
reduces the variance of the estimators. Through this 
research, we want to observe how are the parameters of 
ridge regression estimator in different level of correlation 
coefficients by using Monte Carlo procedure. 
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1.1. Ridge Regression Model 

Multicollinearity refers to a situation in which two or 
more predictor variables in a multiple regression model 
are highly correlated. Multicollinearity occurs when 
there is a linear relationship between one or more of the 
independent variables. In this situation, the regression 
coefficients change significantly in response to small 
changes in the model. The regression coefficients cannot 
be estimated with great accuracy because the coefficients 
possess large variance. 

The ridge regression estimator is much more stable 
than the OLS estimator in the presence of 
multicollinearity. The ridge estimator restricts the length 
of the coefficients estimator in order to reduce the effects 
of multicollinearity (Hocking et al., 1976). In the 
presence of multicollinearity, Hoerl and Kennard (1970) 
introduced the ridge estimator as an alternative to the 
OLS estimator when the independent assumption is not 
longer valid. The ridge estimator is shown as follow 
Equation (1) (Hoerl and Kennard, 1970): 
 

( ) 1

kβ X X k Ι X y
−′ ′= +

⌢

 (1) 

 
where, the I denotes an identity matrix and k is known as 
ridge parameter. The MSE of kβ̂  is shown as follow: 
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The ( )kMSE β
⌢

 in Equation (2) depends on unknown 

parameters k, β and σ2, which can’t be calculated in 
practice. As k increase from zero to infinity, the 
regression estimates will approximately equal to zero. It 

yields minimum ( )k
ˆMSE β  compared to the OLS 

estimator, although these estimator results in bias, for a 
certain value of k (Hoerl and Kennard, 1970). In 
practice, we have to estimate k from the real data instead. 

Standard model of a multiple linear regression can be 
expressed into canonical form. An orthogonal matrix D 
exists such that: 
 

D CD Λ′ =  

 
where, C = X’X and Λ = diag (λ1, λ2,…, λp) contains the 
eigenvalues of the matrix C, then the canonical form of 
the model (1) is Equation (3): 

*y X α ε= +  (3) 
 
where, X* = XD and α = D’β. The general form of OLS 
estimator is shown as follows Equation (4): 
 

1 *α Λ X y− ′=⌢  (4) 
 

Then, the ridge estimator is written as Equation (5):  
 

( ) 1
* * *

α(k) X X K X y
−′ ′= +⌢  (5) 

 
where, K = diag (k1, k2,…,kp), ki >0. The ridge estimator 
in Equation (4) is known as general form of ridge 
regression (Hoerl and Kennard, 1970). According to 
Hoerl and Kennard (1970), the value of k1 which 
minimizes the Equation (6):  
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Is: 
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 (7) 

 
where, σ2 denotes the error variance of model Equation 
(1), αi is the ith element of α. Equation (7) shows that 
the values of ki fully depends on the unknown σ2 and αi. 
Since σ2 and αi are unknown, these values must be 
estimated from the observed data. Bhar and Gupta 
(2001) proposed a new criterion of detecting outlier in 
experimental designs which is based on average Cook-
statistic. Meanwhile, Zhou and Zhu (2003) realized the 
fact that in practice, experiments may yield unusual 
observations (outliers). In the presence of outliers in a 
data, estimation methods such as ANOVA, truncated 
ANOVA, Maximum Likelihood (ML) and modified ML 
do not perform well, since these estimates are greatly 
influenced by outlier. Zhou and Zhu (2003) verified that 
with robust designs, one can get efficient and reliable 
estimates for variance components regardless of outliers 
which may happen in an experiment. Then Goupy 
(2006) conducted further research regarding outlier in 
an experiment who described how to discover an outlier 
and estimate its true value and recently, Fitrianto and 
Midi (2013) who compared classical and robust 
approach in experimental design. The method is based 
on the use of a dynamic variable and the ‘‘small 
effects’’ of the Daniel’s diagram. 
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1.2. Method for Estimating Ridge Regression 
Parameters  

