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ABSTRACT 

R-squared (R2) is a popular method for variable selection in linear regression models. R2 based on Least 
Squares (LS) regression minimizes the sum of the squared residuals; LS is sensitive to outlier observation. 
Alternative criterion based on M-estimators, which is less sensitive to outlying observation has been 
proposed. In this study explicit expression for such criterion is obtained when the Least Trimmed Squares 
(LTS) estimator is used. The influence function of R2 is also discussed. In our simulation study, the 
performance of proposed criterion is compared to the existing criteria based on M-estimators (R2

M) and to 
the classical non-robust based on least squares estimators (R2

LS). We observe that the proposed (R2
LTS) 

selects more appropriate models in the case of bad leverage points (outliers in the X-direction) are present. 
 
Keywords: Robust R2-Coefficents, Least Trimmed Squares, Influence Function 

1. INTRODUCTION 

The use of squared multiple correlation coefficient, 
R2, in choosing model is a common goal in 
econometrics analysis; it is a classical model selection 
criterion which has been widely used for centuries and 
it is still popular till today. Hahn (1973), Kvålseth 
(1985), Willett and Singer (1988) as well as    
Anderson-Sprecher (1994) have expounded on R2. 
Consider a multiple linear regression model: 

 
T

i iy Xα β ε= + +   (1) 

 
where, X = (xi1,...xip)

T is a vector containing p 
explanatory variables, i = 1,...,n,yi is the response 
variable, β  is a vector of p parameters, a is the intercept 
parameter and εi is an independently and identically 
distributed (iid) random error with mean 0 and variance 
σ2.  The distribution of errors satisfying Fσ(x) = F0(x/σ), 
where σ is the residual scale parameter and F0 is 
symmetric with a strictly positive density function. With 

( )2

1

n

ii
SSE r

=
=∑ , where T

i i LS LSr y X βα= − +
)) , the residual 

from the Least Squares (LS) fit, the classical R2 

coefficient is given by: 

2 1LS

SSE
R

SST
= −   (2) 

 

where, ( )2

1 i

n

i iy ySST
=

−=∑ with iy  is the sample mean 

of the dependent variable. Selecting models on the basis 
of maximizing 2

LSR  is equivalent to minimizing the 

residual mean square. 
Note that the numerator in Equation 2 approximates 

the scale  of the residuals in the full model, while the 
denominator is the scale  of the residuals in the following 
reduced model: 

 

0i iy α ε= +   (3) 

 
In fact the LS estimator of α0 in Equation 3 equals 

iy . Then analogous to Equation 2 is: 

 

2 var( )
1

var( )LS

full
R

reduced
= −  (4) 

 
where, var is defined according to principles guide 
estimation: 
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We recognized that the multiple correlation 
coefficient 2

LSR  statistics need special care in 

contaminated data. Since the classical procedure is LS 
fit-based, alternatives have been developed in the 
literature. For example McKean and Sievers (1987) have 
proposed a robust version of R2, with respect to 
L1regression estimator and the associated 2

1L
R is given by: 

 
1

1 1
11

Ti
i L L

i
i i

n

n i

y X

y median y

β α=

=

 − −
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 −
 

∑
∑

) )

 

 
Leroy and Rousseeuw (1987) have proposed a robust  

R2 with respect to the overall measure of variation 

( )2

i i imed y y− )  and this measure used in Equation 4 led 

directly to an analog of R2, 

( )
( )

2

21 i i i

i i

med y y

med y C

 −−  
−  

)

 where C is a constant 

that minimizes medi (yi-C)2. Croux and Dehon (2003) 
studied local robustness and confidence intervals of 
multiple coefficients which is based on M-estimators. In 
this study we explore whether improvements can occur if 
we apply a high breakdown scale estimate such as 
Leasttrimmed Squared (LTS) estimator proposed by 
Yohai (1987). LTSβ

)
 is computed by minimizing the H 

smallest squared residuals, defined as Equation 5: 
 

2

1
( )

H
ii

r β=∑  (5) 

 
Based on the ordered absolute residuals(1) ( )nr r≤ … ≤  

LTS converages at the rate of n(1⁄2) with the same 
asymptotic efficiency under normality. 

The paper is organized as follows: In section 2 the 
influence of outlier R2 is illustrated through generated 
sample data set. In section 3 we have introduced an 
alternative robust version of R2 based on LTS estimators. 
The influence function of R2 is discussed in section 4. 

