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ABSTRACT

The concept of length biased distribution can bpleyed in development of proper models for lifetideta.
Its method is adjusting the original probabilityndiy function from real data and the expectatibithose
data. This adjustment can bring about to correatlasions of models. Therefore, we introduced thadth
Biased Beta-Pareto (LBBP) distribution, so-calletes generalized of Pareto distribution in thiscéet The
distribution is more flexible and has some inténgsiproperties such as hazard rate, Renyi and $hann
entropies and other types of distribution. Thew several sub-models include in the length biaseet®,
arcsine, log-beta, exponential and beta-Paretaildisbns. We apply maximum likelihood estimatiom t
estimate parameters of the distribution. We ilatstrthe superiority of the LBBP distribution to Megian
fire claims data. The LBBP distribution seems totlhe most appropriate model for this data set,esihc
provides a significantly better fit than the lengiased Pareto and the beta-Pareto distributiorshdye that
the LBBP distribution is an alternative distributican be used in lifetime data analysis and othkeist

Keywords: Length Biased Beta-Pareto Distribution, HazardeRBenyi and Shannon Entropies, Maximum
Likelihood Estimation, Lifetime Data

1. INTRODUCTION Probability weighted moment inequalities and
variability orderings for weighted and unweighted
The problem of determining proper model for reliability measures and related functions were
interested information are one thing that importéort presented by Oluyede (2006). Also, stochastic
data analysts. One major benefit of the weightedcomparisons and moment inequalities were given.eMor
distribution theory provides a unifying approachr fo recently, Das and Roy (2011) developed the length
these problems was proposed by Rao (1965). ltiisyab  biased form of the weighted Weibull distributiondan
of fitting skewed data that will not be properlytdd by discussed various properties of it. The result laé t
existing distributions. Many authors including the distribution suggested a good fitted to consecutive
concept of weighted distribution for example; Patid years data. Further, Ahmedtl al. (2013) presented the
Rao (1978) examine some general models leading tclass of size biased generalized gamma distribwtiah
weighted distributions with weight functions not derived Shannon entropy which is the measure of the
necessarily bounded by unity and studied lengtedaia uncertainty in this distribution. Alkarni (2012)
(size biased) sampling with applications to wikllif introduced lifetime class with decreasing failuater by
populations and human families. Characteristicenafhy compounding truncated logarithmic distribution wéthy
length biased distributions, preservation stabiliggults proper continuous lifetime distribution.
and comparisons for weighted and length biased Statistical models and methods for lifetime data
distributions were presented; (Khattree, 1989; analysis are extensively used in many fields, idicig
Oluyede and George, 2002). the biomedical sciences, engineering and management
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(Lawless, 2011). The Pareto distribution is broadied to the discussion on the rth moments. Rényi andhiSha

to modelling a diverse range of lifetime observable entropies are discussed in this section. Maximum
phenomena. Many transformations and generalization Likelihood Estimation (MLE) is addressed in Secti®n
the Pareto distribution have been proposed in dadget and we provide application of the LBBP distributitm
more flexible models; (Newman, 2005; Ali and real data set in this section and discussion ini&ed.
Nadarajah, 2006; Manas, 2011; Nassar and Nada).2013Finally, we offer some concluding remarks on thanmma

Moreover, Johnsomt al. (1995) and Nadarajah (2005)
discussed other types of Pareto distribution mioae the
Probability Density Function (PDF) of Pareto densit

results and their significance.

2. MATERIALS AND METHODS

Different methods may be used to introduce a shape

parameter to the Pareto model.

Recently, The Beta-Pareto (BP) distribution was

introduced by Akinsetet al. (2008). It is a continuous
distribution that is found to be unimodal and restuto
some existing distributions that are known in ftexature.
A random variable (r.v.) X has a BP distributioritsfPDF
with parametersi, 3, 0 andy as follows Equation (1):

o a-1 b
Y X X .
GB(a,B){l_(O) } (9) X20;0,8,0,y>0 (1)

Where:

f(x) =

T(o)T(p)

)= arp)

It is easy to prove the mean of PDF in (1) follows
form Equation (2):

_Or(a+p)r(p-1/v)
F(B)F(a+[3-1/y)

E(X) )

The rth moments of X is given by Equation (3):

0 rB(()t,]?»-l’/y) _
E(x)=0 W,r—l,z,&... (3)

The BP distribution can be applied to some
it provides a-BBP r.v. can be obtained:

phenomena events flood data sets,
significantly better fit than the Pareto, Weibulhda
generalized Pareto distributions.

