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ABSTRACT 

The integration between inventory model and Artificial Intelligent (AI) represents the rich area of research 
since last decade. In this study we investigate probabilistic periodic review <Qm, N> inventory model with 
mixture shortage (backorder and lost sales) using Lagrange multiplier technique and Fuzzy Adaptive 
Particle Swarm Optimization (FAPSO) under restrictions. The objective of these algorithms is to find the 
optimal review period and optimal maximum inventory level which will minimize the expected annual total 
cost under constraints. Furthermore, a numerical example is applied and the experimental results for both 
approaches are reported to illustrate the effectiveness of overcoming the premature convergence and of 
improving the capabilities of searching to find the optimal results in almost all distributions. 
 
Keywords:  Inventory System, Periodic Review Model, Particle Swarm Optimization, Fuzzy Adaptive 

Particle Swarm Optimization 

1. INTRODUCTION 

In some cases while a few customers are ready to 
wait till the next arrival of stock (backorder case), the 
remaining may be impatient and would persist on 
satisfying their demand immediately from some other 
sources (lost sales case). Inventory models which involve 
both backorders and lost sales are known as models with 
a mixture shortage. First solution to such a model was 
derived by (Montgomery et al., 1973). A similar model 
for variable lead time with fixed reorder point was 
analyzed by (Quyang and Wu, 1996). Hariga and Ben 
Daya (1999) discussed both periodic and continuous 
review models with a mixture of backorders and lost 
sales in case of full and partial demand information. 
Abuo-El-Ata et al. (2002) studied probabilistic multi-
item Inventory model with varying order cost under two 
restrictions. Fergany (2005) described periodic review 
model with zero lead time under constraints and varying 

order cost. Fergany and Elwakeel (2006) introduced 
constrained probabilistic lost sales inventory system with 
normal distribution and varying order cost. 

After appear the shortcomings of the traditional 
methods to deal with complexities of nonlinear 
programming with low and high dimensions, Particle 
Swarm Optimization (PSO) appears which has exhibited 
good performance for solving problems in wide range of 
applications such as in engineering design and computer 
science whereas the PSO is easy to implement in computer 
simulations. The PSO has fewer operators to adjust in the 
implementation and it can be flexibly combined with other 
optimization techniques to build a hybrid algorithm, the 
mechanism of PSO facilitates has better convergence 
performance than some other optimization procedures. 

A new optimizer using particle swarm theory derived 
by (Eberhart and Kennedy, 1995). Tasgetiren and Liang 
(2003) presents a binary particle swarm optimization 
algorithm for lot sizing problem. Andries (2005) 
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discussed the fundamentals of computational swarm 
intelligence. Kang et al. (2006) studied a novel Fuzzy 
Adaptive Strategy Optimization (FAPSO) for the particle 
swarm algorithm. Xiaobin et al. (2007) described fuzzy 
economic order quantity inventory models without 
backordering. Parsopiulos et al. (2008) investigate particle 
swarm optimization for tacking continuous review 
inventory models. Kannan et al. (2009) introduced analysis 
of closed loop supply chain using genetic algorithm and 
PSO. Taleizadeh et al. (2010) studied a particle swarm 
optimization approach for constraint joint single buyer-
single vendor inventory problem with changeable lead time 
and (r, Q) policy in supply chain. Hiremath et al. (2010) 
discussed optimization for efficient supply chain using 
swarm intelligence: An Outsourcing Perspective. 
Piperagkas et al. (2011) applying PSO and DE on multi-
item inventory problem with supplier selection. 

In this study, we investigate a probabilistic Single-
Item Single-Source (SISS) inventory model with varying 
mixture shortage cost under two restrictions, which one 
is on the expected backorder cost and the other is on the 
expected lost sales cost. The optimal maximum 
inventory level Qm

*, the optimal time between reviews 
N* and the minimum Expected Total Cost (min E (TC)) 
are obtained, some special cases are deduced, some 
distributions are implemented and results of numerical 
computations for optimum parameters of this model using 
Lagrange multiplier technique and fuzzy adaptive particle 
swarm optimization and their comparisons are presented. 

The rest of this study is organized as follows: Section 
2 presents constrained probabilistic single item periodic 
review <Qm, N> model with Varying Mixture 
Shortage. Section 3 presents Standard Particle Swarm 
Optimization (SPSO). Section 4 the solution 
procedure of FAPSO is proposed. Section 5 presents 
experiments and results of numerical example to test the 
validity and performance of the approach. Section 6 
presents a comparative study between two approaches. 
Section 7 concludes the study and future work. 

2. CONSTRAINED PROBABILISTIC 
SINGLE ITEM PERIODIC REVIEW <QM, 
N> MODEL WITH VARYING MIXTURE 

SHORTAGE 

The following assumptions are made for developing 
the model: 

• The time between the arrivals of two successive 
orders rather than between the placements of two 
successive orders is called a period 

• N is the time between reviews 

• A sufficient quantity is ordered to bring the 
inventory level up to level Qm, where Qm is the 
maximum inventory level 

• The varying backorder cost for the item per period is 
CbN

β, where Cb is the backorder cost per period, the 
varying lost sales cost for the item per period is CL 
Nβ, where CL is the lost sales cost per period and the 
cost is independent of the length of time for which 
the backorder and lost sales exists and β are constant 
real numbers selected to provide the best fit of 
estimated expected cost function 

• The behavior of the periodic review system with 
partial backorders and lost sales case shown in Fig. 1 

 
The expected annual total cost is the sum of the 

expected review cost, expected ordering cost, expected 
holding cost, expected backorder cost and the expected 
lost sales cost respectively Equation 1: 
 

( ) ( ) ( ) ( ) ( ) ( )E TC E RC E OC E HC E BC E LC= + + + +  (1) 
 

Where: 
 

( ) , cosr
r

C
E RC C the t of making making a review

N
=  

 

( ) ,

cos ( cos )

o

o

C
E OC

N

C the t of placing anorder ordering t per period

=
 

 
The expected number of backorders incurred per year 

E (BC) is the expected number of backorders incurred 
per period multiplied by the number of orders per year. 

