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ABSTRACT

In this study, we consider the nonparametric qleamggression model with the covariates Missing at
Random (MAR). Multiple imputation is becoming artrieasingly popular approach for analyzing missing
data, which combined with quantile regression iswnell-developed. We propose an effective and aeur
two-stage multiple imputation method for the molaked on the quantile regression, which consists of
initial imputation in the first stage and multiglaputation in the second stage. The estimation gatoe
makes full use of the entire dataset to achieveeased efficiency and we show the proposed tweaestag
multiple imputation estimator to be asymptoticaliyrmal. In simulation study, we compare the
performance of the proposed imputation estimatti @omplete Case (CC) estimator and other imputatio
estimators, e.g., the regression imputation estimahd k-Nearest-Neighbor imputation estimator. We
conclude that the proposed estimator is robusthéo inhitial imputation and illustrates more desieabl
performance than other comparative methods. Weaglpty the proposed multiple imputation methodrto a
AIDS clinical trial data set to show its practiegdplication.

Keywords: Bandwidth Selection, Local Linear Fitting, Missingovariates, Nonparametric Quantile
Regression, Two-stage Multiple Imputation

1. INTRODUCTION Where:
m(:) = The unknown real function and
Quantile regression has been widely used in0O = The error term
analyzing the relationship between response and
covariates since its first introduction in (Koenkand Based on the above model, we consider the following

Bassett, 1978). Compared with mean regression tiipian nonparametric quantile regression model Equatiob){1
regression is able to depict the impact of covasiain

various quantiles of the response, which providesem QI(Y|X=X)=CI+m(X) (1.1
information  for analysis. Furthermore, quantile
regression is robust to outliers in data and diston-  \here quantilet0(0, 1), Q(Y|X = x) is the t-th

free for error term. Due to its advantages, quantil congitional quantile of Y given X = x..ds thet-th
regression has illustrated its increasingly impatain quantile of error term and satisfies c= FY(0)
T L]

modelipg and has .gttracted great attention in da.tawhere F(Q) is the unknown distribution function af.
analysis and empirical applications, nonparametrchere, without loss of generality, covariate vector

quant_ile regression modeling is _SUCh an example.does not contain constant 1, which means thereis n
Consider the following nonparametric regression etod intercept term in m(x) and ensures the identifizati

~ of the model. This model overcomes many

Y =m(X)+O disadvantages of usually used parametric models in
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which  misspecification could be encountered.

imputation estimator. Particularly, the multiple

Nonparametric regression does not assume that thémputation methods often bring more reliable infee
relationship between response and covariates to bé¢han single imputation methods and perform better i

linear or satisfy some specified form, which midpe

missing data problems. In this study, we focus lom t

more reasonable for most of data set and thus morestimation of model (1.2) under MAR assumption dase

flexible than parametric models. Especially whetada

on local linear fitting and propose an effectivel aasy-

set does not present some kind of parametric form,to-use two stage multiple imputation estimator, ahhi
nonparametric regression model could be a plausiblemproves the estimation efficiency to a large ekten

choice since it avoids the great bias due to thengr
model form assumption and brings increasing
accuracy and more reasonable explanations.

In the context of mean regression, parametric or
nonparametric regression models with missing datee h
been studied in many papers. Anderson (1957) de&rive

The above nonparametric quantile regression modelthe maximum likelihood estimates of parametric nt&de

can be widely applied to many empirical data arialys
where the data set is complete. However, it is
unavoidable to face with data set with missing data
it is necessary to extend the above model to déal w
missing data. In practice, missing data is verywasive
and the reasons for missing are various. More detai
Little and Rubin (1978); Robinat al. (1994) and Vach
(1994). In this study, we pay more attention to the
nonparametric quantile regression model (1.1) it
covariates missing at random, which has the foltamwi
form Equation (1.2):
Q (%22 Q(YIX=x,2=2= g+ m(x,z (1.2)
where, (X, Z) are covariate vectors, X may be migsi
whereas Z is all observed in sample interval. Demoas
the sample size. For notation simplicity, we sugpieat
the first n observations are complete while the
remaining p are missing in X. Therefore, rewrite the
sample as {(Y, X;, Z):i=1,---, g4 and {(Y},", 4): ] =
n;+1,..., n}. Letd be a missing indicator whose value is 1
when X is observed and else 0 when X is missing@nTh
§=1fori=1,---, pwhile § = 0 for i = n+1,..., n. Here
we assume that X is MAR which takes the form of
conditional independence, i.e., X ah@re conditionally
independent given (Y, Z) Equation (1.3):
PO=1]Y,X,2)= A8=1]Y.,2 1.3)

In order to estimate model (1.2), we may just
consider the observed data and ignore the obsengti

with missing values, which is called the CC analysi
Although we can obtain consistent estimator for ,na{x

and Cheng (1994) and Chu and Cheng (1995) stuldéd t
nonparametric regression estimation with missing
response. Wang and Rao (2001; 2002) and V\éhrad)
(2004) studied the estimation of generalized linear
models, linear models, semiparametric models with
missing response, respectively. Furthermore, gleanti
regression models with missing data also have been
considered in literature. It should be noted thag t
above research mainly consider the models with
missing response rather than missing covariatedetUn
mean regression, Liangt al. (2004) considered the
partially linear model with covariate missing degiggy

on other complete covariates and response. Wu amd W
(2001) proposed a multiple imputation method for
missing covariates in non-linear mixed-effects niede
and applied the proposed method to HIV Dynamics.
Robinset al. (1994) studied the regression coefficients
estimation with missing covariates. Wang (2009 als
considered the estimation of partial linear modeith
covariables data missing at random. With respect to
quantile regression, Weet al. (2012) studied the
multiple imputation for parametric quantile regiess
model with missing covariates, which provided a new
imputation method. However, nonparametric quantile
regression with missing covariates has not been
considered up to now. Based on the existing rebesand
methods, we propose a two-stage multiple imputation
method for nonparametric quantile regression with
missing covariates, which greatly enriches the ouedh

to cope with missing data in quantile regression.