In this work, we propose a new distribution whigh i
called the Length Biased Beta-Pareto
distribution. The article is outlined as follows: $ection
2, we introduce the LBBP distribution and illus&at
some sub-models of distribution and provide pldtthe

density function. We investigate some mathematical

properties are the hazard rate of distribution dexbted
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2.1. Length Biased Beta-Pareto Distribution

This section, we derived the shape of the PDFHer t
LBBP distribution and consider its some sub-models.

Definition 1:

Let X be a nonnegative r.v. with PDF f(x) and
assuming that E(X)<. Then the PDF {x) for a length
biased distribution of X can be obtained by:

xt (x)

f
fL(¥) = E(X)

Theorem 1;

Let X~LBBP(a,3,8,y). The PDF and Cumulative
Distribution Function (CDF) of X are given
respectively as Equation (4):

47+t B
S SR E S X

fL(X)'eB(a,B-llv)[l (eH (e) ’ )

X20;0,8,0,y>0

And Equation (5):

3 B(Z;B-l/y,a) _ 4

FL(X)_l_iB(a,B-lly) .2=(x10) (5)
Proof:

Substitute (1) and (2) in Definition 1, then PDF fo

X
1.0 = 2P

T

)
0T (a+p)T(B-1/y)
L(B)T(a+p-1/v)

a-1

RollGh

_ Y
0B (. B-1/7)
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By setting y = (@)Y in (4), it is not difficult to show  Corollary 2:

that J:fL(X) dx = 1. If X has PDF as (4), we shall write If X~LBBP(a = 1/2B = (1/2)+(1§),8.,y), then the r.v.

X~LBBP(a,B,6,y). Y = (X/8)", the LBBP distribution transform to arcsine
The CDF of LBBP r.v., denoted as(®), can be  distribution with PDF:

rewrite as F(x) = 1-F (), then, F (x) for PDF in (4) is:

e ” [t 47+t t 1B
FE(X)“!@B(a,B-llv){l (GH (ej a0

By setting y = ()7, O<y<1, the above integration

1
f(y) =—==.0<y<1
(2-y)

Proof:

Using a transformation method, we can show that r.v
Y has the PDF as follows:

becomes:
l-l 1.1 9 1=
2 : fy) = ——T < (L-y)2 Y2 |y
1 w1 o1 B(zp-1/y,
0= o (L) y oy = 2R ) og[1 2,11 1
2B(a.B-1/7) B(a.B-1/v) 2'2 v vy
1 1
B(z;3-1/,0) is an incomplete beta function with z = - ayty 1
e - T (0 (1) nlyay)
(x/8)", 0<z<1, defined by: F[Ejr[ﬁj WYy(Y)
1 1l-a .
B(z,p-1/y,0)=2"" + z Corollary 3:
(z:p-1/7.a) {([3-1/y) (p-1/y)+1
If X~LBBP(a,3,8,y), then Y =BIn(X/0) has the log-
+ ,+(1'a)(2'a)"'(n'a) ya +,,} beta distribution (Dufresne, 2007), with parametey/3

n[(B-1/7)+n] andy-(1/) with PDF Equation (6):

Therefore: v\ {2

fly)= —————|1-ef | e P 0<y<1 6
) BB(a’ﬁ_lly){ ] y (6)
FL(X)zl_B(Z,B-l/y,a)
B(op-1/7) Proof:

. . . B thod of t f tion, it sh that:
We display the graphs of the LBBP distribution in y @ method ot transformation, It Shows tha

some parameters values @f3 andy in Fig. 1. Due to

the fact thaty andf3 are direct variation, bl reverse ¥ " by ee%
variation with behavior kurtosis in these graphs. fly) = %(aﬁ_l/)(l'eﬁ J e’ 5
We consider some sub-models of the LBBP ’ !
distribution in the following corollaries. . y\t _[Y_;)y
=—F—_|1-e" | &°F
Corollary 1: BB(a,B-l/y)( ]
If a =p =1itis easy to show that the LBBP
distribution reduces to the Length Biased Pare®P(L Therefore, f(y) can be obtained by setting a,= =
distribution (Patil and Rao, 1978) with PDF: v/B and ¢ =y-(1/B), as:
1 a-1
fL(X) - (y_])'()yev x> 9,9>0,y>1 f(y) :m(]_-e'bY) e¥
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0=05.p=y=2.0
0=10.p=y=2.0
-a=3.0,p=y=15
~a=3.0,p=y=2.0
a=3.0,p=y=25
e
4 5 6 7 8 9 10 11