Consider the first case where L is constant (where L 
the lead time between the placement of an order and its 
receipt). The expected number of backorders incurred 

per period is ( ) ( ; ) ,mQm
x Q f x L N dx

∞
− +∫ where x is the 

demand between the time an order is placed and the time 
this order arrives (the demand during lead time), f (x; 
L+N) is the probability density function of the lead time 
demand x during the time interval of length L+N. 

Suppose now that the lead time L is a random 
variable with density g(L). Let Lmin, Lmax be the lower and 
upper limits respectively to the possible range of the lead 
time values. If L1, L2 are the lead times for the orders 
placed at times t and t+N respectively, then the expected 
number of backorders incurred per period is given by: 
 

max max

2
min min

2 1 2 1

( ) ( ) ( ; )

( ) ( ) ( ) ( ; )

L L

L L mQm

mQm

mS Q x Q f x L N

g L g L dxdL dL x Q h x N dx

∞

∞

= − +

= −

∫ ∫ ∫

∫
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Where: 
 

max
1 1

min

max
2 2 2

min

( ) 1, ( ; )

( ; ) ( )

L

L

L

L

g L dL h x N

f x L N g L dL

=

= +

∫

∫
 

 
It is necessary to known that Lmax <Lmin +N, hence the 

expected backorder cost incurred per year Equation 2 and 3: 
 

 

1

1

( ) ( )

* ( ) ( ; )

b m

b mQm

E BC C N S Q

C N V x Q h x N d

β

β

γ

γ
∞

−

−

=

= −∫
 (2)  

 
1

1

( ) (1 ) ( )

(1 ) ( ) ( ; )

L m

L mQm

E LC C N S Q

C N x Q h x N dx

β

β

γ

γ
∞

−

−

= −

= − −∫
 (3) 

 
where, γ is a fraction of unsatisfied demand that will 
be backorder while the remaining fraction (1-γ) is 
completely lost. 

( ) hC I
E HC

N
= , Ch is the holding (carrying) cost of 

the item per period and I  the average inventory level 
per period. Let ε (x; Qm) be the on hand inventory 
when the procurement arrives. If the lead time demand 
is x and the maximum inventory level immediately 
after the arrival of the procurement is Qm, then: 
 

0
( ; )

0 0
m m

m
m

Q x Q x
x Q

Q x
ε

 − − ≥= 
− <

 

And the expected on hand inventory when the 
procurement arrives (safety stock) is: 
 

0 0

( ; ) ( ; ) ( ) ( ; )
Q Qm m

m mx Q h x N dx Q x h x N dxε= = −∫ ∫  

( ) ( ; )m mQm
Q x Q h x N dxµ

∞
= − + −∫  

 
µ is the expected lead time demand. 
Hence if the expected on hand inventory 

immediately after the arrival of a procurement is S, it is 
therefore S-DN gust prior to the arrival of a 
procurement in the next period. Thus the expected on 
hand inventory varies between S and S-DN. where DN 
is the expected demand during the time N between 
reviews and D is the average demand rate. Then the 
average inventory level per period is given by: 

I  = (the expected inventory level (at eh beginning of 
an inventory periodat the end of the period)/2: 
 

(1 ) ( ) ( ; )
2m m

Qm

DN
I N Q x Q h x N dxµ γ

∞ 
 = − − + − −
  

∫  

 
Which yields Equation 4: 

 

( ) (1 ) ( ) ( ; )
2

(1 ) ( )
2

h m mQm

h m m

DN
E HC C Q x Q h x N dx

DN
C Q S Q

µ γ

µ γ

∞ = − − + − − 
 

 = − − + − 
 

∫
 (4) 

 

 
 

Fig. 1. The behavior of the periodic review system with partial backorders and lost sales case 
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Then the expected annual total cost is given by: 
 

( )( )1 1

1 1

( ( , ))
2

1 *

( ) ( ; )

( )
2

( )(1 ) ( )

m

r o
m h m

b L h

Qm

r o
h m

b L h m

C C DN
E TC Q N C Q

N N

C N C N C

x Q h x N dx

C C DN
C Q

N N

C N C N C S Q

β β

β β

µ

γ γ

µ

γ γ

− −

∞

− −

 = + + − − 
 

 + + + − 

−

= + + − −

 + + + − 

∫  (5) 

 
The objective is to determine the optimal values Qm

*, 
N* that minimize the expected annual total cost E(TC 
(Qm, N)) under the following constraints: 
 

( ) ( )b LE BC K E LC K≤ ≤  (6)  

 
To solve this primal function which is a convex 

programming problem, Equation 5 and 6 can be written 
in the following form: 
 

( )( )( )

( )( )1 1

,

2

1

* ( ) ( ; )

m

r o
h m

b L h

mQm

Min E TC Q N

C C DN
C Q

N N

C N C N C

x Q h x N dx

β β

µ

γ γ− −

∞

 = + + − − 
 

 + + + − 

−∫

 

 
Subject to Equation 7: 

 
1 1( ) (1 ) ( )b m b L m LC N S Q K C N S Q Kβ βγ γ− −≤ − ≤   (7) 

 
where, min (E (TC (Qm, N))) is the minimum expected 
annual total cost function. 