The rest of the paper is organized as follows. In
Section 2, we develop nonparametric quantile reipas
with missing covariates based on a two-stage nieltip
imputation method and present main results of the
asymptotic properties for the proposed estimatectiGn

through CC analysis under MAR assumption, it may be3 compares our methods with regression imputation

misleading and inefficient when missing rate ishhig
Therefore, it is necessary to construct a moreoresse
estimator to make use of the information in dataeseg.,
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method, k-Nearest-Neighbour and Nearest-Neighbour
methods through simulation study. Discussion is
available in Section 4.
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To obtain this estimator, two stages are performed,
where initial imputation values are realized in first
stage while multiple imputation values are obtained
based on these initial imputation values. Then iseuss
about these two stages in detalil.

2ESTIMATION WITH
MULTIPLE IMPUTATION

In this section, we present the estimation of m¢tle)
under CC case and propose a two stage multipletéatigol
estimator. For the CC estimator and the proposadasr,

we further study its large sample properties.
In the first stage, we can obtain initial imputatio

2.1. CC Estimator values through many imputation methods. Here we
For model (1.2), we first consider the model consider the following three methods to get initial

estimation under CC case, which is the basis ofwie imputation values:
stage multiple imputation estimator.

To estimate Q(Y|X = x), the conditional quantile of «
Y given X = x in model (1.2) under CC case, we sppl
classical local linear fitting and quantile regieas
method and consequently have the following objectiv
function Equation (2.1):

2.2.1. First-Stage | mputation

Regression Imputation. Based on the MAR
assumption in Section 1 and the dependence of x on
z, construct linear regression model for x given z
with the complete data and obtain the parametric
estimates. Then impute the missing x via the
prediction values based on the corresponding z

e k-Nearest-Neighbor Imputation. For j s 1,...,n,
(2.1) find the k nearest data pairs,(g) (I = 1,..., k) of
data pair (¥ z) in the complete data and the
corresponding points Xl = 1,..., k) are the k nearest
points in distance of missing data Xhen impute x

R”l(B):ingllpT(Y' B _(Xi X,z _Z)Bl)

Ky (X, -x.Z, -z)

where, o = ¢, + m(x, z), By = (@m(X, z)IOx, om(X,

2)l6z)" and B = (Bo, BY). pe (U) = TUlpg(u)-(1-T)ul.

»0(U) is the check function used in quantile o

regression, which is one kind of loss function) i&
the usual indicator function. {{-) is the kernel

. s 1
f t tisf K,(Z)=——K(H™Z d H
unction satisfying K, (2) de () (H%2) an
represents the bandwidth matrix.
By minimizing R.y(B) in (2.1) with respect tf, we can
obtain the estimate @gfunder CC case Equation (2.2):

fﬁnl(r) = (Bnl,o(T)’BTq,l(T)) :ArgBmin R rl(B) (2.2)

by averaging these points, i.&, :%ZLXI

Nearest-Neighbor Imputation. Different with k-
Nearest-Neighbor imputation, the Nearest-Neighbor
imputation just considers the nearest one point of
missing x as the imputation value, i.e., k = 1. For
n, + 1,...,n, find the nearest data pair, @) of data
pair (y, z) in the complete data and the
corresponding point (xare the nearest point in
distance of missing datg. X hen impute xthrough
this point, i.e.,x; =x,

Remark:

The first imputation method is based on regression

Via (2.2) we can obtain the conditional quantile imputation while the third method belongs to

estimate of Y using the complete data only, i@.(x, z)
= [inlvo(T) , which is the so-called CC estimator.

2.2. Two-Stage Multiple Imputation Estimator

matching method. The above regression imputation
requires the linear relationship between missing
covariate and regression variables. Matching is
nonparametric imputation method which allows
imputation without estimating conditional distrifbar

In this subsection, we propose a two-stage multiple ot missing variable. Further information about eegion

imputation estimator for model (1.2). The basicaidd
the two-stage multiple imputation estimator isngpute
the missing data via the estimated conditional idens

f(x|y,z) and then estimate model (1.2) based on thejn

complete data including imputed data.
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imputation and matching method, Little and Rubin
(1987) and Chen and Shao (2000).

It should be noted that a reasonable two-stage
putation estimator should be insensitive to theva
initial imputation methods. In other words, if quroposed
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two-stage multiple imputation estimator is effeetiand
reasonable, it should be stable under differentiaini
imputation methods. In the simulation study, wel wil
illustrate the robustness of the proposed estimtdor
initial imputation. Based on these initial imputati
values of missing x, we can estimate the conditiona
density f(y|x, z) and then obtain the estimateddd@nal
density f(x|y,z).We discuss the above estimation

process in the following second-stage imputation.

2.2.2. Second-Stage | mputation

In this stage, we realize the multiple imputatiasdd
on the estimated conditional densft{x | y,z) and estimate

model (1.2) using the whole data after multiple utagion.
This stage can be concluded as the following steps:
Step 1: Estimate conditional density f(xly, 2).
According to Bayes formula, f(x]y, Z) f(y|x,
2)f(x]z). It is reasonable to estimate f(x]y, z)
through estimating f(x|z) and f(y|x, 2)
respectively, which can be realized via the
following steps.

Estimate conditional density f(x|z). Model
given z parametrically as f(x|g) and obtain the
estimater; and the estimated conditional density

f(x12) of x given z can be denoted B | z,f) .