Fig. 1. The PDF of LBBP r.v. X foB = 4 of some values af andp =y

a-1

Corollary 4:

a -1

f (x):axilc 1_[1+fj (1 j

If X~LBBP(a = 1B,0,y), then Y = BIn(X/0) is ! 0B(a.p-1/7) C C
follows exponential distribution with mean A[1/B)]: ! o T
f|||(X)=X[b+a/(x+q]lil-(ce ‘| [( ce ‘|

0B(ap-1/7) x+C)* x+C)°

f(y) =(v—é]e{y_é)y. O<y<1

and:
Proof: XE -\
. . fv® =~ ( j
By settinga = 1 in (6), the result follows that. 100B(a.p-1/7)|\ o
) )t P
Corollary 5: 1{ }(X'”jm} { 1{)('”]1“}
If X~LBBP(a, = b-(14),8,y), then the LBBP ° °
distribution  transfer to the BP distribution
(Akinseteet al., 2008) with PDF: Since, the PDF of LBBP distribution in (4) is
originated (Eugenet al., 2002):
-y a-1 yb-1
=G ij } (5] xzeaveyo 00 = X R 1R ()
GB(a,b) [§] 0 L GB(G,B-J./V)
2.2. Other Types of LBBP Distribution 2.3. Hazard Rate

Let X has the LBBP distribution. The PDF of LBBP Hazard rate (or failure rate) and survival function
type Il, lll and IV are, respectively, given by: are extensively apply in many fields. For instanites
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trivariate hazard rate function of trivariate lifte
distribution was presented by Wahywtlial. (2011).
By definition, the hazard rate of X is given by:

where, f(x) and F(x) are PDF and CDF of X,
respectively. Using (4) and (5), the hazard ratehef
LBBP distribution may be expressed as:

-1

M[l[e” b
fuol
EnrEroR

0(e-e)-{rea) ()" }

ni(B+n-1/y) (6

h(x)

h(x) =

We display some graphs of hazard rate for the

LBBP distribution inFig. 2. It is noted that by setting

a =B =1in h(x), we have the hazard rate of the LBP

distribution.
2.4. Moments of LBBP Distribution

The result of this section gives the rth momentthef
LBBP distribution. Some of the most important
mathematical properties of distribution can be istd
through rth moments.

Definition 2:

Let X be a nonnegative r.v. with the rth moments,

E(X")<w. Then the EX") for length biased distribution
of X can be obtained by:

Theorem 2:

Let X~LBBP(@,3,8,y). The rth moments of X is
given by Equation (7):

(B-(r +1) /y)F(a+B-1/«{)
T(a+p-(r+1)/y)r(p-1/v)’
a,p,0,y>0; r=1,2,3,...

el'
B = @)

53
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Proof:

If X~LBBP(a,B3,8,y), it is easy to find the rth
moments of X, By replacing (2) and (3) in Definiti@,
then E(X") is obtained as follows:

B(ap-(r+1)/v)

(aﬁ 1/7)
( r+1 /y)F(a+]3 1/y
Fla+p-(+) ) (p-177)

E (X')=0"

From (7), it is simple to deduce mean and variance
of X which are given in (8) and (9) respectively
Equation (8 and 9):

F(B-Z/y)l"(aﬂ}-l/y)

B =0 (T p -2 (-1/) ®
_ 2 )| T(B-3/y)T (a+B-17y)
var( =0 {F(a+[3-3/y)l"([3-1/y)}
) )
_{F(B-Zly)l‘(a+ﬁ-l/y)}
F(a+[}-2/y)F(B-l/y)
We leto(apyi= B/ OT(B-Ly) ooy e

T(a+p-i/y)T(B-1/7)
and T:\/w(U,B.V;?:)-wZ(G,B,V;Z). So, the skewness and

kurtosis are independent from parameieas follows
Equation (10 and 11):

Skewness(X) = 'F{(u(a,B,y;4) -20%(a,B,v;2)

10
- (.8, 7:3) 0 (0., 7:2)} 4o

Kurtosis(X)= T*{w(a By:9 -3 (a By ;3
-4w(a,B.y;4)w(a By;d (11)