To find the optimal values * *
mQ and N  which minimize 

Equation 5 under the two constraints (6), we can use the 
Lagrange multipliers technique with the Kuhn-Tacker 
conditions as follows: 
 

( )( )
( )

( )( )

1 1

1

1

( , )
2

1

* ( ) ( )

1 ( )

r o
m h m

b L h

m b b m b

L L m L

C C DN
G Q N C Q

N N

C N C N C

S Q C N S Q K

C N S Q K

β β

β

β

µ

γ γ

λ γ

λ γ

− −

−

−

 = + + − − 
 

 + + + − 

+ −

+ − −

  (8) 

where, λb and λL are the Lagrange multipliers 
The optimal values * *

mQ and N  can be calculated by 

setting the corresponding first partial derivatives of 
Equation 8 equal to zero, as follows:  
 

* *,

( , )
0m

Q Q N Nm m
m

G Q N

Q = =

∂ =
∂

 

 
Hence the optimal maximum inventory level is the 

solution of the following Equation 9: 
 

( ) ( )( )* *1 1

( ; )

1 (1 ) 1 )

Qmo

h

b b L L h

h x N dx

C

C N C N Cβ βλ γ γ λ

∞

− −

=

+ + − + +

∫
 (9) 

 
Clearly, there is no closed form solution of Equation 

9 so we minimize the expected annual total cost 
numerically. The following algorithm is used: 

Step 1: Assume that any initial value for N, put λb, λL 
equal to zero then from Equation 9 we have the 
initial maximum inventory level 

0m
Q  as follows: 

 

( )1 1
0

( ; )
(1 )

h

Qm b L h

C
h x N dx

C N C N Cβ βγ γ
∞

− −=
+ − +∫  

 
Step2: Assume different values for N and varying β 

then substituting about them in Equation 9 
hence we get different values of the maximum 
inventory level i.e., for Ni we get , 1,...,

mi
Q i m= . 

Step3: Substituting ,i mi
N Q  in Equation 5 then we have 

different values of total cost until we get the 
minimum total cost then the correspondence 
value of N is the optimal value i.e., N*. 

Step4: The procedure is to vary λb and λL in steps 2 and 
3 using N* until the smallest value of λb>0 and 
λL>0 that achieves the constraints for different 
values of β. Hence we get Qm

* that gives the 
minimum annual expected total cost numerically 

2.1. Special Cases 

Case (1): Let β = 0, λb = 0 and γ = 1. Thus Equation 9 
becomes: 
 

( ; ) h

bQm

C N
h x N dx

C

∞

=∫  
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This is unconstrained periodic review inventory model 
for backorder case with constant units of cost, which are the 
same results as in (Hadley and Whitin, 1963). 

Case (2): Let β = 0, λL = 0 and γ = 0. Thus, Equation 
9 become: 
 

( )( ; ) h

L hQm

C N
h x N dx

C C n

∞

=
+∫  

 
This is unconstrained periodic review inventory model 

for lost sales case with constant units of cost, which are the 
same results as in (Hadley and Whitin, 1963). 

2.2. The Model with Normally Lead Time Demand 

In this section, we assume that the lead-time demand 
follows normal distribution with mean µ and standard 
deviation σ, i.e.: 
 

E (x) = µ, 2( ) ( ) m
m

Q
V x f Q

µσ φ
σ

 −= =  
 

 

 
where, φ(z) = N (z; 0,1) is the probability density 
function of the standard normal distribution, Φ(z) is the 
cumulative distribution function of the standard normal 

distribution. Where mQ
z

µ
σ
−=  Substituting in Equation 

9, the optimal maximum inventory level is the solution 
of the following Equation 10: 
 

( )( )( )

*

* 1 * 1

1

(1 ) (1 ) 1

m

h

b b L L h

Q

C

C N C N Cβ β

µ
σ

λ γ γ λ− −

 −− Φ 
 

=
+ + − + +

  (10) 

 
In addition, the expected number of backorder 

incurred per period will be: 
 

( )

( )

* *

*

0

2

2

( ) ( ) ( ; )

( ; ) * 1 ( ; )

1
*

2

* 1

* 1 *

m m

Qm

Qm

mQm

z

Q mm

m m

m
m

S Q x Q h x N dx

x h x N dx Q h x N dx

z e dz Q

Q Q

Q
Q

σ
µ σ µ σ

σ π
µ µφ σφ

σ σ

µµ
σ

−

∞

∞

∞
−

= −

 = − − 
 

= + −

    − −− =     
    

  −+ − − Φ   
  

∫

∫ ∫

∫  (11) 

Substituting from Equation 11 to 5 then the expected 
annual total cost will be: 
 

( )( )

( )

1 1

min ( ( ( , ))
2

1 *

1

r o
m h m

b L h

m m
m

C C DN
E TC Q N C Q Dl

N N

C N C N C

Q Q
Q

β βγ γ

µ µσ φ µ
σ σ

− −

 = + + − − 
 

 + + − + 

     − −+ − − Φ            

 

 
Subject to: 