Estimate conditional density f(y|x, z).eTh
quantile function is the inverse distribution
function, so the density function can be
expressed as the reciprocal of the first
derivative of the quantile function at the
corresponding quantile level. Here we choose
K, quantile levelgy = k/(K,+ 1) (k = 1,..., K),
similarly and approximate the conditional
density f(y|x, z) as follows Equation (2.3):

Step la:

Step 1b:

(2.3)

where, Q,, (x,z)is the estimated,-th conditional quantile

of Y in model (1.2) with the whole data set inchugli
initial imputed data from first-stage imputation.

At last, normalizef (y|x,2)f(x|2) to be a density,
then we get the estimated conditional dengity| y,z):
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Step 2:

Step 3:

Multiple imputation based on estimated
conditional density f(x|y,z). First, obtain
empirical distribution functionF(x|y,2 via
estimated conditional densitf/(x|y,z). Then

draw random numbers u;,i=1,...,n from
uniform distribution U(0, 1). Finally, regard
u,i=1..,nas the guantile levels and obtain
the corresponding quantiles from empirical
distribution function F(x|y,2, which can be

seen as the imputation values.

Estimation of model (1.2) using the whai¢ad
after multiple imputation. Consider a new
objective function including the observed data
and the |-th imputed data set as follows:

Rn(l)(B)zipr(Yi _BO_(xi X4 _Z)B.l)

Ky (X -x.Z; -2)

+ i pI(Yi _Bo_(xi Xz _Z)Bl)

i=ng+1

Ky (X %2, -2)

=30y -slx 1) (2 -2 )
KH(Xi -X,Z, _Z)
+j-nzn1:+lpr(YJ _(1‘(xm) ‘X)T = _Z)T)Bj

KXy %2, -2)

Minimize Ray(B), we have
Bn(l) (m= (Bn(l),o (T),[@Em,l(T)) = Argmin Rn(l)(B) as the
B

estimated coefficient under the I-th imputation adat
Repeat the imputation estimation step L times and
obtain the two-stage multiple imputation estimator
Equation (2.4):

(2.4)

For the two-stage multiple imputation estimator
B*(1) obtained based on the above two-stage
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imputation, we derive its asymptotic propertiesthie
following subsection.

2.3. Large Sample Properties

In this section, we give the asymptotic distribotiaf
the two-stage multiple imputation estimatr (1) . Let
h(r; X,2) = 1/Q(X, Z) be the density of Y given X and Z
at t-th quantile. Recall thafin‘ (t)is the CC estimator in
section 2.1 antfsnm(r) is the estimator obtained from the

objective function based on the whole data inclgdime
I-th imputed data of missing values in section 2.2.
Define the following objective function:

{Yi _(l’(km) B X)T (- Z)T)B}

—x,Zj —z)

Rno(l) ([3) = j:%ﬂpr

K, (Xj(,)

and denote [in (r)as the estimators obtained from
Iin o® based on the imputed data of missing values

only, ie., éng (1) =Argmin?€no(|) ®).
B

The above three estimators are the basis for the tw
stage multiple imputation estimat@* (1) . Then define
the functions as follows:

o®)=E F:{(YX-_(i.(Zx_—ZX))T,(z_z)T)B} |
odY -[L(x-x)"(z-2)" B:
HO(B):E(V,X,Z) Z{(X _(X,(Z _Z)) ) }

where, (X,Y,Z) is the observed data set whileY, z) is

the imputed data set. Given (Y,X), follows the
conditional distributionf (x| y,2).

To obtain the asymptotic properties #f (1) , we list
the following assumptions needed in proof.
Assumption 1:

There exists ap(t)JR® such thatp(r) uniquely
minimizes the objective function o), i.e., p(r) =
Argming Ho(B).
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Assumption 2:

There exists a compact €efIR” andp(t)Q, such
that B, (t) Argmin, H, (B) .

Assumption 3:

The covariate X has bounded suppgrtThe true
conditional density f(x|z) = f(X|Zy = nqg), where f(x|zn)
is a continuous function af uniformly for (x, z) in a
neighbourhood offy and is bounded away from zero and
infinity for all (x, z).

Assumption 4:

The true coefficient functionlo(tr) are smooth
functions on (0, 1) and for anyX and Z:

e 0<hG; x, z) <o and lim_ch(r; X, 2) = lim_:h(z;
X,2)=0

There exist constants M angv, > -1, such that the
first derivative of h(-) satisfies:

sup|hf{t;x,2 ¢ M*( F1)?

Assumption 5:

The matrix W, = (@/0B(r))E[@. (Yi-(1, (X-X)", (Z-
2)NB@)Kn(Xix, Z-2)(1, (X%-X)", (Z-2)")'], is positive
definite, wherap,(u) =t-I(u < 0).

Assumption 6:

The d-dimensional kernel function K(-) is a bounded
density function with a compact support @ithin the
interior of the support of f(x) such th@i&(u)du = 1,
JuK(u)du = @, JuuK(u)du > Q.

Assumption 7:

The bandwidth matrix H of the kernel function
satisfies det(H}» 0 and n - det(H)» o, as Ao,

Remark:

The Assumption 1 and Assumption 2 ensure the
existence of solutions for objective functions.
Assumption 3 and Assumption 4 focus on the
conditional density f(y|x, z). Assumption 6 and
Assumption 7 are common in nonparametric
estimation, which represent the assumptions fondder
functions and bandwidths, respectively.

Additionally, we also make the following definitisn
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(pI(Yi (1,(Xi —x)T,(Zi —Z)T)B(T))
| ]
(pT(Yj (I, ()Z 0 —X)T, (Zj —z)T)B(T)j

V, =Var
Ky (X, -x.Z, —z)><(1,(xi -x)

V, =limVar

n-o

U, =Cov

n-oo

Based on the above regularity conditions, the two-

stage multiple imputation estimatop*(t) has the
asymptotic distribution in the following theorem.

