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ABSTRACT

R-squared ) is a popular method for variable selection ireéin regression model&” based on Least
Squares (LS) regression minimizes the sum of thareg residuald;Sis sensitive to outlier observation.
Alternative criterion based oM-estimators, which is less sensitive to outlyingsavation has been
proposed. In this study explicit expression forbsadterion is obtained when the Least Trimmed 3gsia
(LTS) estimator is used. The influence function R5fis also discussed. In our simulation study, the
performance of proposed criterion is compared éekisting criteria based dvi-estimators ) and to
the classical non-robust based on least squar@sagsts R 9. We observe that the propose®f, (o
selects more appropriate models in the case ofdvadage points (outliers in thédirection) are present.

K eywords: RobustR?-Coefficents, Least Trimmed Squares, Influence Eanc

1. INTRODUCTION R = @)
S SST
The use of squared multiple correlation coefficjent

R?, in choosing model is a common goal in . . )

econometrics analysis; it is a classical modelciie where, SST =Z,:1(yi ‘Vi) with 'y, is the sample mean
criterion which has been widely used for centuaesl  of the dependent variable. Selecting models orbésis
it is still popular till today. Hahn (1973), Kvalie  of maximizing R is equivalent to minimizing the
(1985), Willett and Singer (1988) as well as residual mean square

Anderson-Sprecher (1994) have expounded Rin Note that the numerator in Equation 2 approximates

Consider a multiple linear regression model: . .
P 9 the scale of the residuals in the full model, whihe
denominator is the scale of the residuals in tfiewing

Y =a+ X B+s (1) reduced model:
where, X = (%,..X,)' is a vector containingp Y, =a, +& (3)
explanatory variablesj = 1,..ny; is the response

variable,S is a vector op parametersa is the intercept
parameter ands is an independently and identically
distributed (iid) random error with mean O and &ade
o®. The distribution of errors satisfyirgp(x) = Fo(X/0),
where o is the residual scale parameter aRgl is R =1- var(full )
symmetric with a strictly positive density functiowith s var(reduced )
SE=Y" (r)°, wherer, =y, -a,+X"4;, the residual

from the Least Squares (LS) fit, the classid® where, var is defined according to principles guide
coefficient is given by: estimation:

In fact thelLS estimator ofay in Equation 3 equals
y, . Then analogous to Equation 2 is:

(4)
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We recognized that the multiple correlation point with (Oy;0) is added. A similar approach is done
coefficientR’,  statistics need special care in in X-direction, by replacing added the valugo( 0),
contaminated data. Since the classical proceduteSis Fi9- 1 and 2 shows both situationszigure 3 shows
fit-based, alternatives have been developed in theth€ effect of addingio andxy, on the values of the
literature. For example McKean and Sievers (19g@geh classical R® and, for comparison, those with the
proposed a robust version d® with respect to robust version ofR® based orM-estimation developed

Liregression estimator and the associa’zédis givenby: by Croux and Dehon (2003) aRg; developed in
section 3. The value of classid& has high sensitivity
i ~ in both contamination directions, whilerobuBf based
1 Do N XTB —ay on M-estimation decreases only as the size of
Zizl\yi — median ;| contamination inX-direction increases. On the other
" hand, R%, are much more robust than others with both
S\{ertical and leverage points outliers.

Leroy and Rousseeuw (1987) have proposed a robu
R? with respect to the overall measure of variation

med, (y, - ¥,)* and this measure used in Equation 4 led 34 .
directly to an analog of R, ,

-V 2 2 - =]
1- med (y yiy ,| whereC is a constant - .

rTEdi (yl _C) 1 Oo &

that minimizesmed; (y-C)>. Croux and Dehon (2003) = T ot )
studied local robustness and confidence intervdls o 0 .
multiple coefficients which is based dfrestimators. In .
this study we explore whether improvements can oifcu 5 | . oo, .
we apply a high breakdown scale estimate such as . £ae
Leasttrimmed Squared (LTS) estimator proposed by 5|

Yohai (1987). 8. is computed by minimizing the H r . ' t a
. . . -1.0 -0.5 0.0 0.5 1.0
smallest squared residuals, defined as Equation 5:

H 2
Zi=lri ) () Fig. 1. Data and positions forypoints

Based on the ordered absolute resiqqgﬂls ..<

T
LTS converages at the rate of’® with the same %
asymptotic efficiency under normality. 1.0 %
The paper is organized as follows: In section 2 the s
influence of outlierR? is illustrated through generated 05-
sample data set. In section 3 we have introduced an
alternative robust version & based on.TS estimators.
The influence function o’ is discussed in section 4. o