 
* 1 * 1( ) (1 ) ( )b m b L m LC N S Q K C N S Q Kβ βγ γ− −≤ − ≤   (12) 

 
2.3. The Model with Uniform Lead-Time Demand 

If the lead-time demand follows the Uniform 
distribution over range from zero to b then, the 
probability of the shortage and the expected shortage 
quantity will be Equation13: 
 

( ) ( )( )( )1 1

( ) 1 ( ) 1

1 (1 ) 1

m
m m

h

b b L hL

Q
P Q F x Q

b

C b
b

C N C N Cβ βλ γ γ λ− −

= − = −

= −
+ + − + +

  (13) 

 
Also, since: 

 

( )
2

( ) ( )
2 2m m mQm

Qm b
S Q x Q f x dx Q

b

∞
= − = + −∫   (14) 

 
Substituting from Equation (13) in (14) by Qm us get: 

 

( ) ( ) ( )( )

2

1 1

( )

1 1 1

m

h

b b L L h

S Q

C

C N C N Cβ βλ γ γ λ− −

=

 
 
  + + − + + 
  

  (15) 

 
Hence: 

 

( )( )
( )( )

( ) ( ) ( )( )

0

1 1

1 1

,
2

1

*
1 1 1

r
m h m

b L h

h

hb b L L

C C DN
E TC Q N C Q

N N

C N C N C

C

C N C N C

β β

β β

µ

γ γ

λ γ γ λ

− −

− −

 = + + − − 
 

 + + + − 

 
 
  = + − + + 
  

 

 
Subject to: 

 
( )1 1( ) 1 ( )b m b L m LC N S Q K C N S Q Kβ βγ γ− −≤ − ≤  
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2.4. The Model with Exponential Lead-Time 
Demand 

If the lead time demand follows the Exponential 
distribution then: 
 

1
( ) , 0, ( )

x

f x e x E xθ θ
θ

−
= ≥ =  

 
The probability of the shortage and the expected 

shortage will be Equation 16: 
 

( ) ( ) ( )( )( )1 1

( ) ( )

1 1 1

m

Qm

h

b b L L h

P Q f x dx

C

C N C N Cβ βλ γ γ λ

∞

− −

=

=
+ + − + +

∫
 (16) 

 
i.e.,  

 

( ) ( ) ( )( )( )

( ) ( ) ( )( )( )

1 1

1 1

1
( )

1 1 1

1

1 1 1

x

m Qm

h

b b L L h

Qx m

Qm

h

b b L L h

P Q e dx

C

C N C N C

e dx e

C

C N C N C

θ

β β

θ θ

β β

θ

λ γ γ λ

θ

λ γ γ λ

−∞

− −

− −∞

− −

=

=
+ + − + +

⇒ =

=
+ + − + +

∫

∫

 

 
By taking In of two sides Equation 17 and 18: 

 

( ) ( ) ( )( )( )1 11 1 1

m

h

b b L L h

Q In

C

C N C N Cβ β

θ

λ γ γ λ− −

∴ = −

 
 
 + + − + + 
 

  (17) 

 

( )( ) ( )
Qm

m mQm
S Q x Q f x dx e θθ

−∞
= − =∫   (18)  

 
Substituting from (17) by Qm in (18) Equation 19: 

 

( ) ( ) ( )( )( )1 1

1

( )

1 1 1

( )

m

h

b b L L h

Qm
S Q e

C

C N C N C

S N

β β

θθ

θ
λ γ γ λ− −

−
=

 
 =
 + + − + + 
 

=

  (19) 

Hence: 
 

( )( )
( )( )

( ) ( ) ( )( )( )

1 1

1 1

,
2

1

*
1 1 1

r o
m h m

b L h

h

b b L L h

C C DN
E TC Q N C Q

N N

C N C N C

C

C N C N C

β β

β β

µ

γ γ

θ
λ γ γ λ

− −

− −

 = + + − − 
 

 + + + − 

 
 
 + + − + + 
 

 

 
Subject to: 

 
( )1 1( ) 1 ( )b m b L m LC N S Q K C N S Q Kβ βγ γ− −≤ − ≤  

 
2.5. The Model with Laplace Lead-Time Demand 

If the lead time demand follows the Laplace 
distribution then: 
 

1
( ) ,

2

x

f x e x
µ

θ

θ

−
−

= −∞ < < ∞  

 
And E (x) = µ 
The probability of the shortage and the expected 

shortage quantity will be Equation 20: 
 

( )
( ) ( )( )

1

1

( )

( )
1

1 1

m

h

Qm
b b

L L h

P Q

C
f x dx

C N

C N C

β

β

λ γ

γ λ

∞

−

−

=

=
 + +
 
 − + +
 

∫   (20) 

 
But: 

 

1
( )

2

x

f x e
µ

θ

θ

−
−

=  

 
Then: 

 

( ) ( ) ( )( )( )1 1

*

2

1 1 1

m

h

b b L L h

Q In

C

C N C N Cβ β

µ θ

λ γ γ λ− −

= −

 
 
 + + − + + 
 

 

 
Also, since Equation 22: 

 
( )

1
( ) ( ) ( )

2

Qm

m m

Qm

S Q x Q f x dx e
µ

θθ
−∞ −

= − =∫   (22) 
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Substituting from (21) by Qm in (22) then. 
Since: 

 

( ) ( ) ( )( )( )
( )

1 1

*

2

1 1 1

1
( )