Theorem 1:

Under (1.3) and the above Assumptions 1-7, for
Koo and Kn' — 0, the multiple estimator

Jn.det(H)(ﬁ *(T)—B(T)) converges in distribution to a
multivariate Gaussian vector. Specifically:

Jnde( (B (1)-B(1) - Now; Y w)
Where:

=)V, + (@) [0V, +{(L-1) /LU

Theorem 2;

Based on (1.3), the above Assumptions 1-7 and
Theorem 1, 3;(1)=Q,(y)=€p*) has the following
asymptotic distribution:

o 7 (B (1) -Bo(r)) - N 0.9 T, }

where, e = (1,0,...,0)
More details of the proofs are available all reques

2.4. Bandwidth Selection

It is well known that the selection of bandwidtins i
nonparametric regression estimation is of vital
significance. The nonparametric estimation results
depend on the bandwidth selection to a large extent
Silverman (1986) pointed out that the choice of
bandwidth is much more important than the choice of
kernel function. Thus, it is necessary to choose
reasonable bandwidths to improve the performance of
estimation. There are many bandwidth selection
methods, such as Plug-in method and cross-validatio
method. Based on the bandwidth selection in mean
regression and quantile regression proposed innéu a
Jones (1998) and Silverman (1986), we discuss about
the selection of bandwidths in estimating mode2)1.

According to Yu and Jones (1998), we have the
following bandwidth selection formula for quantile
regression Equation (2.5):

(2.5)

where, t is the quantile level, ;his the optimal
bandwidth for ther-th quantile regression, b, is the
optimal bandwidth for the mean regression estinmtio
¢(:) and®(-) are the probability density function and
cumulative distribution function of the standard
normal distribution respectively.

In terms of the optimal bandwidth for the mean
regression estimation .k, we choose the
Silverman’s rule-of-thumb bandwidth, i.e., ndin
=1.066"®, where 8 can be the sample estimator of

Based on the Theorem 1, we gives the large samplgangard deviatiom. Based on (2.5) and the rule-of-

property of conditional quantile estimato, (x,z)as
follows.
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thumb bandwidth, we obtain the optimal bandwidth
for model (1.2).
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3.NUMERICAL SIMULATION Case 3:

In this sgction, we irr_tp_lement three simulation A, =P(y.9)= H8=1|Y= y,Z= }
examples to illustrate the finite sample perforn@né
the two-stage multiple imputation estimator and =
compare the performance of the proposed imputation lrexf 0.5- 04 y B- 0ftz B
estimator with the CC estimator and other imputatio
estimators. Specifically, we utilize the two-stage  Through the above missing cases, we can study the
multiple imputation based on the three initial efficiency of each estimator under different migsiates.
imputation methods in section 2.2.1 and compare In order to evaluate and compare the performance of
these results with that of the first-stage impwsatand  the proposed three estimators and other 4 estimater
the CC estimator. Denote the CC estimator, theethre calculate the Mean Square Error (MSE) as follows:
first-stage imputation estimators (the regression
imputation  estimator, the k-Nearest-Neighbor 9 . 2
imputation estimator and the Nearest-Neighbor MSE=n ;(Q(X ’Z)_Q(X Z))
imputation estimator) and the two-stage multiple
imputation estimator based on the above threeainiti
imputation methods as CC, RI, kNN, NN, TSMI1
TSMI2 and TSMI3, respectively.

The first example represents the linear case of AMSE=— Z MSE, . Furthermore, we also calculate the
function m(x, z) to be estimated while the second
example is on behalf of nonlinear case of function
T ooteamaic case. i o e rse sl PO, Fornstanc, e ARE o our propositator
examples, we consider different sample sizes n = 60T|\/|3|1 with the CC estimator iARE,,, =M
120 and 200, respectively and distinct missing AMSE g,
probability function P(y, z) under different qudati where AMSECC is the AMSE of the CC estimator
levels t = 0.25, 0.5 and 0.75. In terms of kernel while AMSETMSI1 is the AMSE of TMSI1.
function in estimation, we choose Gaussian kernel

K(u) = —exp[ J and product kernel Kx, z) =

1

and replicate the three simulations k = 100, rdimy, to
' Obtain the Average Mean Square Error (AMSE),

Asymptotlc Relative Efficiency (ARE) of our propake
estimators With CC estimator and first-stage injuta

Example 1:

Consider the following linear quantile regression

Kin(X)Kn(z). For the selection of bandwidths, here we model Equation (3.1):

choose bandwidths for the above 7 estimators atwprd

to the selection rule in section 2.4. Y, =1+X; +Z +0 (3.1)
For the missing probability function P(y, z), we

choose the following three functions . . ,
g where the covariate (X, Z) are jointly normal wittean

Casel: vector (4, 4), variance (1, T)and correlation 0.5 and
is from standard normal distribution N(O, 1). Fdist
A =P(y,2)=Rd=1|Y= y,Z= } model, we consider the above three missing casse
1 and 4 illustrate the AMSE values of the 7 estimators
=1+ exp{—ln(z)— 04y 3- of 2 » anq ARE values of our proposed.estimators with rothe
estimators for model (3.1), respectively.

