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ABSTRACT 

The concept of length biased distribution can be employed in development of proper models for lifetime data. 
Its method is adjusting the original probability density function from real data and the expectation of those 
data. This adjustment can bring about to correct conclusions of models. Therefore, we introduced the Length 
Biased Beta-Pareto (LBBP) distribution, so-called a new generalized of Pareto distribution in this article. The 
distribution is more flexible and has some interesting properties such as hazard rate, Renyi and Shannon 
entropies and other types of distribution. There are several sub-models include in the length biased Pareto, 
arcsine, log-beta, exponential and beta-Pareto distributions. We apply maximum likelihood estimation to 
estimate parameters of the distribution. We illustrate the superiority of the LBBP distribution to Norwegian 
fire claims data. The LBBP distribution seems to be the most appropriate model for this data set, since it 
provides a significantly better fit than the length biased Pareto and the beta-Pareto distributions. We hope that 
the LBBP distribution is an alternative distribution can be used in lifetime data analysis and other fields. 
 
Keywords: Length Biased Beta-Pareto Distribution, Hazard Rate, Renyi and Shannon Entropies, Maximum 

Likelihood Estimation, Lifetime Data 

1. INTRODUCTION 

The problem of determining proper model for 
interested information are one thing that important for 
data analysts. One major benefit of the weighted 
distribution theory provides a unifying approach for 
these problems was proposed by Rao (1965). It is ability 
of fitting skewed data that will not be properly fitted by 
existing distributions. Many authors including the 
concept of weighted distribution for example; Patil and 
Rao (1978) examine some general models leading to 
weighted distributions with weight functions not 
necessarily bounded by unity and studied length biased 
(size biased) sampling with applications to wildlife 
populations and human families. Characteristics of many 
length biased distributions, preservation stability results 
and comparisons for weighted and length biased 
distributions were presented; (Khattree, 1989; 
Oluyede and George, 2002). 

Probability weighted moment inequalities and 
variability orderings for weighted and unweighted 
reliability measures and related functions were 
presented by Oluyede (2006). Also, stochastic 
comparisons and moment inequalities were given. More 
recently, Das and Roy (2011) developed the length 
biased form of the weighted Weibull distribution and 
discussed various properties of it. The result of this 
distribution suggested a good fitted to consecutive 
years data. Further, Ahmed et al. (2013) presented the 
class of size biased generalized gamma distribution and 
derived Shannon entropy which is the measure of the 
uncertainty in this distribution. Alkarni (2012) 
introduced lifetime class with decreasing failure rate by 
compounding truncated logarithmic distribution with any 
proper continuous lifetime distribution. 

Statistical models and methods for lifetime data 
analysis are extensively used in many fields, including 
the biomedical sciences, engineering and management; 
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(Lawless, 2011). The Pareto distribution is broadly used 
to modelling a diverse range of lifetime observable 
phenomena. Many transformations and generalization of 
the Pareto distribution have been proposed in order to get 
more flexible models; (Newman, 2005; Ali and 
Nadarajah, 2006; Manas, 2011; Nassar and Nada, 2013). 
Moreover, Johnson et al. (1995) and Nadarajah (2005) 
discussed other types of Pareto distribution more than the 
Probability Density Function (PDF) of Pareto density. 
Different methods may be used to introduce a shape 
parameter to the Pareto model. 

Recently, The Beta-Pareto (BP) distribution was 
introduced by Akinsete et al. (2008). It is a continuous 
distribution that is found to be unimodal and reduces to 
some existing distributions that are known in the literature. 
A random variable (r.v.) X has a BP distribution if its PDF 
with parameters α, β, θ and γ as follows Equation (1): 
 

α-1-γ -γβ-1
γ x x

f(x) = 1- ,x θ;α,β,θ,γ > 0
θB(α, ) θ θ

     ≥    β      
 (1) 

 
Where: 
 

( ) ( ) ( )
( )

Γ α Γ β
B α,β =

Γ α +β
 

 
It is easy to prove the mean of PDF in (1) follows 

form Equation (2): 
 

( ) ( ) ( )
( ) ( )

θΓ α +β Γ β -1 / γ
E X =

Γ β Γ α +β -1 / γ
 (2) 

 
The rth moments of X is given by Equation (3): 

 

( ) ( )
( )

r r B α,β - r / γ
E X = θ , r =1,2,3,...