2

m

h

b b L L h

Qm

m

Q In

C

C N C N C

S Q e

β β

µ
θ

µ θ

λ γ γ λ

θ

− −

−
−

= −

 
 
 + + − + + 
 

=

 

 
Then Equation 23: 

 

( ) ( ) ( )( )( )1 1

( )

1 1 1

m

h

b b L L h

S Q

C

C N C N Cβ β

θ

λ γ γ λ− −

=

+ + − + +
  (23) 

 
Hence: 

 

( )( )
( )( )

( ) ( ) ( )( )( )

,

1 1

1 1

1

*
1 1 1

r o
m N h

b L h

h

b b L L h

C C
E TC Q C

N N

C N C N C

C

C N C N C

β β

β β

γ γ

θ
λ γ γ λ

− −

− −

= + +

 + + + − 

+ + − + +

 

 
Subject to: 

 
1

1

( )

(1 ) ( )

b m b

L m L

C N S Q K

C N S Q K

β

β

γ
γ

−

−

≤

− ≤
 

 

3. STANDARD PARTICLE SWARM 
OPTIMIZATION (SPSO) 

The Particle Swarm Optimization (PSO) algorithm 
is a population-based search algorithm based on the 
simulation of the social behavior of birds within the 
flock and fish school proposed by Kennedy and 
Eberhart. The population is called a swarm, while the 
search points are called the particles. The particles are 
initialized randomly in the search space and have an 
adaptable velocity; each particle has a memory 
remembering the best position of the search space it 
has ever visited. Let we have D-dimensional search 

space, the swarm is a set of ith particle represented as 
Xi = (xi1, xi2,..,xiD) and its velocity for the ith particle is 
represented as Vi = (vi1, vi2,..,viD) The particle swarm 
optimization concept consists of at each iteration, 
changing the velocity and location of each particle 
toward its Pbest (best value of each particle so far) and 
gbest (best previous position and towards the best 
particle in the whole swarm) locations according to 
the following Equation 24 and 25: 

 

( )
( ) ( )

1 1 1

2 2

( ) 1

( ) ( )

i i

pi i g i

v t wv t c r

x x t c r x x t

−= − +

− + −
  (24) 

 
( )( ) 1 ( )i i ix t cx t dv t= − +  (25) 

 
 In the iteration t, the velocity vi (t) has update to 

pull the particle ith towards its own best position xpi 
and the best position for all the particles xg that has 
the best fitness value until the preceding generation, 
r1, r2 are random variables uniformly distributed 
between 0 and 1 this two random values are generated 
independently, c1, c2 are referred to as the cognitive 
and social parameter and w is the inertia weight. 
Equation 25 updates each particle’s position in the 
solution hyperspace. Then evaluate the fitness for 
each particle to find best previous position and global 
best to update the velocity and the position while the 
stopping criterion is achieved. 

4. FUZZY ADAPTIVE PARTICLE 
SWARM OPTIMIZATION (FAPSO) 

In this section, we introduce a velocity update 
approach (Liu et al., 2007) for the particles in PSO 
and analyze its effect on the particle’s behavior during 
the D-dimensional search space. One of the main 
effects is the premature convergence that occurs when 
the vi arrived to zero or near to zero, but this does not 
mean that the particle arrives to the global or local 
best particle but mean the best position particle. In the 
FAPSO (Elhefnawy et al., 2007), the minimum 
velocity vc1 can be tuned adaptively by using the fuzzy 
control parameter α in the solution procedure to 
overcome the previous case. If a particle’s velocity 
decreases to a threshold vc1, a new velocity is assigned 
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using Equation 26 to drive those lazy particles and let 
them explorebetter solutions. Thus, we present the 
FAPSO using the following velocity update: 
 

max( 1,1) /

i i cl

i cl

v if v v
v

u v if v vρ

 ≥= 
− <

 (26)  

 
where, u(-1, 1) is the random number, uniformly 
distributed with the interval [-1, 1] and ρ is the scaling 
factor to control the domain of the particle’s 
oscillation according to vmax where The value of vmax is 
ρ×s, with 0.1≤ρ≤1.0 and is usually chosen to be s, i.e., 
ρ = 1. Figure 2 illustrates the trajectory of a single 
particle in FAPSO using the fuzzy control parameter 
α. Also, shows the effects of the different fuzzy 
control parameter α on the behavior of the solution 
procedure, respectively. 

The Procedure of the FAPSO can be Explained as 
Follows: 

 
Step1: Generate a set of initial solutions of the 

Probabilistic <Qm, N> Inventory Model with 
Varying Mixture Shortage 

Step2: Constructing the membership function for 
particle's velocity 

Step3: Determine the control parameter α to obtain vcl 
that may cause the premature convergence 

Step4: Evaluate the fitness function of each particle 

Step5: If the particle does not remain in feasible 
solution region (divergence particle), discard 
it and mutated again with xi = xpi go to step 8 

Step6: The particle’s velocity can be updated based on 
the following equation: 

 

1

max 1

( ) ( )

( 1,1) /
i i c

i c

v t if v t v
v

u v if v vρ
 ≥ =  −  ≺

 

 
Where:  

 

( ) ( ) ( )( ) ( )( )1 1 2 21i i pi i g iv t wv t c r x x t c r x x t= − + − + −  

 
Step7: The position of each particles can be updated 

according to the following equations xi (t) 
=cxi (t-1)+dvi (t)  

Step8: Save the new fitness values in the repository 
Step9: If the no. of generation reached go to step 10. 