2. EXPERIMENTAL 

In this section, we set the idea of influence of 
outliers on R2 through the presence of outliers in y-
direction (called vertical outliers) and in the X-
direction (called leverage points). We generated 
independent uniform variable xi on [-1,1] according to  
yi = xi+ϵi, i = 1,…,20, where the ϵi are iid normally 
distributed with expectation 0 and variance (0.12). A 

point with (0,y10) is added. A similar approach is done 
in X-direction, by replacing added the value (x10, 0), 
Fig. 1 and  2 shows both situations. Figure 3 shows 
the  effect of adding y10 and x10 on the values of the 
classical  R2 and, for comparison, those with the 
robust version of  R2 based on M-estimation developed 
by Croux and Dehon (2003) and2LTSR  developed in 

section 3. The value of classical R2 has high sensitivity 
in both contamination directions, whilerobust  R2 based 
on M-estimation decreases only as the size of 
contamination in X-direction increases. On the other 
hand, 2

LTSR  are much more robust than others with both 

vertical and leverage points outliers. 
 

 
 
Fig. 1. Data and positions for y10 points 

 

 
 
Fig. 2. Data and positions for x10 points 
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Fig. 3. The different values of  R2 after adding one observation (0,y10) (left figures) and effect of adding one observation 

(x10,0) (right figures) 
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3. ROBUST VERSION OF R2 BASED ON   
LTS SCALE ESTIMATE 

3.1. LTS -Estimators 

An algorithm of obtaining the LTS estimator and its 
scale is as follows: 

 
• Draw a random H subset where |h|=n+p+1⁄2 
• Compute 1

0 ( )T T
old old old oldX X X yβ −=

)
 

• Compute the residual 0 0i ie y x β= −
)

 

• Order absolute of the residual, 0 01: :n n n
r r≤ … ≤  

• Choose the new h observation 
• Compute the 1

1 ( )T T
new new new newX X X yβ −=

)
 

• Compute the residual1 1i ie y x β= −
)

 

• Because new h  correspond to the h  smallest 
absolute residual out of n, we have: 

 
2 2

1 0 0( ( )) ( ( ))
i newh i oldh

e i e i Q= =≤ =∑ ∑  

 
And because the LS estimator 1β

)
 of these h 

observations is such that it minimizes Q1 so we find that 
Q1≤Q0. Repeatthe 7-steps. If Q1 = Q0, else we stop. 

Leroy and Rousseeuw (1987) suggest that might be 
selected as h = [n(1-α)]+1, where α is the level of 
trimming. As for example, if we trimmed 10% 
observation then α = 0.1 and hence h = [n(0.9)]+1. So we 
can control the level of trimming when we suspect that 
the data contain nearly 10% outliers and we can increase 
the level of trimming if we suspect there are more 
outliers in the data. 

3.2. Robust R2 Based on LTS Estimators 

An analogue to the classical formula in Equation 2 is 
Equation 6: 
 

2
2 1

2
0 0

( )
1

( )
i

S

i

S r
R

S y α
= −

−
 (6) 

 
Consider scale estimate of error defined by: 
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S y Xα β
=

= − +∑
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. ( )0 1

n

i LTSi
S y α
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)  we get 

the following robust R2 Equation 7: 
 

2
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2
0

( )
1

( )

T
i LTS LTS

LTS

i LTS

S y X
R

S y α
βα− += −

−

)

)

)

 (7) 

Since Equation 3  is a sub model  in Equation 1, we 
readily see that 20 1SR≤ ≤ . The model with the value of 

2
LTSR  closed to 1 indicated the preferred model. 

4. INFLUENCE FUNCTION 

In this section we discuss the influence function of R2 
using any scale functional verifying a certain smoothness 
condition as available in (Croux and Dehon 2003) with 
some extension of effect of LTS estimator. 