B α,β
 (3) 

 
The BP distribution can be applied to some 

phenomena events flood data sets, it provides a 
significantly better fit than the Pareto, Weibull and 
generalized Pareto distributions. 

In this work, we propose a new distribution which is 
called the Length Biased Beta-Pareto (LBBP) 
distribution. The article is outlined as follows: In Section 
2, we introduce the LBBP distribution and illustrate 
some sub-models of distribution and provide plots of the 
density function. We investigate some mathematical 
properties are the hazard rate of distribution and devoted 

to the discussion on the rth moments. Rényi and Shannon 
entropies are discussed in this section. Maximum 
Likelihood Estimation (MLE) is addressed in Section 3 
and we provide application of the LBBP distribution to 
real data set in this section and discussion in Section 4. 
Finally, we offer some concluding remarks on the main 
results and their significance. 

2. MATERIALS AND METHODS 

2.1. Length Biased Beta-Pareto Distribution 

This section, we derived the shape of the PDF for the 
LBBP distribution and consider its some sub-models. 

Definition 1: 

Let X be a nonnegative r.v. with PDF f(x) and 
assuming that E(X)<∞. Then the PDF fL(x) for a length 
biased distribution of X can be obtained by: 
 

( )
( )L

xf x
f (x) =

E X
 

Theorem 1: 

Let X~LBBP(α,β,θ,γ). The PDF and Cumulative 
Distribution Function (CDF) of X are given 
respectively as Equation (4): 
 

α-1-γ -γβ

L

γ x x
f (x) = 1- ,

θB(α, -1 / ) θ θ

x θ;α,β,θ,γ > 0

    
    β γ      

≥

 (4) 

 
And Equation (5): 

 
( )
( ) ( )-γ

L

B z;β -1 / γ,α
F (x) =1- ,z = x /θ

B α,β -1 / γ
 (5) 

 
Proof:  

Substitute (1) and (2) in Definition 1, then PDF for 
LBBP r.v. can be obtained: 
 

( )
( ) ( )
( ) ( )

( )

α-1-γ -γβ-1

L

α-1-γ -γβ

γx x x
1-

θB α,β θ θ
f (x) =

θΓ α +β Γ β -1 / γ

Γ β Γ α +β -1 / γ

γ x x
= 1-
θB α,β -1 / γ θ θ

    
    

     

    
    

     
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By setting y = (x/θ)-γ in (4), it is not difficult to show 

that ( )Lf x  dx  1
∞

θ
=∫ . If X has PDF as (4), we shall write 

X~LBBP(α,β,θ,γ). 
The CDF of LBBP r.v., denoted as FL(x), can be 

rewrite as FL(x) = 1-F*
L(x), then, F*L(x) for PDF in (4) is: 

 

( )

α-1-γ -γβ
*
L

x

γ t t
F (x) = 1- dt, t θ

θB α,β -1 / γ θ θ

∞      ≥    
     

∫  

 
By setting y = (t/θ)-γ, 0<y<1, the above integration 

becomes: 

 

( ) ( ) ( )
( )

1z β- -1
α-1* γ

L

0

B z;β -1 / γ,α1
F (x) = 1- y y dy =

B α,β -1 / γ B α,β -1 / γ∫  

 
B(z;β-1/γ,α) is an incomplete beta function with z = 

(x/θ)-γ, 0<z<1, defined by: 
 

( ) ( ) ( )
( )( ) ( )

( )

β-1/γ

n

1 1-α
B z;β -1 / γ,α = z + z

β -1 / γ β -1 / γ +1

1-α 2 -α ... n -α
         + ... + Z + ...

n! β -1 / γ + n








    

 

 
Therefore: 

 

( )
( )L

B z;β -1 / γ,α
F (x) =1-

B α,β -1 / γ
 

 
We display the graphs of the LBBP distribution in 

some parameters values of α, β and γ in Fig. 1. Due to 
the fact that, γ and β are direct variation, but θ reverse 
variation with behavior kurtosis in these graphs. 