Case 2: Example 2:

Then we consider a nonlinear function for m(x, z).
A,=P(y,2=H3d=1|Y= y,= } The model is Equation (3.2):

T1rexg0.F 0.y p- 0fz B Y, =1+X, +sin(Z ) +g (3.2)
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Table 1. AMSE of Linear Model (4.1)

Py,z2 n cc RI kNN NN TSMIL TSMI2 TSMI3
1=025 A 60 0.4163 0.4936 0.4609 0.4780 0.3641 0.3633 0.3632
120 0.0510 0.0697 0.0623 0.0705 0.0410 0.0413 4120
200 0.2084 0.3170 0.2924 0.3180 0.1848 0.1849 8481
A, 60 0.4558 0.6174 0.5595 0.6034 0.3722 0.3701 0.3680
120 0.3023 0.4626 0.4228 0.4599 0.2425 0.2417 0.2419
200 0.2224 0.4137 0.3774 0.4224 0.1853 @185 0.1846
A 60 0.4729 0.6123 0.5488 0.5779 0.3687 0.3697 0.3676
120 0.3221 0.4975 0.4515 0.4887 0.2433 Im24  0.2427
200 0.2364 0.4308 0.3949 0.4330 0.1846 4518 0.1842
1=05 A 60 0.3243 0.3280 0.3281 0.3463 0.3020 @302 0.3012
120 0.2241 0.2283 0.2248 0.2321 0.2069 8720  0.2068
200 0.1712 0.1733 0.1760 0.1827 0.1573 115  0.1570
A, 60 0.3568 0.3587 0.3725 0.3778 0.3070 @306 0.3052
120 0.2584 0.2547 0.2521 0.2677 0.2075 120  0.2073
200 0.1824 0.1874 0.2006 0.1919 0.1573 115  0.1572
A 60 0.3530 0.5243 0.4794 0.4996 0.3092 ®309 0.3092
120 0.2545 0.4393 0.3955 0.4295 0.2099 W20  0.2093
200 0.1935 0.3904 0.3601 0.3986 0.1566 @156 0.1563
1=075 A 60 0.3734 0.4609 0.4262 0.4742 0.3434 0.3438 0.3414
120 0.2574 0.3681 0.3315 0.3694 0.2408 24  0.2405
200 0.1943 0.3093 0.2750 0.3136 0.1770 ®176 0.1769
A, 60 0.4120 0.5785 0.5265 0.5687 0.3415 0.3403 0.3397
120 0.2925 0.4645 0.4115 0.4620 0.2412 0.2406 0.2400
200 0.2116 0.4103 0.3672 0.4233 0.1762 9817  0.1755
s 60 0.3914 0.5740 0.5230 0.5534 0.3476 @344 0.3458
120 0.2983 0.4848 0.4394 0.4864 0.2417 124 0.2417
200 0.2160 0.4186 0.3776 0.4365 0.1760 9717  0.1752

where the covariate (X, Z) Tare jointly normal wittean 3.1. Simulation Results Analysis
tor (4, 4), i 1, I)and lation 0.5 and . . .
\ieﬁlé)or (1) ?:0\:612%?;: 23 2))avr\1/e (;(l)sr(r)e (?hl(())gse thae aboy  Table 1-3 illustrate the estimation results AMSE of
three missing probability functions. The AMSE valig ~ CC: Rl kNN, NN, TSMI1, TSMI2 and TSMI3
the 7 estimators and ARE values of our proposedeStimators for model (3.1), model (3.2), model 3.3
estimators with other estimators for model (3.2 ar respectively, with different sample sizes n = @20 &nd

given inTable 2 and 5, respectively. 200, respectively and distinct missing probability
function p(y, z) under different quantile levels: 0.25,
Example 3: 0.5 and 0.75. From these tables, overall, the asithm

A remarkable advantage of quantile regressionas th €ffects are the best under 0.5 for all the 7 estimators,
it does not require strict assumptions on error Which is consistent with the conclusions for quanti

distribution, which brings us convenience to analyz 'egression models. Via the comparison of AMSE alue
model with heteroscedasticity. Thus, here we camsid for the 7 estimators under the same sample sigesatime

the following heteroscedastic model Equation (3.3): missing function and the same quantile level, we
conclude that the estimation performance of our
Y, =X,Z, +Z, (3.3) proposed estimators TSMI1, TSMI2 and TSMI3 is

uniformly better than that of the CC estimator ahd
where the covariate (X, Z) are jointly normal witiean initial imputation estimators. Compared with the CC
vector (4, 4), variance (1, T)and correlation 0.5 and estimator, the initial imputation estimators RI, MNind
is from standard normal distribution. For modeBj3we NN have similar estimation results and even perform
still use the above three missing cases. The AMSEworse than the CC estimator, while our proposed
values of the 7 estimators and ARE values of ourestimators improve a lot than the CC estimator.
proposed estimators with other estimators for modelApparently, it is necessary to use our proposed
(3.3) are shown iffable 3 and 6 respectively. estimators to improve estimation performance.
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P(y, 2) n CcC RI kNN NN TSMI1 TSMI2 TSMI3

1=0.25 Ay 60 0.4871 0.6165 0.5865 0.6181 0.3819 @380 0.3800
120 0.3221 0.4965 0.4462 0.4806 0.2491 9B24  0.2489

200 0.2338 0.4306 0.4004 0.4373 0.1880 718 0.1879

N, 60 0.5147 0.6914 0.6299 0.6617 0.3796 @®377 0.3768

120 0.3515 0.5555 0.5460 0.5503 0.2506 am25 0.2493

200 0.2663 0.5086 0.4749 0.5003 0.1865 6118 0.1860

A3 60 0.5963 0.7959 0.7451 0.7724 0.3743 ®375 0.3747

120 0.4225 0.6848 0.6454 0.6433 0.2531 W25 0.2520

200 0.1800 0.3487 0.3393 0.3359 0.1090 8710 0.1087

t=05 Ny 60 0.3706 0.5238 0.4926 0.5177 0.3119 @310 0.3116
120 0.2690 0.4490 0.3942 0.4328 0.2099 .21 0.2102

200 0.1886 0.3925 0.3644 0.3956 0.1570 15 0.1569

A, 60 0.3946 0.5825 0.5467 0.5759 0.3076 ®307 0.3066

120 0.2795 0.5003 0.4664 0.4848 0.2112 ®21 0.2111

200 0.2098 0.4653 0.4184 0.4598 0.1577 15  0.1572

s 60 0.4650 0.6814 0.6446 0.6813 0.3092 @309 0.3087

120 0.3316 0.5969 0.5556 0.5729 0.2125 @213 0.2128

200 0.2649 0.5712 0.5501 0.5640 0.1675 @167 0.1669

t=0.75 Ay 60 0.4088 0.5579 0.5391 0.5880 0.3418 @340 0.3405
120 0.2982 0.4920 0.4325 0.4922 0.2404 (0B24 0.2404