0.0 o0 000 o © 000 O

2. EXPERIMENTAL 0.5

In this section, we set the idea of influence of
outliers onR? through the presence of outliers yn -1.07
direction (called vertical outliers) and in thk-
direction (called leverage points). We generated -4 3
independent uniform variabbe on [-1,1] according to
Yi = X%+6, i = 1,...,20, where the; are iid normally
distributed with expectation 0 and variance f.1A Fig. 2. Data and positions fogg points
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Fig. 3. The different values ofR? after adding one observation ¥@) (left figures) and effect of adding one obseroati
(X10,0) (right figures)
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3. ROBUST VERSION OF R2BASED ON Since Equation 3 is a sub model in Equation 1, we
LTSSCALE ESTIMATE readily see thab< RZ <1. The model with the value of

R?% closed to 1 indicated the preferred model.
3.1.LTS-Estimators

An algorithm of obtaining th&TS estimator and its 4. INFLUENCE FUNCTION

scale is as follows: ) ) ) ) .
In this section we discuss the influence functibiRo

using any scale functional verifying a certain sthoess
*  Draw arandom H subset wheh=n+p+12 condition as available in (Croux and Dehon 2003hwi
+ Computes, = (XgqXaqg)" Xgia Yoid some extension of effect bifS estimator.
« Compute the residua, = y, - x5, Let X andy be independent stochastic variables
with distribution D. The functional T is Fisher-
consistent for the parameters,f) at the model
distributionD, that is Equation 8:

Order absolute of the residugt,|, <...<|r|

* Choose the neWw observation
s Compute the8, = (X e Xnew) ™ XranYnau

« Compute the residual=y - xz, _(a(D))_(a o
* Because newh correspond to théh smallest (D)= b(D)) | B (8)
absoluteresidual out ofi, we have:

I CY() B I CY () BT oX And, consider allocation modet, = F (gj here F is

~ called the model distribution. We want our estiondd
And because thelLS estimator 5 of theseh e Fisher-consistent, which me#&(F,) = ¢ for all ¢>0.
observations is such that it minimiz8s so we find that ~ The influence function of the criterion functiorfal the
Qi<Qo. Repeatthe 7-steps.@; = Q,, else we stop. distributionF is given by Equation 9:
Leroy and Rousseeuw (1987) suggest that might be
selected ash = [n(1-a)]+1, wherea is the level of

timming. As for example, if we trimmed 10% T((l_g)D”A(x,y))_T(D)

F((X.y).T.D) = lim

observation then = 0.1 and henck = [n(0.9)]+1. So we £-0 £ (9)
can control the level of timming when we suspéettt 0 (T(A ))
the data contain nearly 10% outliers and we carease T os ()

the level of trimming if we suspect there are more

tliers in the data. . ) .
outiers in the data where, T(D) be the functional defined as the solution of

3.2. Robust R? Based on LTS Estimators the objective modelA,, is the distribution whichXy)
contain outliers. The influence function measures t

An analogue to the classical formula in Equatios 2 . . o
g a effect of a possible outlierX(y) on the R? statistic. It

Equation 6: ) -
represents the magnitude of changeRmarising from
) minute degrees of contamination. For more dethitsit
R :1—251¢ (6) influence function, Hampedt al. (2011).
S (¥ ~a) The following theorem is given in Croux and

Dehon (2003).
Theorem 1

Let the model distributioD verify (D). Take K.y)
~D and denote: the error term of the model. Assume
, R o that S has the property thata,p)—Se+b' X+a) is
Ry =1- S (Y, —20/us ’:X Bs) 7) differentiable with partial derivatives equal taaet the

S (Y ~airs) origin (0,0). The Equation 10:

Consider scale estimate of error defined by:
S :zin:l(yi ~Oist XTBLTS) - = zin:l(yi _dLTS) we get
the following robus&? Equation 7:
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IF((X,y),RSZ,D) = Inserting Equation 12 and 13 into Equation 11 ydeld

r (10)
a IF[yayﬂy SF]_IF[%T’S’F") |F((x,y),R§,H):§ FC=A s E)-1F(" S F,
2 F6 A

y y

The proof of Theorem 1.
P It is apparent that the influence function is boeohdf

Y- K, T . .
theIF[ > y,S,FO)—IF(/J,S,Fo)] function is

y
bounded; and if S = LS thenR?% is non-robust, because

Where: it has an unbounded influence function (as preWous
noted by Romanazzi (1992)). Note that &g or AX

S Ay -a-DXTB)

9 a- S(H,)

SH,)