Otherwise, go to step 4. 
Step10: Stop. 
 

Figure 3 represents the flow chart for the suggested 
multi-objective FAPSO algorithm. 

5. NUMERICAL EXAMPLE 

Consider the following data for solving the 
probabilistic periodic review <Qm, N> inventory model 
with mixture shortage given in Table 1.

 

 
 

Fig. 2. The behavior of the algorithms at different α 
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Fig. 3. Flow chart of the suggested FAPSO algorithm 
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A warehouse follows a policy of reviewing all items 
periodically every 1.94 month (N*). The lead-time L is 
nearly constant and its value is 6 months. A fraction of 
unsatisfied demand that will be backorder γ is 0.56. 

Each simulation run was carried by using the 
following parameters when solved by FAPSO approach: 
 
Number of generations = 500 
Population size = 80 
Self-recognition coefficient c1 = 1.49 
Social coefficient c2 = 1.49 
Inertia weight ω = 0.9 
 

Each optimization experiment was run 10 times with 
different random seeds. The optimal review period (N*), 
optimal maximum inventory level (Qm

*) and constant 
real numbers (β) which will minimize the expected 
annual total cost E (TC)\ recorded in the Table 3-9. 

Consider the average demand rate has been constant 
over time given by the value of 600 units per year for the 
normal distribution and 100 units per year for the 
remaining distribution. It is desired to determine to 
optimal values Qm

*, N* and the minimum total cost in the 
following cases: 

When lead time demand follows normal distribution 
under the following constrained Equation 27: 
 

( ) 15

( ) 11.785

E BC

E LC

≤ 
≤ 

 (27) 

 
When lead time demand follows uniform distribution 

for 0≤x≤50 under the following constrained Equation 28: 
 

( ) 0.96

( ) 0.747

E BC

E LC

≤ 
≤ 

  (28) 

 
When lead time demand follows exponential 

distribution for x≥0,θ = 25 under the following 
constrained Equation 29: 
 

( ) 40

( ) 31.429

E BC

E LC

≤ 
≤ 

 (29) 

 
When lead time demand follows Laplace distribution 

for µ = 25, θ =10.206 under the following constrained 
Equation 30: 
 

( ) 16

( ) 12.672

E BC

E LC

≤ 
≤ 

  (30) 

5.1. Test of the Problem Using Lagrange 
Multiplier Technique and FAPSO 

To make sure (examine) the efficiency and fitness of 
the algorithm of Fuzzy Adaptive Particle Swarm 
Optimization (FAPSO) we aim at fixing N, β between 
the interval [0,1] and test the results between FAPSO 
and Lagrange multiplier technique. The FAPSO give us 
results close to the results of Lagrange multiplier and 
give us an impression for the validity of the algorithm 
but in this case we restrict the FAPSO algorithm. For 
this reason, we examine the FAPSO algorithm when N, 
β are variables and compare the results of FAPSO with 
the similar of Lagrange multiplier technique using 
Mathematica program. Hence we found that FAPSO 
gives results better than Lagrange multiplier technique, 
which discussed in section 5.2. 

Table 2-5 represent the results of two techniques at N 
= 1.94 month and a constant real number selected to 
provide the best fit of Estimated expected cost function 
(β) between 0.1 and 0.9. 

5.2. Comparative study 

5.2.1. The Solution for the (Normal Distribution) 

Let the demand in the time L+N can be represented 
quite well by a normal distribution with mean D (L+N) = 
600 (L+N) and variance σ2 (L+N) = 900 (L+N). 

It is desired to determine to optimal values Qm
*, N* and 

the minimum total cost: 
 
• The expected demand in time L+N is E(x) = 397.002 
• The variance of the demand in this time σ2 (L+N) = 

595.5 
• Then the standard deviation is 

( ) 595.5 24.4029L Nσ + = =  

• Hence the results using Mathematica program can 
be summarized as follows 

 
The optimum values for different values of β and the 

total cost based on the Lagrange multiplier technique 
under two constraints when the lead time demand 
follows normal distribution with mean µ and standard 
deviation σ is given by Table 6. 

However, the results using Fuzzy Adaptive Particle 
Swarm Optimization can be summarized as follows. 

Consider that \, mN and Qβ  are variables then the 

optimum values of the time between reviews, the 
maximum inventory level and the total cost using 
FAPSO approach under two constraints when the lead-
time demand follows normal distribution with mean µ 
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and standard deviation σ is given by Table 7. Moreover, 
clarify of the results is shown in Fig. 4. 

5.3. The Solution for the (Uniform Distribution) 
 

1
( ) ( ) 25

50
Let f x hence E x= =  

 
Also: 

 
2 2 50

( )
2 2 100 2

m m
m m m

Q b Q
S Q Q Q

b
= + − = + −  

 
The optimum values of the maximum inventory 

level and the total cost based on the Lagrange multiplier 
technique when the lead-time demand follows uniform 
distribution is given by Table 8. 

Consider that \, mN and Qβ  are variables then the 
optimum values of the time between reviews, the 
maximum inventory level and the total cost using 
FAPSO approach when the lead-time demand follows 
uniform distribution is given by Table 9. Moreover, 
clarify of the results displayed in Fig. 5. 