Several methods have been proposed in order to 
define a new estimator that can perform better compared 
to the existing methods. In this part, we present some 
methods for estimating ridge parameter k. Hoerl and 
Kennard (1970) found that the best method to estimate 
α(k)
⌢  is to use ki = k for all i and they suggested k is to be 

HKk
⌢

 (or HK) where Equation (8): 
 

( )
2

HK
i

ˆ
k̂

ˆmax

σ=
α

 (8) 

 
If σ2 and α are known, then HKk

⌢

 is sufficient to give 

ridge estimators having smaller MSE than the OLS 
estimator. 

Hocking et al. (1976) defined a new method for 
choosing parameter k. They suggested an estimator of k 
by using HSLk

⌢

 (or HSL), which produces the following 

estimator Equation (9): 
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Recently, Alkhamisi and Shukur (2007) suggested a 

new approach for choosing the ridge parameters k by 
adding 1/λmax to some well-known estimators, where 
λmax is the largest eigenvalues of X’X. They applied the 
modification to the previous estimator which was 
proposed by Hocking et al. (1976) in order to define a 
new estimator NHSLk

⌢

 (or NHSL) Equation (10): 
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Since max NHSL1 0,kλ >

⌢

, is greater than HSLk
⌢

. 

1.3. The use of Monte Carlo Simulation 

Monte Carlo method is a stochastic technique which 
is used to investigate problems based on the use of 
random numbers and the probability statistics. We can 
use Monte Carlo method to solve physical problems, for 
example it allows us to examine more complex systems. 
With Monte Carlo method, we can sample the large system 
in a number of random configurations. Bagheri and Midi 
(2009) also conducted Monte Carlo simulation study in a 
robust approach in the presence of multicollinearity.  

Simulation study will be discussed to compare the 
performance of ridge estimators under several degrees of 
multicollinearity. Different ridge estimators 
corresponding to different values of ridge parameter k 
are considered. McDonald and Galarneau (1975) and 
several other researchers used the following equation to 
generate the explanatory variables Equation (11): 
 

( )
1

2 2
ij ij ipx 1 z z ,i 1,2,...,n, j 1,2,...,p= − γ + γ = =   (11) 

 
where, zij is independent standard normal pseudo-random 
numbers and γ is linear correlation between any two 
explanatory variables. 

The n observations for the dependent variable y are 
determined by Equation (12): 
 

i 0 1 i1 2 i2

p ip i

y x x

x , i 1, , n

= β + β + β +
+ β + ε =… …

 (12) 

 
where, εi are independent normal (0,σ2) pseudo-numbers. 
The comparison is based on the MSE criteria. The MSEs 
of ridge estimators are evaluated by Equation (7). 

2. METERIALS AND METHODS 

2.1. Simulation Design  

The simulation is conducted by using SAS release 
9.2. To achieve different degrees of correlation, the 
explanatory variables were generated using the Equation 
(11). Size of sample to be considered in this research is 
small sample of size 20 with number of explanatory 
variables of equal to 10. Different values of correlations 
are considered in the simulation study are 0.5, 0.7 and 
0.9. These three values of to represent low, moderate and 
high correlations between explanatory variables. The 
explanatory variables need to be standardized so that 
they will be in correlation form. Meanwhile, five 
different values of standard deviation to be considered in 
this study, which are 0.1, 0.5, 1.0, 5.0 and 10.0. 

2.2. Performance Measures of the Estimators  

For given values of p, σ and γ, we repeated the 
experiment by 1000 times. For each replication, r = 
1,2,3,..,1000, the values of these three ridge estimators 
and the corresponding parameters, k will be estimated 
using the standardized variables and then the 
estimated coefficients are transformed back to the 
original model. The k values were computed based on 
its corresponding method.  

The performance of the estimators is evaluated in 
terms of the averaged mean square error (Dorugade and 
Kashid, 2010) with the following equation: 
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The comparison between estimated MSEs are then 

based on the values of p, σ and γ. 