200 0.2184 0.4252 0.3841 0.4328 0.1754 5817 0.1751

N, 60 0.4024 0.6049 0.5800 0.6209 0.3418 ®339 0.3397

120 0.3186 0.5571 0.5110 0.5326 0.2402 .24 0.2405

200 0.2385 0.4916 0.4382 0.4952 0.1753 217 0.1752

A3 60 0.4746 0.7244 0.7044 0.7510 0.3378 %338 0.3393

120 0.3572 0.6397 0.6019 0.6449 0.2427 W24 0.2421

200 0.1612 0.3413 0.3247 0.3478 0.1030 AB10 0.1029

Table 3. AMSE of Heteroscedastic Model (4.3)

P(y,z) n cc RI kNN NN TSMI1 TSMI2 TSMI3

t=025 A 60 7.4379 7.8215 7.3706 7.4371 6.6702 ®B690 6.6903
120 4.7398 5.4485 4.8840 5.0029 4.3043 9830 4.3055

200 3.8177 4.5728 4.0704 4.1675 3.4440 8244 3.4436

A, 60 8.1419 9.1333 8.0609 8.3306 6.6151 6.6442 6.6226

120 5.2419 6.7107 5.9150 6.1060 4.2878 .29 4.2882

200 4.1749 5.7374 5.0413 5.2337 3.4457 w.44 3.4433

s 60 8.1459 8.9268 8.0955 8.0714 6.7563 @727 6.7320

120 5.3136 6.5546 5.6952 5.7854 4.3051 3829 4.2965

200 4.2479 5.4410 47731 4.8984 3.4324 aB42 3.4316

t=05 Ay 60 6.6802 7.0337 6.8267 7.0758 6.1920 @.208 6.2041
120 4.0949 4.8229 4.4451 4.5662 3.8816 w87 3.8857

200 3.1105 3.9112 3.5443 3.7113 2.9140 291 2.9120

A, 60 6.6055 7.7472 7.3155 7.3147 5.6392 2648 5.6207

120 4.3871 5.8509 5.1849 5.5298 3.8602 &85 3.8555

200 3.4791 5.0172 4.4262 4.7402 2.9112 2908 2.9088

A3 60 6.5070 7.4823 7.1850 6.9774 5.7121 2690 5.6897

120 4.4310 5.6454 5.0598 5.3750 3.9054 1590 3.8931

200 3.3833 4.6930 4.2232 4.5003 2.8648 5585 2.8583

t=075 A 60 6.5826 7.2507 7.0541 7.1712 6.3269 @350 6.3015
120 4.8126 5.5770 5.2269 5.4253 4.6149 2622 4.6284

200 3.5127 4.3220 3.9366 4.2053 3.3541 B34 3.3501

A, 60 7.3087 8.8290 8.2471 8.4216 6.3694 @355 6.3519

120 5.1900 6.6381 6.1926 6.4209 4.6202 613 4.6119

200 3.8991 5.5529 4.9208 5.3910 3.3481 R34 3.3457

s 60 7.0599 8.1882 7.6723 7.8852 6.5087 §.469 6.4990

120 4.9981 6.3682 5.8842 6.2399 4.6580 0865 4.6301

200 3.8518 5.1829 4.6411 5.1500 3.3463 &®33 3.3455
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Table4. ARE of Linear Model (4.1)