+60(a,B.y; Y’ (a va;a}

We furnishTable 1 which contains the mean in (8),
variance in (9), skewness in (10) and kurtosislit) for
diverse values of parameters. Frodable 1, we examine
the mean is closed t6, the mean and variance are
increasing functions ofn and 6, but are decreasing
functions of B and y. Moreover, the skewness and
kurtosis are decreasing functionsoofi andy.
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X
Fig. 2. The hazard rates of LBBP r.v. X ffr=y = 2,6 = 4 and some values of

Table 1. Mean, variance, skewness and kurtosis of the LBB®ibution for different values af, B, y ando

B o y 0 Mean Variance Skewness Kurtosis
2.0 0.75 5.0 2.0 2.1973 0.0647 3.2558 23.2135
5.0 5.4932 0.4043
10.0 2.0 2.0879 0.0113 2.6575 14.6414
5.0 5.2197 0.0705
5.0 5.0 2.0 2.7642 0.2165 2.0084 11.6366
5.0 6.9105 1.3532
10.0 2.0 2.3303 0.0315 1.4673 7.0239
5.0 5.8257 0.1971
7.5 0.75 5.0 2.0 2.0428 0.0026 2.4881 12.7552
5.0 5.1071 0.0161
10.0 2.0 2.0209 0.0006 2.3931 11.7955
5.0 5.0521 0.0037
5.0 5.0 2.0 2.2356 0.0130 1.1224 5.1367
5.0 5.5891 0.0814
10.0 2.0 2.1126 0.0028 1.0196 4.6838
5.0 5.2814 0.0173
2.5. Rényi and Shannon Entropies Rényi entropy is defined by Equation (12):

Statistical entropy is a probabilistic measure of 1 ; 12
ignorance about the outcome of a random experiment'R(E) 'EIOQUf (X)dXJ (12)
and is a measure of a reduction in that uncertainty

Entropy of X with PDF f(x) is a measure of variatio where,£>0 andé#1 for the PDF of LBBP distribution in
of the uncertainty (Nadarajah and Kotz, 2006). (4) is given by:
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a-1)

o o &
!ff(x)dx_[es (a,B17y) *I{ [ ) } (5) o

Substituting y = 1-(8)”, it is not intricate to show that:

° “B(&(a-1) + LEB-1/y)
£ =Y
!fL(X)dX '(e) B (a,p-17y)

The Rényi entropy can be written as Equation (13):

1= (8) =Iog[3] +1,OQ[B(E(G-1) +1,EB-1/y)}

1€ B*(a,B-1/y) 13)

Shannon entropy can be obtained as E[-log f(X)f It
the special case of (12) f§~1, is given by:

lim

)= 1= ()

E[-logf(X

Limiting &—1 in (13) and using L’Hospital’s rule, the
Shannon entropy can be expanded as:

E[ -logf, (X) |= |og[3j-(a-1)w(a) BY(B-1ly)
+(a-1+B)W(a +B-1/y) + log B(a B-11y)
where,W(z) ="' (2)/l (z) is a digamma function.
3. RESULTS

3.1. Parameters Estimation

The estimation of parameters for the LBBP
distribution via the MLE will be discussed. Let, X, X,
be a random sample from X~LBBER,0,y) the likelihood
function is given by:

L(xa.B.8,y)= I'j {es(aygl/y){l();” [XSJW}

With  corresponding log-likelihood function
Equation (14):
1nL(.B,6,y)=nlny-nlr-nln (a)-nlnC(B-1/y)
+nlrf(a+[3-1/y)-y[3iln(>;j] (14)
=1
n X v
+(a-1) 1nf 14—
= 6
55
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The maximum likelihood estimate df is the first-
order statistic x). The first order conditions for
finding the optimal values of the parameters olsdin
by differentiating in (14) with respect to, B andy
give rise to the following differential Equation §1
and 16):

a%lnL n[\P o +B-1y) W(a )]

] X, v (15)
a%lm_ =n[W(a+B-1ly) W (B-1/y)]

" (% (16)

g
and Equation (17):
(%1nL(X)=$+n[lP(a+B-1/y) (B-1/v)]- ,an“
" (17)

]

The maximum likelihood estimate§, f and ¥,
respectively, are taken by solving iteratively (A3Y)
to zero. These differential equations are not osel
form, a numerical method can be employed to obtain
the expectations of them.