Let X and y be independent stochastic variables 
with distribution D. The functional T is Fisher-
consistent for the parameters (α,β) at the model 
distribution D, that is Equation 8: 

 

( ) ( )

( )

a D
T D

b D

α
β

   
= =   
   

 (8) 

 

And, consider allocation model 
X

F Fσ σ
 =  
 

 here F is 

called the model distribution.  We want our estimator to 
be Fisher-consistent, which mean T(Fσ) = σ for all σ>0. 
The influence function of the criterion functional for the 
distribution F is given by Equation 9: 

 

( )( )
( ) ( )( ) ( )

( )( )( )

,

,

0

1
, , , lim

X y

X y

T D T D
IF X y T D

T

ε

ε ε

ε

ε

→

− + ∆ −
=

∆∂=
∂

 (9) 

 
where, T(D) be the functional defined as the solution of 
the objective model, ∆(X,y) is the distribution which (X,y) 
contain outliers. The influence function measures the 
effect of a possible outlier (X,y) on the R2 statistic. It 
represents the magnitude of change in R2 arising from 
minute degrees of contamination. For more details about 
influence function, Hampel et al. (2011). 

The following theorem is given in Croux and 
Dehon (2003). 

Theorem 1 

Let the model distribution D verify (D). Take (X,y) 
~D and denote ε the error term of the model. Assume 
that S has the property that (a,b)→S(ε+bt X+a) is 
differentiable with partial derivatives equal to zero at the 
origin (0,0). The Equation 10: 



Shokrya Saleh / Journal of Mathematics and Statistics 10 (3): 414-420, 2014 

 
418 Science Publications

 
JMSS 

( )( )2
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y rIF S F IF S F
µσ
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=
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 (10) 

 
The proof of Theorem 1. 
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Where: 
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where, Fσ is the error distribution and by using scale 
equivariance S. 

In a similar way, we can show that: 
 

( )0 00| , ,y

y
y

y
S H IF S Fε ε

µσ σε =
∂ − =  ∂  

 (13) 

Inserting Equation 12 and 13 into Equation 11 yields: 
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It is apparent that the influence function is bounded if 

the 0 0, , ) , ,y i

y

y rIF S F IF S F
µ

σσ
 −  −     

 function is 

bounded; and  if   � = �� then 2
LSR  is non-robust, because 

it has an unbounded influence function (as previously 
noted by Romanazzi (1992)). Note that as ∆y or ∆X 

increases, the value 
2

2
0

( )

(

ˆ

)ˆ

Ty X

y

S

S

α β
α

∆ − − ∆
∆ −

 approaches 1 

then the influence function becomes an unbounded 
(decreasing) negative function. M-estimation is reputed 
to be robust with respect to y-space outlier. Note that 
large zone outliers in y have zero influence. In contrast, 
using the generally accepted expression of the influence 
function of an LTS of scale, the influence function of 
the 2

LTSR  is given by Equation 14: 
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Note that the influence function of 2LTSR  is bounded 

and has zero influence in both direction (X and y) and  
the relative gross-error sensitivity at Gaussian 
distributions of LTS equals 1.543. In next section, the 

2
LTSR  performance will be compared to the performance 

of the other criteria. 

5. EXAMPLES 

5.1. Example 1 (Simulation Study) 

The setting for the simulation study is as follows. We 
generated 50 independent replicates of three independent 
uniformly random variables on [-1,1] of -xi1,xi2 and xi3- 
and 50 independently normally distributed errors 
εi~N(0,9). Then we define the true model yi = xi1+xi2+εi, 
for i = 1,…,50  using two variables xi1 and xi2. 



Shokrya Saleh / Journal of Mathematics and Statistics 10 (3): 414-420, 2014 

 
419 Science Publications

 
JMSS 

We compare three different R-square versions in this 
simulation study: Classical 2LSR  based on LS estimation, 

robust 2
MR  based on M-estimation and robust 2LTSR  based 

on LTS estimation. We trimmed 10% observation then α 
= 0.1 and hence h = [n(0.9)]+1. To compute the robust 

2
MR and 2

LTSR , we used, respectively, the function rlm(), 

ltsreg() from the R libraries MASS. For investigating 
how robust the methods perform against outliers, we 
apply them to three situations: 
 
• Vertical outliers (outliers in y only) 
• Good leverage points (outliers in y and X) 
• Bad leverage points (outliers in some of X only) 
 

For case (i) we randomly generated 10% of outliers  
from N(50,0.12). For case (ii) we considered 10% of 
outliers on the variables xi1, xi2 and xi3 are generated from 
N(100,0.52) distribution, then generated y  to get good 
leverage points. For case (iii) 10% of outlier on the 
variables  xi1 and xi2 are generated from a N(100,0.52) 
distrbution. For each of these setting we simulated 1000 
samples. 