5.4. The Solution for the (Exponential 
Distribution) 

Let: 
 

251
( ) , 0, 25

25

x

f x e x θ
−

= ≥ =  

 
Hence: 
 

25( ) 25 ( ) 25
Q Qm m

mE x S Q e eθθ
− −

= = =  

The optimum values of the maximum inventory level 
and the total cost based on the Lagrange multiplier 
technique when the lead-time demand follows 
exponential distribution is given by Table 10. 

Consider that \, mN and Qβ are variables then the 

optimum values of the time between reviews, the 
maximum inventory level and the total cost using 
FAPSO approach when the lead time demand follows 
Exponential distribution is given by Table 11 and 
explain of the results is exhibit in Fig. 6. 

5.5. The Solution for the (Laplace Distribution) 
 

( ) ( 25)
10.2061 1

( ) 25 ( ) *10.206*
2 2

Q Qm m

mE x S Q e e
µ

θθ
− − − −

= = =  

 
The optimum values of the maximum inventory 

level and the total cost based on the Lagrange 
multiplier technique when the lead-time demand 
follows Laplace distribution is given by Table 12. 

Consider that \, mN and Qβ are variables then the 

optimum values of the time between reviews, the 
maximum inventory level and the total cost using 
FAPSO approach when the lead-time demand follows 
Laplace distribution is given by Table 13. Moreover, 
illustrate of the results is shown in Fig. 7.  

5.6. Remark 

From the previous results it becomes clear that when 
we Use FAPSO approaches it leads toward the global 
optimum instead of trapping into local peaks in all the 
pervious distributions. 

 
Table 1. Presents the value of the parameters 
Parameters Value 
Co+Cr 25 $ 
Ch 3 $ 
Cb 25 $ 
CL 25$ 
 
Table 2. The results using mathematica program and FAPSO for Normal distribution 
β *

mQ  E(TC) Qm
*| E(TC)| 

0.1 445.715 473.31 $ 407.9091 202.3958 
0.2 444.109 468.567 408.2650 208.3604 
0.3 442.455 463.655 408.2995 223.4091 
0.4 440.670 458.393 408.3293 240.7190 
0.5 438.864 453.068 408.4040 253.1674 
0.6 437.001 447.598 408.4786 264.2640 
0.7 435.105 442.051 408.5786 273.3417 
0.8 433.194 436.481 408.0180 302.4184 
0.9 431.172 430.612 407.9785 295.6521 
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Table 3. The results using Mathematica program and FAPSO for Uniform distribution 
β *

mQ  E(TC) *\
mQ  E(TC)| 

0.1 48.85270 203.657$ 49.29800 205.7859 
0.2 48.74330 203.333 48.71286 205.0256 
0.3 48.62340 202.977 49.46144 205.8740 
0.4 48.49210 202.588 48.62533 204.5115 
0.5 48.34823 202.163 48.87756 204.6693 
0.6 48.19070 201.697 48.24354 203.5291 
0.7 48.01810 201.188 48.24241 203.3445 
0.8 47.82910 200.631 47.97995 202.6509 
0.9 47.62200 200.022 48.01763 202.4603 

 
Table 4. The results using Mathematica program and FAPSO for Exponential distribution 
β *

mQ  E(TC) *\
mQ  E(TC)\ 

0.1 95.2259 413.223 $ 94.93518 411.9810 
0.2 90.6704 399.703 89.87002 400.7742 
0.3 86.1149 386.212 88.49079 387.0650 
0.4 81.5594 372.756 82.73436 373.4911 
0.5 77.0039 359.342 83.55936 362.7138 
0.6 72.4485 345.979 76.05411 345.3453 
0.7 67.8929 332.676 73.58664 335.8071 
0.8 63.3375 319.446 65.25027 321.6515 
0.9 58.7820 306.303 57.99037 304.7468 

 
Table 5. The results using Mathematica program and FAPSO for Laplace distribution 
β *

mQ  E(TC) *\
mQ  E(TC)\ 

0.1 57.009 255.276$ 64.64356 251.1807 
0.2 55.1493 249.755 62.81299 245.6890 
0.3 53.2895 244.246 58.65988 233.2296 
0.4 51.4297 238.751 58.92988 234.0396 
0.5 49.5700 233.273 55.32898 223.2369 
0.6 47.7103 227.815 51.73142 212.4443 
0.7 45.8504 222.381 50.58961 209.0188 
0.8 43.9908 216.977 50.31293 208.1888 
0.9 42.1310 211.607 50.13726 207.6618 
 
Table 6. The optimal results of model 2-1 

β λb
* λL

* *
mQ  E(TC) 

0.1 0.002 0.00260 445.715 473.31 $ 
0.2 0.035 0.02547 444.109 468.567 
0.3 0.075 0.03815 442.455 463.655 
0.4 0.107 0.03818 440.670 458.393 
0.5 0.145 0.03820 438.864 453.068 
0.6 0.182 0.03820 437.001 447.598 
0.7 0.224 0.03820 435.105 442.051 
0.8 0.276 0.03815 433.194 436.481 
0.9 0.3147 0.03820 431.172 430.612 
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Table 7. The results using FAPSO 

β N* *\
mQ  E (TC)\ 

1.35E-02 0.27994 483.6817 91.04408 
0.254816 0.264483 475.0849 110.66580 
0.121196 0.276644 481.7898 117.30190 
3.50E-03 0.279011 482.6383 118.09550 
2.69E-03 0.259179 469.9347 134.35520 
5.88E-03 0.282823 484.7993 134.78630 
0.289517 0.180891 422.2667 139.28720 
0.338156 0.296493 494.7425 166.28250 
4.63E-02 0.281428 481.3388 315.68550 
 