We consider some sub-models of the LBBP 
distribution in the following corollaries.  

Corollary 1:  

If α = β = 1 it is easy to show that the LBBP 
distribution reduces to the Length Biased Pareto (LBP) 
distribution (Patil and Rao, 1978) with PDF:  

 

( ) -1

L

-1
f (x) , x ; 0, 1

x

γ

γ

γ θ
= ≥ θ θ > γ >  

Corollary 2:  

If X~LBBP(α = 1/2,β = (1/2)+(1/γ),θ,γ), then the r.v. 
Y = (X/θ)-γ, the LBBP distribution transform to arcsine 
distribution with PDF: 
 

( )
1

f (y) , 0 y 1
y 1-y

= < <
π

 

 
Proof: 

Using a transformation method, we can show that r.v. 
Y has the PDF as follows:  
 

1 1 11 + -1--1
2 γ γ2

1 1
- -
2 2

γ -θ
f(y) = (1- y) y y

γ1 1 1 1
θB , + -

2 2 γ γ

(1-y) y 1
1 1 y(1-y)
2 2

 
 
 

= =
    πΓ Γ   
   

 

 
Corollary 3:  

If X~LBBP(α,β,θ,γ), then Y = βln(X/θ) has the log-
beta distribution (Dufresne, 2007), with parameter α, γ/β 
and γ-(1/β) with PDF Equation (6): 
 

( )

α-1 1-γy - γ- y
ββγ

f(y) = 1- e e , 0 < y < 1
βB α,β -1 / γ

 
 
 

 
  
 

 (6) 

 
Proof:  

By a method of transformation, it shows that:  

 

( )

( )

y
α-1-γy -γβy β

β β

α-1 1-γy - γ- y
ββ

γ θe
f(y) = 1- e e

B α,β -1 / γ β

γ
= 1- e e
βB α,β -1 / γ

 
 
 

 
  θ  

 
  
 

 

 
Therefore, f(y) can be obtained by setting a = α, b = 

γ/β and c = γ-(1/β), as: 

 

( ) ( )a-1-by -cyb
f (y) 1-e e

B a,c / b
=  
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Fig. 1. The PDF of LBBP r.v. X for θ = 4 of some values of α and β = γ 
 
Corollary 4: 

If X~LBBP(α = 1,β,θ,γ), then Y = βln(X/θ) is 
follows exponential distribution with mean 1/[γ-(1/β)]: 

 
1

- - y1
f (y) - e , 0 y 1

 γ β  = γ < < β 
 

 
Proof: 

By setting α = 1 in (6), the result follows that. 

Corollary 5:  

If X~LBBP(α,β = b-(1/γ),θ,γ), then the LBBP 
distribution  transfer  to  the  BP distribution 
(Akinsete et al., 2008) with PDF: 

 

( )

-1- - b-1
x x

f (x) 1- ,x ; ,b, , 0
B ,b

αγ γ γ    = ≥ θ α θ γ >    θ α θ θ     
 

 
2.2. Other Types of LBBP Distribution 

Let X has the LBBP distribution. The PDF of LBBP 
type II, III and IV are, respectively, given by: 

( ) ( )

( )
( ) ( ) ( )

α-1-a -aβ-1

II

α-1 β
-bx -bx

III a a

ax / C x x
f x = 1- 1+ 1+

θB α,β -1 / γ C C

x b + a / x + C Ce Ce
f (x) = 1-

θB α,β -1 / γ x + C x + C

    
    

     

         
      

 

 
and: 
 

( )
1/λ-1

IV

α-1-ξ -ξβ-11/λ 1/λ

xξ x -µ
f (x) =

λθσB α,β -1 / γ σ

x -µ x -µ
            × 1- 1 1+

σ σ

  
  