P(y, 2) n cc R1 cc kNN cc NN
TSMI1 TSMIl TSMI2 TSMI2 TSMI3 TSMI3
t1=0.25 Ay 60 1.1434 1.3556 1.1460 1.2687 1.1463 2316
120 1.2439 1.6996 1.2339 1.5079 1.2369 an7o0
200 1.1276 1.7152 1.1270 1.5814 1.1272 aB72
A, 60 1.2247 1.6587 1.2315 1.5115 1.2388 B639
120 1.2470 1.9080 1.2509 1.7492 1.2498 1m.90
200 1.2002 2.2321 1.2010 2.0378 1.2051 828
A3 60 1.2824 1.6605 1.2790 1.4844 1.2864 D572
120 1.3238 2.0452 1.3228 1.8543 1.3272 3801
200 1.2809 2.3340 1.2809 2.1396 1.2836 1235
t=05 N 60 1.0736 1.0860 1.0733 1.0860 1.0767 B149
120 1.0835 1.1037 1.0844 1.0874 1.0840 2612
200 1.0884 1.1015 1.0899 1.1207 1.0901 3r16
A, 60 1.1625 1.1685 1.1659 1.2171 1.1690 5237
120 1.2456 1.2278 1.2463 1.2156 1.2464 1829
200 1.1600 1.1919 1.1612 1.2767 1.1606 1B22
A3 60 1.1418 1.6957 1.1405 1.5486 1.1417 7615
120 1.2121 2.0924 1.2173 1.8920 1.2159 2105
200 1.2360 2.4936 1.2375 2.3030 1.2382 @55
t=0.75 Ay 60 1.0873 1.3421 1.0862 1.2397 1.0938 D388
120 1.0689 1.5286 1.0696 1.3776 1.0702 5053
200 1.0982 1.7479 1.1004 1.5573 1.0984 2B77
A, 60 1.2065 1.6940 1.2107 1.5471 1.2130 B674
120 1.2129 1.9259 1.2160 1.7108 1.2190 5892
200 1.2011 2.3291 1.2035 2.0887 1.2057 1841
Ag 60 1.1261 1.6514 1.1354 1.5170 1.1318 2600
120 1.2343 2.0060 1.2360 1.8204 1.2344 2701
200 1.2271 2.3785 1.2292 2.1493 1.2327 1249
Table 5. ARE of Nonlinear Model (4.2)
P(y, 2) n cC R1 cC kNN CccC NN
TSMIL TSMIL TSMI2 TSMI2 TSMI3 TSMI3
t=0.25 Ny 60 1.2753 1.6142 1.2789 1.5398 1.2817 1.6265
120 1.2927 1.9931 1.2901 1.7872 1.2940 1093
200 1.2436 2.2907 1.2451 2.1326 1.2439 6832
A, 60 1.3559 1.8214 1.3643 1.6696 1.3661 B756
120 1.4028 2.2167 1.4061 2.1841 1.4103 2.207
200 1.4282 2.7274 1.4287 2.5471 1.4319 7.689
A3 60 1.5931 2.1264 1.5875 1.9837 1.5914 2061
120 1.6696 2.7057 1.6703 2.5513 1.6767 2855
200 1.6516 3.2006 1.6561 3.1225 1.6559 (F.09
t=05 Ny 60 1.1881 1.6793 1.1925 1.5854 1.1891 40000
120 1.2817 2.1397 1.2801 1.8760 1.2796 R05
200 1.2009 2.4994 1.2010 2.3208 1.2023 B521
N, 60 1.2830 1.8937 1.2833 1.7778 1.2871 %878
120 1.3233 2.3687 1.3257 2.2122 1.3240 6529
200 1.3304 2.9515 1.3327 2.6584 1.3342 247,92
A3 60 1.5038 2.2039 1.5037 2.0845 1.5063 8206
120 1.5606 2.8091 1.5572 2.6090 1.5587 2569
200 1.6104 3.4112 1.6131 3.2907 1.6154 8B37
t=0.75 Ay 60 1.1959 1.6321 1.2010 1.5838 1.2005 B726
120 1.2402 2.0464 1.2409 1.7999 1.2401 204
200 1.2450 2.4233 1.2459 2.1911 1.2475 m47
A, 60 1.1775 1.7701 1.1849 1.7078 1.1848 1.8280
120 1.3262 2.3192 1.3270 2.1286 1.3248 521
200 1.3605 2.8044 1.3614 2.5012 1.3612 62482
s 60 1.4049 2.1443 1.4022 2.0810 1.3990 5213
120 1.4715 2.6354 1.4757 2.4866 1.4751 3K66
200 1.5648 3.3129 1.5685 3.1590 1.5669 3.3802
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P(y, 2) n cC R1 CcC kNN CcC NN
TSMI1 TSMi1 TSMI2 TSMI2 TSMI3 TSMI3
t1=0.25 TAY] 60 1.1274 1.1726 1.1239 1.1016 1.1240 1.1116
120 1.1012 1.2658 1.0998 1.1332 1.1009 D162
200 1.1085 1.3278 1.1072 1.1804 1.1086 2210
A, 60 1.2308 1.3807 1.2254 1.2132 1.2294 1.2579
120 1.2225 1.5651 1.2217 1.3785 1.2224 3B42
200 1.2116 1.6651 1.2134 1.4652 1.2125 ans52
A 60 1.2057 1.3212 1.2108 1.2034 1.2100 1.1990
120 1.2343 1.5225 1.2376 1.3265 1.2367 6634
200 1.2376 1.5852 1.2385 1.3916 1.2379 THa2
t=0.5 AV} 60 1.1328 1.1359 1.1298 1.0996 1.1306 1.1405
120 1.0549 1.2425 1.0557 1.1459 1.0538 1175
200 1.0674 1.3422 1.0677 1.2166 1.0682 4827
A, 60 1.1714 1.3738 1.1695 1.2952 1.1752 1.3014
120 1.1365 1.5157 1.1367 1.3434 1.1379 2434
200 1.1951 1.7234 1.1963 1.5220 1.1961 9662
A 60 1.1392 1.3099 1.1436 1.2627 1.1436 B226
120 1.1346 1.4455 1.1357 1.2968 1.1382 ar.38
200 1.1810 1.6382 1.1848 1.4790 1.1837 M57
t=0.75 A% 60 1.0518 1.1460 1.0480 1.1108 1.0561 1.1380
120 1.0428 1.2085 1.0412 1.1308 1.0398 »17
200 1.0473 1.2886 1.0487 1.1752 1.0485 5825
A, 60 1.1475 1.3862 1.1500 1.2977 1.1506 B325
120 1.1233 1.4368 1.1249 1.3422 1.1254 2839
200 1.1646 1.6585 1.1663 1.4719 1.1654 1361
A 60 1.0847 1.2580 1.0912 1.1859 1.0863 1.2133
120 1.0730 1.3672 1.0748 1.2653 1.0795 347
200 1.1511 1.5489 1.1534 1.3897 1.1514 4539

In terms of the different missing functions, we can increases as sample size increases. Additionatigier
see that, on the whole, all the 7 estimators perfeorse  the same quantile level and the same sample size,
as the missing rates increase under the same saimple overall, the relative efficiency of our proposetiraators
and the same quantile level, which is common forincreases as missing rate increases. What's mbee, t
analyzing data sets with missing values. Howewer, f advantages of our proposed estimators are mor@abvi
this conclusion some exceptions exist as sample sizwhen model is nonlinear or heteroscedastic and at
increases and when it is big enough. These twoextreme quantile levels.