IF((xy) R H) =2

SH(H) o increases, the value approaches 1

Ri(H)=1- 0y =1 S 2y - a)
S (H) gy h _ :
" en the influence function becomes an unbounded
9 1_31 (H.) L (decreasing) negative functioM-estimation is reputed
de(” S(H,))"° to be robust with respect tpspace outlier. Note that
" 9 large zone outliers iy have zero influence. In contrast,
‘23("')-50(”)551("'5) k=0 using the generally accepted expression of theénfte
, P function of anLTS of scale, the influence function of
25 (H) Sy (H) 5 So(He) k=o 1) theR? is given by Equation 14:
[s(H)]
2
200 2§ (H,) Lo +27°0, L5, (H.) Lo F((x.3): R h)
= 2
7, max (Vﬂ] .
27169 5 (0.) o0, 25, L s o
o, de 0yEr, [p(f)f] ) /) ?
max /T) C
Where:
Note that the influence function d®?, is bounded
iSl( H,)l.-=IF(r.S.F,) and has zero influence in both directiog gndy) and
o€ the relative gross-error sensitivity at Gaussian
=ig((1_g) |:U+8Ar_)|£:0 distributions ofLTS equals 1.543. In next section, the
o¢ ' (12) R? performance will be compared to the performance
0 o
=0 S((l—g) F,+ gA%j Lo of the other criteria.
- r 5. EXAMPLES
—UIF(/J,S,F j

5.1. Example 1 (Simulation Study)

where, F; is the error distribution and by using scale  Tne setting for the simulation study is as followge

equivariances _ generated 50 independent replicates of three imdigre
In & similar way, we can show that: uniformly random variables on [-1,Bf -X1,X> and X
and 50 independently normally distributed errors
i%(HE)L:O:GyIF(y_'L% ,S:FOJ (13) si~l\_l(£),9). Then we define the true modek X +Xz+si,
y fori =1,...,50 using two variables andx;,.
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We compare three differeR-square versions in this « Wrong fit-all models that are not over fit, not a

simulation study: ClassicaR’ based orLS estimation, correct fit nor under fit
robust R? based orM-estimation and robus®’, based _ _ _
on LTS estimation. We trimmed 10% observation tlaen Table 1 shows detailed simulation results. We see

= 0.1 and hencé = [n(0.9)]+1. To compute theobust  that the classicaR’; selects a large proportion of over
R% andR*,, we used, respectively, the function rim(), fit models for the data with and without outlielmn

ltsreg() from theR libraries MASS. For investigating the otherR} ignoring some of the important variables
how robust the methods perform against outliers, wein the model and a higher proportion of under fi¢ a

apply them to three situations: selected in all cases, while work better tharecghn
that it gives the correct model as a good modetlier

e Vertical outliers (outliers in y only) all the cases.

» Good leverage points (outliers in y ax A main message to be learned from this simulation

« Bad leverage points (outliers in somexodnly) study is thatit seems valid to uResquared based TS

estimation using expression (11) with differenweleof
For case (i) we randomly generated 10% of outliersoutliers. This is because we can control the lesel
from N(50,0.%). For case (i) we considered 10% of trimming; based on the simulation resul®&, based on
outliers on the variables,, x, andx; are generated from  \j_estimation selected a large proportion of under fi
N(100,0.5) distribution, then generateg to get good
leverage points. For case (iii) 10% of outlier dret 5.2. Example 2 (Stack L oss Data)
variables x; andx, are generated from a N(100%).5

distrbution. For each of these setting we simuldt@d0 Stack Loss data was presented by Brownlee (1965).

This data set consists of1 observations on3

samples. . . . . independent variables and it contains 4 outlieasds 1,
We summarize the simulation results by reportirg th 3, 4 and 21) and high leverage points (cases 2,and
percentage of selected models that are: 2'1) The data are given Fable 2 '

i We applied the classical and robust version&of
*  Correct fit-the true model only methods on the datd.able 3 shows that the classical

 Over fit-models containing all the variables in the oihod selects the full model, robus® method
true model plus some more that are actually .

redundant ignored one of the important variables)(and, robust
«  Under fit-models with only a strict of the variable R Method agreed on the importance of the two
in true model variablesx; andx..

Table 1. Proportion of select models from classi, , robustR’ and robustR’s with different 10% outliers

R’s RS Rirs
Zero outliers Correct fit over fit under fit wroffid 0.6% 43.1% 59%
99.4% 56.9% 41%
0% 0% 0%
0% 0% 0%
Vertical outliers Correct fit over fit under fit wng fit 0.1% 45.3% 68.8%
99.7% 54.7% 31.2%
0% 0% 0%
0.2% 0% 0%
Bad leverage points Correct fit over fit undémfrong fit 0% 48.3% 68.8%
99.9% 51.7% 31.2%
0% 0% 0%
0.1% 0% 0%
Good leverage points Correct fit over fit undemfibng fit 4.4% 45.6% 56.9%
95.6% 54.4% 43.1%
0% 0% 0%
0% 0% 0%
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R? proposed by Croux and Dehon (2003). According to

this study, the performance d¥’.is better and more

stable than the other methods. This study focuseth®

R? variable selection criteria; one might be intezdsto

extend other robust model selection criteria toanded

robust breakdown point estimation methods, such as,
Mallows'Cp criterion.
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