   

        +       
           

 

 
Since, the PDF of LBBP distribution in (4) is 

originated (Eugene et al., 2002): 
 

( ) [ ] ( ) ( )-1-1

L

x
f (x) F(x) 1-F x F' x

B , -1 /

βα=   θ α β γ
 

 
2.3. Hazard Rate  

Hazard rate (or failure rate) and survival function 
are extensively apply in many fields. For instance; the 
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trivariate hazard rate function of trivariate liftime 
distribution was presented by Wahyudi et al. (2011). 

By definition, the hazard rate of X is given by: 
 

( ) ( )
( )

f x
h x

1-F x
=  

 
where, f(x) and F(x) are PDF and CDF of X, 
respectively. Using (4) and (5), the hazard rate of the 
LBBP distribution may be expressed as: 
 

( ) ( )

( ) ( ) ( )
( )

α-1-γ -γβ

α-1-γ

-γ

-γn

γ x x
h x = 1-

θB z;β -1 / γ,α θ θ

γ x
1-

x θ
h(x) =

1 1-α x
+ + ...

β -1 / γ β +1-1 /γ θ

1-α 2 -α ... n -α x
+ + ...

n! β + n -1 /γ θ

    
    

     

  
  

   

  
  

 

 
 

  

 

 
We display some graphs of hazard rate for the 

LBBP distribution in Fig. 2. It is noted that by setting 
α = β = 1 in h(x), we have the hazard rate of the LBP 
distribution. 

2.4. Moments of LBBP Distribution 

The result of this section gives the rth moments of the 
LBBP distribution. Some of the most important 
mathematical properties of distribution can be studied 
through rth moments. 

Definition 2: 

Let X be a nonnegative r.v. with the rth moments, 
E(Xr)<∞. Then the EL(X

r) for length biased distribution 
of X can be obtained by: 
 

( )
( )

r 1

r
L

E X
E (X ) , r 1,2,3,...

E X

+

= =  

 
Theorem 2: 

Let X~LBBP(α,β,θ,γ). The rth moments of X is 
given by Equation (7): 
 

( )( ) ( )
( )( ) ( )

r r
L

Γ β - r +1 / γ Γ α +β -1 / γ
E (X ) = θ ,

Γ α +β - r +1 / γ Γ β -1 / γ

α,β,θ,γ > 0; r = 1,2,3,...

 (7) 

Proof:  

If X~LBBP(α,β,θ,γ), it is easy to find the rth 
moments of X, By replacing (2) and (3) in Definition 2, 
then EL(X

r) is obtained as follows: 
 

( )( )
( )

( )( ) ( )
( )( ) ( )

r r
L

r

B α,β - r 1 / γ
E (X ) = θ

B α,β -1 / γ

Γ β - r 1 / γ Γ α +β -1 / γ
            =θ

Γ α +β - r 1 / γ Γ β -1 / γ

+

+
+

 

 
From (7), it is simple to deduce mean and variance 

of X which are given in (8) and (9) respectively 
Equation (8 and 9): 
 

( ) ( )
( ) ( )L

Γ β - 2 / γ Γ α +β -1 / γ
E (X) = θ

Γ α +β - 2 / γ Γ β -1 / γ
 (8) 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2

2

Γ β - 3 / γ Γ α +β -1 / γ
Var(X) = θ

Γ α +β - 3 / γ Γ β -1 / γ

Γ β - 2 / γ Γ α +β -1 / γ
-
Γ α +β - 2 / γ Γ β -1 / γ

 
 
 

  
 

  

 (9) 

 

We let ω(α,β,γ;i)= 
( ) ( )
( ) ( )
Γ β - i / γ Γ α +β -1 / γ

,
Γ α +β - i / γ Γ β -1 / γ

β>i/γ, i∈I+ 

and ( ) ( )2T , , ;3 - , , ;2= ω α β γ ω α β γ . So, the skewness and 

kurtosis are independent from parameter θ as follows 
Equation (10 and 11): 
 