conclusions reflect the relative importance of ingpion
when sample size is small and missing rate is high.
FurthermoreT able 4-6 show ARE values of TSMI1,
TSMI2 and TSMI3 with CC and corresponding first-
stage imputation estimators for model (3.1), md8et),
model (3.3), respectively, with different samplees and
various missing probability functions under distinc
qguantile levels. According tdable 4-6, with all the
ARE values are larger than 1, we find that our pezu
two-stage multiple imputation estimators are umiftyr
more effective than the CC estimator and the ftage

multiple imputation estimators for all the models

considered. For any one of the above models, uthder

In addition, we can see that the estimation resflts
our proposed estimators TSMI1, TSMI2 and TSMI3 are
very close, which reflects the robustness of ow-stage
multiple imputation estimator to the initial imptitan
methods. This point is of vital importance for the
application of our methods. Based on this good gntyp
we can choose one kind of initial imputation methéal
realize our two-stage multiple imputation, whicloyides
great convenience for implementation and applioatio

4. EMPIRICAL DATA ANALYSIS

In this section, we apply the proposed two-stage

same quantile level and the same missing functionmultiple imputation method to the ACTG 315 data, set

overall, the relative efficiency of our proposediraators
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http://lwww.urmc.rochester.edu/biostat/people/fagulti 0.25, 0.5 and 0.75 and choose Gaussian kernel and
site/datasets/data/ACTG315LongitudinalDataNLME product kernel. In terms of the bandwidths selectioe
Data3.cfm. Meanwhile we analyze this data set uSIBg  use the bandwidths obtained according to the sefect
method for comparison. The ACTG 315 data set comeSyle in Section 2.4.

from an AIDS clinical trial group (ACTG 315) study Table 7 lists the Average Residual Sum of Squares
which aimed to investigate the relationship between(ARSS), which is calculated as
virologic and immunologic responses in AIDS clidica _oaen - 2

trials. In this data set, virologic response RNAswa ARSS=N Ziﬂ(Y—Q()'( ’7')) - CC, TSMIL, TSMI2
measured by viral load while immunologic responssw and TSMI3 represent the ARSSs of the CC method and
measured by CD4 cell count. The ACTG 315 data setthe proposed two-stage multiple imputation methods,
has been analyzed by many papers. Ligngl. (2004) respe_ctively.Fi_gure 1-3 show the estimation results of
analyzed this data set via partially linear modéls.and ~ quantile function Q(x, z) based on different method
Wu (2002) used non-linear mixed effects modelgfies ~ undert = 0.5, 0.25 and 0.75, respectively.

data set in which more details about the data gan b  From Table 7, we can know that, overall, the
found. Similar research Wu and Wu (2001) and ZegerSmaller values of ARSS of our proposed two-stage
and Diggle (1994). Recently, Grun and Horik (2012) multiple imputation methods shpw that our me'Fhods
used a mixed effects model while accounting for perform better than CC method in terms of datinfitt

censored longitudinal data. Gebal. (2014) considered W€ @lso calculate the relative efficiency of ourthuzls
the multi-index regression models with missing compared with the CC method, which is measured via

covariates at random to study the effect of theowm the ratio of ARSSs and we find that our proposed-tw
necrosis factor. However, these papers just cortsglu ~ St2ge multiple imputation methods can improve about
mean regression models to analyze this data semaye 5% undert = 05 In add.mon., the estimation resu_lt
want to obtain more information from the analysier ~ undert = 0.5 is best, which is common on quantile
instance, we may be more interested in the inflaesfc ~ Fegression. Frorfrig. 1, we can see, under= 0.5, our
covariates on different quantiles of response btgjave  thrée multiple imputation methods show similar fesu
may want to explore the influence pattern without Which reflects the robustness of the proposed
specifying the model form in advance. Such analgsiss ~ IMPutation  method to the initial imputation.
can be realized by the nonparametric quantile ssipe Fur_thgrmore, our estimation resglts repr(_esent tm.gge
model, which is the interested model in this agticl variation of viral load between different time, whi

The data set we used here has 317 observations ii1°Ws the distinct influence of cd4 cell count on
total with 20.19% CD4 cell counts missing. Simitar virologic response under different time. Therefavar

the analysis in Liangt al. (2004), we here choose the proposed two-stage multiple imputation method<serfl

viral load as the response Y while CD4 cell countte more helpful |nformat|9n to some e’fte.”t due to rthe|
. : . . full use of more data information. Similar conclusi
missing covariate X and time as the complete catari : i
Z. According to the related research, the missingne can be obtained frorfig. 2 and 3.
' 9 ) L 9 In addition, from the comparison of these three
CD4 cell counts is due to the distinct measure sirog

c I 4 viral load. Thus. it i figures, we can see the different influence pattern
D4 ce c_ounts and viral load. Thus, it is reastedo among distinct quantile levels of the viral load.dther
assume this data as MAR.

) e ) ) _ ) words, at different virologic response levels,
Since the missing rate is relatively high, CC asaly  jmmunologic responses show diversity. Such addifion

may lead to information loss to some extent andc@en jnformation and conclusion from our analysis can

imputation for the missing data can be necessary toprovide more useful signal for relevant research.

consider. Based on the above mentioned analysis aim

and data imputation requirement, we apply mode?)(1. Table7. ARSS of model (1.2) based on CC and two-stage

to this data set and utilize the proposed two-stage multiple imputation methods

multiple imputation methods to estimate the model. CC TSMI1 TSMI2 TSMI3
verify and compare the performance of our proposedt=0.25 0.5196 0.5139 0.5206 0.5107
two-stage multiple imputation methods, CC method ist=0.5 0.3949 0.3774 0.3797 0.3750
also implemented. Here we consider quantile levets  t=0.75 0.6838 0.6693 0.6636 0.6701
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Fig. 1. Estimation result of Q(x, z) at quantidle= 0.5
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Fig. 2. Estimation result of Q(x, z) at quantide= 0.25
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Fig. 3. Estimation result of Q(x, z) at quantile= 0.75

5. CONCLUSION multiple imputation method to semiparametric models
which have more flexibility and interpretation.
In this study, we study the nonparametric quantile

regression model with the covariates missing atloan 6. ACKNOWLEDGEMENT
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