We summarize the simulation results by reporting the 
percentage of selected models that are: 
 
• Correct fit-the true model only 
• Over fit-models containing all the variables in the 

true model plus some more that are actually 
redundant 

• Under fit-models with only a strict of the variables 
in true model 

• Wrong fit-all models that are not over fit, not a 
correct fit nor under fit 

 
Table 1 shows detailed simulation results. We see 

that the classical 2
LSR selects a large proportion of over 

fit models for the data with and without outliers; on 
the other 2Rρ  ignoring some of the important variables 

in the model and a higher proportion of under fit are 
selected in all cases, while   work better than others in 
that it gives the correct model as a good model for the 
all the cases. 

A main message to be learned from this simulation 
study is thatit seems valid to use R-squared based on LTS 
estimation using expression (11) with different  level of 
outliers. This is because we can control the level of 
trimming; based on the simulation results, 2Rρ  based on 

M-estimation selected a large proportion of under fit. 

5.2. Example 2 (Stack Loss Data) 

Stack Loss data was presented by Brownlee (1965). 
This data set consists of 21 observations on 3 
independent variables and it contains 4 outliers (cases 1, 
3, 4 and 21) and high leverage points (cases 1, 2, 3 and 
21). The data are given in Table 2. 

We applied the classical and robust versions of R2 
methods on the data. Table 3 shows that the classical 
method selects the full model, robust 2Rρ  method 

ignored one of the important variables (x2) and, robust 
2
LTSR  method agreed on the importance of the two 

variables x1 and x2. 
 
Table 1. Proportion of select models from classical 2

LSR , robust 2Rρ  and robust 2
LTSR  with different 10% outliers 

  2
LSR  2Rρ  2

LTSR  

Zero outliers Correct fit over fit under fit wrong fit 0.6% 43.1% 59% 
  99.4% 56.9% 41% 
  0% 0% 0% 
  0% 0% 0% 
Vertical outliers Correct fit over fit under fit wrong fit 0.1% 45.3% 68.8% 
  99.7% 54.7% 31.2% 
  0% 0% 0% 
  0.2% 0% 0% 
Bad leverage points   Correct fit over fit under fit wrong fit 0% 48.3% 68.8% 
  99.9% 51.7% 31.2% 
  0% 0% 0% 
  0.1% 0% 0% 
Good leverage points Correct fit over fit under fit wrong fit 4.4% 45.6% 56.9% 
  95.6% 54.4% 43.1% 
  0% 0% 0% 
  0% 0% 0% 
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Table 2. Stack loss data set 
x1 x2 x3 y 
80 27 89 42 
80 27 88 37 
75 25 90 37 
62 24 87 28 
62 22 87 18 
62 23 87 18 
62 24 93 19 
62 24 93 20 
58 23 87 15 
58 18 80 14 
58 18 89 14 
58 17 88 13 
58 18 82 11 
58 19 93 12 
50 18 89 8 
50 18 86 7 
50 19 72 8 
50 19 79 8 
50 20 80 9 
56 20 82 15 
70 20 91 15 

 
Table 3. Result ariable selection of Stack Loss data 

Selected variables R2 2Rρ  2
LTSR  

x1 0.85 0.9 0.73 
x2 0.77 0.21 0.32 
x3 0.16 0.55 0.32 
x1,x2 0.90 0.83 0.77 
x1,x3 0.85 0.79 0.72 
x2,x3 0.77 0.22 0.34 
x1,x2,x3 0.91 0.83 0.76 

 

6. CONCLUSION 

Since the classical  R2 shows extreme sensitivity to 
outliers, we studied the   2

LTSR  statistic in relation to 

Least Trimmed Squares (LTS) regression estimator of 
scale. Through calculating the influence functions of 

2
LTSR we show that it is bounded and not sensitive to 

outliers or bad leverage point. We evaluated our method 
using both simulated and real data sets and compared its 
performance withthe classical method as well as 

2
MR proposed by Croux and Dehon (2003). According to 

this study, the performance of 2LTSR is better and more 

stable than the other methods. This study focused on the 
R2 variable selection criteria; one might be interested to 
extend other robust model selection criteria to advanced 
robust breakdown point estimation methods, such as, 
Mallows'Cp criterion. 
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