( ) ( ){
( ) ( )}

-3 3Skewness(X) = T ω α,β,γ;4 - 2ω α,β,γ;2

      - 3ω α,β,γ;3 ω α,β,γ;2
 (10) 

 
( ) ( ){

( ) ( )
( ) ( )}

4 4

2

Kurtosis(X) T , , ;5 -3 , , ;2

-4 , , ;4 , , ;2

+6 , , ;3 , , ;2

−= ω α β γ ω α β γ

ω α β γ ω α β γ

ω α β γ ω α β γ

 (11) 

 
We furnish Table 1 which contains the mean in (8), 

variance in (9), skewness in (10) and kurtosis in (11) for 
diverse values of parameters. From Table 1, we examine 
the mean is closed to θ, the mean and variance are 
increasing functions of α and θ, but are decreasing 
functions of β and γ. Moreover, the skewness and 
kurtosis are decreasing functions of α, β and γ. 
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Fig. 2. The hazard rates of LBBP r.v. X for β = γ = 2, θ = 4 and some values of α 

 
Table 1. Mean, variance, skewness and kurtosis of the LBBP distribution for different values of α, β, γ and θ 

β α γ θ Mean Variance Skewness Kurtosis 
2.0 0.75 5.0 2.0 2.1973 0.0647 3.2558 23.2135 
   5.0 5.4932 0.4043 
  10.0 2.0 2.0879 0.0113 2.6575 14.6414 
   5.0 5.2197 0.0705 
 5.0 5.0 2.0 2.7642 0.2165 2.0084 11.6366 
   5.0 6.9105 1.3532 
  10.0 2.0 2.3303 0.0315 1.4673 7.0239 
   5.0 5.8257 0.1971 
7.5 0.75 5.0 2.0 2.0428 0.0026 2.4881 12.7552 
   5.0 5.1071 0.0161 
  10.0 2.0 2.0209 0.0006 2.3931 11.7955 
   5.0 5.0521 0.0037 
 5.0 5.0 2.0 2.2356 0.0130 1.1224 5.1367 
   5.0 5.5891 0.0814 
  10.0 2.0 2.1126 0.0028 1.0196 4.6838 
   5.0 5.2814 0.0173 

 

2.5. Rényi and Shannon Entropies 

Statistical entropy is a probabilistic measure of 
ignorance about the outcome of a random experiment 
and is a measure of a reduction in that uncertainty. 
Entropy of X with PDF f(x) is a measure of variation 
of the uncertainty (Nadarajah and Kotz, 2006).  

Rényi entropy is defined by Equation (12): 
 

R

1
I ( ) log f (x)dx

1-
ξ ξ =

 ξ ∫  (12) 

 
where, ξ>0 and ξ≠1 for the PDF of LBBP distribution in 
(4) is given by: 
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( )

( )-1- -

L

x x
f (x)dx 1- dx

B , -1 /

ξ αγ ξγβ∞ ∞ξ
ξ

ξ
θ θ

 γ    =     θ θ   θ α β γ      
∫ ∫  

 
Substituting y = 1-(x/θ)-γ, it is not intricate to show that: 

 

( )( )
( )

-1

L

B -1 1, -1 /
f (x)dx

B , -1 /

ξ∞
ξ

ξ
θ

ξ α + ξβ γγ =  θ α β γ 
∫  

 
The Rényi entropy can be written as Equation (13): 

 

( ) ( )( )
( )R

B -1 1, -1 /1
I log log

1- B , -1 /ξ

 ξ α + ξβ γ θξ = +   γ ξ α β γ    
 (13) 

 
Shannon entropy can be obtained as E[-log f(X)]. It is 

the special case of (12) for ξ→1, is given by: 
 

( ) ( )R1

lim
E -logf X Iξ→= ξ    

 
Limiting ξ→1 in (13) and using L’Hospital’s rule, the 

Shannon entropy can be expanded as: 
 

( ) ( ) ( )

( ) ( ) ( )

LE -logf (X) log - -1 - -1 /

-1 -1 / log B , -1 /

 θ
  = α Ψ α βΨ β γ   γ 

+ α + β Ψ α + β γ + α β γ
 

 
where, Ψ(z) = Γ′(z)/Γ(z) is a digamma function. 