3.2. Application of LBBP Distribution

In this section, the LBBP distribution is fitted #o
real data set, we consider the data settha
field of insurance which has received extensive
attention in the actuarial literature. Thistal set

is one among the twenty sets of Norwegian fire
claims (in  millions of Norwegian krones) is
presented in Fernandez (2013). The parameter

estimation for Norwegian fire claims datadat

S statistics are shown iMable 2 In this case,
since the values of the K-S statistics aralim
for the LBBP distribution compared to those values
of the LBP and BP distributions.
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Table 2. Parameter estimates and K-S statistics for Normvegi earlier version of this manuscript and for manypiriag

fire claims data suggestions.

Distribution  LBP BP LBBP

Parameter =05 =05 =05 7. REFERENCES

estimates ~ §=2.2175 Y:_169~11‘:‘ Y=1139%02 " Ahmed, A., KA. Mir and J.A. Reshi, 2013. On new
o= 0.3182 ?‘0'3703 method of estimation of parameters of size-biased
B= 0.006¢ =0.0190 generalized gamma distribution and its structural

K-S statistics 0.0505 0.0444 0.0425 properties. IOSR J. Math., 5: 34-40.

p-value 0.862 0.942 0.959 Akinsete, A., F. Famoye and C. Lee, 2008. The beta-

Pareto distribution. Statistics, 42: 547-563. DOI:
4. DISCUSSION 10.1080/02331880801983876

Ali, M.M. and S. Nadarajah, 2006. A truncated Paret

The LBBP distribution is consequence of length d|str|but|(_)n. Comput. Commun., 30: 1-4. DOFL
biased distribution method which is a new geneedliaf 10_.1016/].comcom.2006.0_7.003 o
Pareto distribution. In this study, the LBBP distrion A”‘a“_”“ SH 2012. New family of logarithmic |§ene
found that it provides a significantly better fitaih the d'St”bUt'(.)nS' J. Math. Stat, 8: 435-440. DOL.
LBP and BP distributions which are some sub-modgls 10.3844/jmssp.2012.435.440 .
the LBBP distribution. As well as the research of Pas: K_'K' and TD Roy, 2.011.' On some Ien_gth—b|a§ed
Mahmoudi (2011) found the beta generalized Pareto weighted Weibull distribution. Adv. Applied Sci.
distribution using the exceedances of flood pedkh® Res., 2: 465-475. o .
Wheaton River near Carcross in Yukon Territory, Dufresne, D., 2007. Fitting combinations of expdigs
Canada provides a better fit than sub-models of it.  t0 probability distributions. Applied Stochastic
Furthermore, the result of this study consisterthwhe Models  Bus. Ind.,  23: 23-48. DOL
findings of Das and Roy (2011), the length biased  10.1002/asmb.635
Weibull distribution provided fit to data of Junaimfall ~ Eugene, N., C. Lee and F. Famoye, 2002. The beta-

in Tezpur Assam, India better than its sub-models. normal distribution and its applications. Commun.
Statist.-Theory Meth., 31: 497-512. DOI:
5. CONCLUSION 10.1081/STA-120003130

_ Fernandez, A.J., 2013. Smallest Pareto confidence
We proposed the Length Biased Beta-Pareto (LBBP)  regions and applications. Comput. Statist. Data

distribution. We found some well-known sub-modeists Anal., 62: 11-25. DOI: 10.1016/j.csda.2012.12.016

as; LBP, arcsine, log-beta, exponential, BP distidns  johnson, N.L., S. Kotz and N. Balakrishnan, 1995.
and LBBP type II, Il and IV. Rényi and Shannon Continuous Univariate Distributions. 2nd Edn., John
entropies and hazard rate are provided. We deniveth Wiley and Sons, New York, ISBN-10: 0471584940

moments and apply MLE to estimate parameters of the pp: 752.

distribution. An application to a real data setwgfdhat Khattree. R.. 1989. Characterization of inverse<ain
the fit of the LBBP distribution is best fit to thiata with and ,gan;ma distributions through their length-biased

highest p-value. We hope the LBBP distribution may  yisyiputions. IEEE Trans. Reliab., 38: 610-611.

attract extensive applications in lifetime datalgsia and DOI 10.1109/24.46490
other fields. The future research may consider in Lawless. ] F 2011 .Statistical Models and Methiods
parameter estimation using Bayesian or other aphesa Lifetime Data. 2nd Edn., John Wiley and Sons,

In a_ddit?on, a new mixture between the LBBP and BP Hoboken, N.J., ISBN-10: 1118031253, pp: 664.
distributions will be developed. Mahmoudi, E., 2011. The beta generalized Pareto

distribution with application to lifetime data. Mmat
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