Table 8. The optimal results of the model 2-2 
β λb λL 

*\
mQ  E(TC) 

0.1 0.00450 0.00382 48.85270 203.657 $ 
0.2 0.17380 0.00382 48.74330 203.333 
0.3 0.35870 0.00382 48.62340 202.977 
0.4 0.56080 0.00382 48.49210 202.588 
0.5 0.78155 0.00376 48.34823 202.163 
0.6 1.02270 0.00382 48.19070 201.697 
0.7 1.28620 0.00382 48.01810 201.188 
0.8 1.57390 0.00382 47.82910 200.631 
0.9 1.88780 0.00382 47.62200 200.022 

 
Table 9. The results using FAPSO 

N β *\
mQ  E(TC)\ 

0.855797 0.630314 58.38030 20.50866 
0.693346 0.197418 54.16220 25.58115 
0.578352 0.481714 42.89127 27.59362 
0.560751 0.649507 47.76734 30.36465 
0.664484 0.147211 53.94762 30.51989 
0.59093 0.303433 51.05595 32.25129 
0.588301 0.120997 52.01549 36.96916 
0.541767 0.097877 50.53540 41.61468 
0.549307 0.124951 51.50322 43.60950 
0.758902 0.133017 32.24886 45.07503 

 
Table 10. The optimal results of the model 2-3 
β λb

* λL
* *\

mQ  E(TC) 

0.1 0.041000 0.038190 95.2259 413.223 $ 
0.2 0.037350 0.038180 90.6704 399.703 
0.3 0.032960 0.038180 86.1149 386.212 
0.4 0.027700 0.038180 81.5594 372.756 
0.5 0.021380 0.038180 77.0039 359.342 
0.6 0.013810 0.038180 72.4485 345.979 
0.7 0.004710 0.038180 67.8929 332.676 
0.8 0.003805 0.025460 63.3375 319.446 
0.9 0.000720 0.012728 58.7820 306.303 
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Table 11. The results using FAPSO 

β N* *\
mQ  E(TC)\ 

0.4058053 0.97973 57.43209 42.78574 
0.935998 0.98157 59.75097 42.85972 
0.624991 0.95466 49.19647 49.08882 
9.81E-02 0.95122 54.91412 49.72275 
0.642026 0.99140 69.49759 50.95656 
0.471227 0.93516 54.96149 51.88449 
0.229297 0.95286 65.71236 54.66653 
0.31015 0.92877 49.52028 56.46565 
0.203667 0.59067 76.79328 154.6951 

 
Table 12. The optimal results of the model 2-4 

β λb
* λL

* *
mQ  E(TC) 

0.1 0.106650 0.038200 57.0090 255.276$ 
0.2 0.103000 0.003818 55.1493 249.755 
0.3 0.098600 0.003818 53.2895 244.246 
0.4 0.093330 0.003818 51.4297 238.751 
0.5 0.087020 0.003818 49.5700 233.273 
0.6 0.079460 0.003818 47.7103 227.815 
0.7 0.070340 0.003818 45.8504 222.381 
0.8 0.059436 0.003818 43.9908 216.977 
0.9 0.04635 0.003818 42.1310 211.607 

 
Table 13. The results using FAPSO 

β N* *\
mQ  E(TC)\ 

0.235573 0.471201 34.38432 10.53058 
0.190189 0.901405 64.60248 11.33112 
0.538946 0.848705 61.44213 11.47725 
0.629335 0.593022 44.74105 12.42682 
0.680409 0.400022 30.52506 19.13798 
0.350657 0.616576 48.75258 19.31785 
0.315997 0.462833 37.51333 22.13034 
0.61585 0.594566 49.71379 27.00388 
2.31E-02 0.841329 93.55012 109.16580 
0.895867 0.668046 95.88036 149.85670 

 

 
 

Fig. 4. Display the results of normal distribution 

 
 

Fig. 5. Display the results of uniform distribution 
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Fig. 6. Exhibit the results of exponential distribution 
 

 
 
Fig. 7. Illustrate the results of Laplace distribution 

 
6. CONCLUSION 

In this study, we developed a probabilistic Single-
Item Single-Source (SISS) inventory model with 
varying mixture of backorders and lost sales under 
two restrictions, which the first on the expected 
backorder cost and the other on the expected lost sales 
cost. We reached the optimal review period and 
optimal maximum inventory level that minimized the 
expected annual total cost under constraints using 
Lagrange multiplier technique and the Fuzzy Adaptive 
Particle Swarm Optimization (FAPSO). We overcome 
the problems that meet us when we use Lagrange 
multiplier technique by using FAPSO whereas most 
algorithms tend to be stuck to a sub-optimal solution, 
an algorithm efficient in solving one optimization 
problem may not be efficient in solving another one and 
these techniques such as Lagrange multiplier 
technique are useful over a relatively narrow range. 
FAPSO proved good results and performance when 
applied to solve complexities problems. Using FAPSO 

algorithm in the inventory model promise to achieve 
the global solution with decreasing the number of 
iteration that required for arrive to it. The algorithm has 
been tested using a numerical example; the results show 
the algorithms described in this study perform well. 

In the future, we want to increase the number of 
constraints to contain all the costs and implement Fuzzy 
Adaptive Particle Swarm Optimization (FAPSO) on the 
constrained <Qm,N> modelwith mixture varying shortage 
when all components of costs are fuzzy number 
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