3. RESULTS 

3.1. Parameters Estimation 

The estimation of parameters for the LBBP 
distribution via the MLE will be discussed. Let X1,...,Xn 
be a random sample from X~LBBP(α,β,θ,γ) the likelihood 
function is given by: 
 

( ) ( )

-1- -
n

j j

j 1

x x
L x; , , , 1-

B , -1 /

αγ γβ

=

     γ α β θ γ =      θ α β γ θ θ       

∏  

 
With corresponding log-likelihood function 

Equation (14): 
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The maximum likelihood estimate of θ̂  is the first-
order statistic x(1). The first order conditions for 
finding the optimal values of the parameters obtained 
by differentiating in (14) with respect to α, β and γ 
give rise to the following differential Equation (15 
and 16): 
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and Equation (17): 
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The maximum likelihood estimates α̂ , β̂  and γ̂ , 

respectively, are taken by solving iteratively (15)-(17) 
to zero. These differential equations are not in close 
form, a numerical method can be employed to obtain 
the expectations of them. 

3.2. Application of LBBP Distribution 

In this section, the LBBP distribution is fitted to a 
real  data   set,  we  consider  the  data  set  in  the 
field of insurance which has received extensive 
attention  in  the  actuarial  literature.  This  data  set 
is  one among the twenty sets of Norwegian fire 
claims  (in  millions of Norwegian krones) is 
presented in Fernandez (2013). The parameter 
estimation   for  Norwegian  fire  claims  data  and K-
S  statistics  are  shown  in  Table 2. In this case, 
since  the  values  of  the  K-S  statistics are smaller 
for  the LBBP distribution compared to those values 
of the LBP and BP distributions. 
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Table 2. Parameter estimates and K-S statistics for Norwegian 
fire claims data 

Distribution LBP BP LBBP 

Parameter ˆ 0.5θ =  ˆ 0.5θ =  ˆ 0.5θ =  
estimates ˆ 2.2175γ =  ˆ 169.1104γ =  ˆ 113.9502γ =  

  ˆ  0.3183α =  ˆ 0.3703α =  

  ˆ  0.0069β =  ˆ 0.0190β =  

K-S statistics 0.0505 0.0444 0.0425 
p-value 0.862 0.942 0.959 

 
4. DISCUSSION 

The LBBP distribution is consequence of length 
biased distribution method which is a new generalized of 
Pareto distribution. In this study, the LBBP distribution 
found that it provides a significantly better fit than the 
LBP and BP distributions which are some sub-models of 
the LBBP distribution. As well as the research of 
Mahmoudi (2011) found the beta generalized Pareto 
distribution using the exceedances of flood peaks of the 
Wheaton River near Carcross in Yukon Territory, 
Canada provides a better fit than sub-models of it. 
Furthermore, the result of this study consistent with the 
findings of Das and Roy (2011), the length biased 
Weibull distribution provided fit to data of June rainfall 
in Tezpur Assam, India better than its sub-models. 

5. CONCLUSION 

We proposed the Length Biased Beta-Pareto (LBBP) 
distribution. We found some well-known sub-models such 
as; LBP, arcsine, log-beta, exponential, BP distributions 
and LBBP type II, III and IV. Rényi and Shannon 
entropies and hazard rate are provided. We derive the rth 
moments and apply MLE to estimate parameters of the 
distribution. An application to a real data set shows that 
the fit of the LBBP distribution is best fit to the data with 
highest p-value. We hope the LBBP distribution may 
attract extensive applications in lifetime data analysis and 
other fields. The future research may consider in 
parameter estimation using Bayesian or other approaches. 
In addition, a new mixture between the LBBP and BP 
distributions will be developed. 
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