3. RESULTS AND DISCUSSION 

Results of the estimators performance are displayed in 
Table 1. The table displays the MSEs of each estimator 
under several levels of correlations corresponding to 
different values of σ. The first column of the table 

contains σ which has five different values. The second 
column of the table contains the correlation coefficient, 
γ. We compare the MSEs of each estimator under three 
levels of correlations where γ corresponding to 
different values of σ.  

From Table 1, we noticed that the HK and HSL 
estimators are better than OLS estimator for all levels 
of correlations corresponding to different values of σ. 
This result in accordance and strengthens the previous 
research which have been conducted by Al-Hassan 
(2010).

 
Table 1. Estimated MSEs of each ridge regression estimator at three levels of correlations correspond to different values of σ  
  Estimation method 
  ------------------------------------------------------------------------------------------------ 
Std dev (σ)  γ OLS HK HSL NHSL 
0.1 0.5 0.00004 0.0000 0.00000 0.00131 
 0.7 0.00005 0.0000 0.00000 0.00021 
 0.9 0.00010 0.0000 0.00000 0.00010 
0.5 0.5 0.02403 0.00001 0.00004 0.01237 
 0.7 0.02852 0.00004 0.00019 0.01530 
 0.9 0.06486 0.00067 0.00335 0.04705 
1 0.5 0.31840 0.01159 0.02860 0.15759 
 0.7 0.40062 0.02624 0.07697 0.22932 
 0.9 0.94697 0.15406 0.44105 0.73018 
5 0.5 1.61637 0.28938 0.28713 0.85356 
 0.7 2.82651 0.70882 0.81965 1.73789 
 0.9 9.19491 3.64752 4.67201 7.41896 
10 0.5 1.62511 0.29554 0.28489 0.8573 
 0.7 2.84906 0.71761 0.80148 1.74657 
 0.9 9.29982 4.02566 4.52590 7.47674 
 

 
 

Fig. 1. Plot of estimated MSEs obtained by different ridge regression methods of each ridge regression estimator at three levels of 
correlations correspond to different values of σ 
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The MSEs of OLS estimator are lower than the MSEs of 
NHSL estimator for all levels of correlation when the 
value of σ = 0.1. However, the NHSL estimator performs 
better than OLS estimator when σ>0.1. From Table 1, 
we can conclude that HK estimator performs better than 
the OLS and other ridge estimators. 

We display graphical plot of MSE (of each ridge 
regression method) versus the level of correlation 
coefficients by different values of standard deviations on 
Fig. 1. We compare the MSEs of each estimator 
graphically by varying the standard deviations and the 
correlations between the explanatory variables. The 
results of different levels of correlations corresponding 
to standard deviation as shown below. 

In Fig. 1 we can see that when the data has small 
variability (which are represented by σ = 0.1 and σ = 
0.5) the MSE values between ridge regression method 
are about the same so that the small differences between 
them can be neglected. But when the value of standard 
deviation is at least one, we can observe that the MSE 
values increases as the standard deviation increases, 
regardless the methods. Moreover, we can see that the 
OLS estimator has the highest MSE compare to ridge 
estimators and within the regression estimation methods, 
the HK estimator performs better than the HSL and 
NHSL estimators for all levels of correlations. 

4. CONCLUSION 

In this article, we did simulation studies of several 
methods for estimating the ridge parameters. The 
performance of each ridge estimator depend on the 
standard deviation (σ) and the correlations between of 
explanatory variables (γ2). For σ = 0.1, HK estimator and 
HSL estimator have smaller MSE than the OLS 
estimator for all levels of correlations. However, the 
OLS estimator is reasonably better than NHSL estimator 
for all levels of correlations for this given value of . HK 
estimator might be recommended to be used to estimate 
the ridge parameter k. Further investigation of ridge 
estimators is needed in future in order to make any 
definite statement. 
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