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Introduction

We are interested in the product moments of the two
sample variances (S},S;) and sample correlation
coefficient (R) of the bivariate normal distribution, so we
want to derive E (Sf“SZZ" R") for finite a, b, c. One

approach to obtain the product moments of the two
sample variances and the correlation coefficient was
discussed by Joarder (2006), however his results
involves an infinite series that does not consider an
important term, without the missing term, the result of
Joarder (2006) does not work to get some product
moments, for instance, we are not able to get the first
moment of R. Here we expand the result of Joarder
(2006) to derive a more general result.

There are different expressions for moments of R,
Ghosh (1966) and Rady et al. (2005) obtained the first
four moments of R, here we derived a general equation
for any moment of R that do not involves an infinite sum
and it is expressed in terms of the well-known
hypergeometric function.

Let Xi,....X, be iid N,(uX) where X is positive
defined and n > p, the sums of squares and cross product
matrix is given by:

A= Zjﬂ(}(, - X)X, -X)

A, 1s said to have a Wishart distribution with
parameters p, m = n-1 and X(pxp), A~W,(m,X) and the

fY///' Science

% Publications

Abstract: A general result to obtain the product moments of two sample
variances and the sample correlation when the data follow a bivariate
normal distribution is derived; the result is expressed in terms of the
hypergeometric function. As corollaries, two general equations are stated,
one to obtain the moments of the correlation sample and one to obtain the
moments of the ratio of two sample variances. To evaluate the product
moments in short closed forms, three theorems have been established. The
results are used to obtain the expectation and variance for the ratio of two
correlated sample variances. Finally, some examples of particular product
moments are provided and some validations were carried out.

Keywords: Wishart Distribution, Product Moments, Hypergeometric
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Probability Density Function (PDF) is given by
(Anderson, 2003):

(m=p-1) 1
|4 exp[—gtrZ’lA)
(1

f(4)=

mp p(p-1)

27 2 |5 H;FE%(m +1- i))

With, m > p and A4 positive definite.
For p =2 we have the bivariate case with:

Where:

— 2 - 2 — -
a, =mS;,a,, =mS;,a, =mS,, =mrSS,,

S12 is the sample covariance and the joint pdf of a;y,
a» and ay, is given by:

1-p° 7%(00)7"’ m-=3
f(all>a22>a12): ( ) — 1 (anazz _alzz)
ZWHI/ZF(ﬂ)FLm j
2 2

2)

o
2l(A=-pT)o; (A-po, (-poo,
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Product Moments of Sample Variances and w11 - pz)m%
Sample Correlation E[ S} SR ]| = \/_Tof“oj” p
F m a+b
Throughout the paper, we will use the generalized d [ij
hypergeometric function (e.g., Bailey, 1964):
yperg (e.g y ) xl"(m+1+2aJl"(m+l+ZbJF[C+2jF_I[m+1+cj @)
2 2 2
o (@) (@) (a,), 2" m+1+2a m+1+2b c+2 m+l+c 3
Fla,..,a :b,...,b;z)= L F, , , ; =0
P q( 1 P 1 q ) Zk:o (bl)k(bz)k(bq)kk' X} 2( 2 2 2 2 P p]
With: Proof
o B B T(a+k) We use the joint distribution of S7, S; and R given
(a)o—l,(a)k —(a+k 1)(a+k 2) (a+1) Ia) by Joarder (2006):
Some properties of the hypergeometric function m = -m
(Oberhettinger, 1970): f(SZ,SZ,R): m (1—/3 ) 2(00,)
e 47[F(m —1)
b b; 1-2)"¢ m-3
(a Z) (a,,Z) ( Z) > S/n ZSm 2(1 R ) ) (5)
1(a,b;c;z) =(1-z) " 2Fl(c—a,c—b;c;z),
1 msS? mS2 2pmRS,S
d ab xexp| —— 1 + P 192
- 21‘71(a,b;c;z):7 JF(a+1Lb+1Le+1;z) 2| - po} (1 o (1-pHoo,

And the following results: The product moments, for any a, b, ¢ are given by:

\/;F(x+lj E SZaSZbRc _ 1 po °°S2aS2bRc SZ Sz R dSzdSZdR
f zsin“é’dﬁ— 2 y ( 1 =2 )_J.—lj.o J.O 122 f( 158925 ) 160,
i m
2r(5+1J (1= ) 2 (00) i mp)
- k
Jrera=r, D) k(- ) (o)
o SZ
' <[ gmrkraa-2 exp omSy ds?
(Ao -2ty bor el Sy ®
2 24 (k1)1 2%k
J’ Sk -2 ey _ mS; as?
where, I'(.) is the gamma function. 0 2(1 - pz)gzz
Theorem 1 XU‘ Rm(l_Rz)w—s)/z IR
-1

For any finite a, b and c. If ¢ is even, the product
moments of the sample variances and sample correlation,
E(S’“S?’R°) , are given by:

+ jOIR"*“ (1-r%)""

]

The first two integrals of Equation 6 can be
m a+h+f expressed as:
[Szassz O_ZaO_Zb
2

(2% ] ( J 3) I:S{“hz“exp[_z(linfs’i)"f]dﬁ

><lﬂ(m+2a] (m+2b
* +k+2b— Sz
mt2a mt2b ctlmic 1 , xfosg"“”exp[—mmzzszsj
> T2 T2 T2 f (1-¢)e3

:r£k+m +a}l"(k+m +b}
If ¢ is odd are given by: 2 2

x . F.
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-1

m+k m+k b

) )
S EEITET

m+k+a+b m+k+a+b m+k+2a m+k+2b
X" (]~ p?) o}

X(mn1+k+a+b)

To obtain the last two integrals of Equation 6 we use
the beta function:

DOIRW(l R ar R (1- ®)T dR}

:[(—1 ) ]j R (1-r ) " dR

k+c-1

Iw 2 1— 23dw

( 1)k+c

e k+c+1 m—1
:5[(_1)k +1]B( 5 Tj

The product moments are given by the expression:

2a+b 1 2 ‘H[H%
( —r ) 2(10_2})

\/;F(%Jm o
SRR CUR L ™)
( +m j (k+§+ljr,1£k+1;1+c}

To express E[Sf"Szz”R“} in terms of hypergeometric

E[SIZaSZZbRc] _

function we have two cases, if ¢ is even redefine k = 2j

1 2j+c _ .
then 5[(—1) + 1} =1 and:
a+b (1 _ pz )"“”'”*21
\/;l—‘Lﬁjmaﬂ;
2
o 2i
xZLfo)F(%+j+ajF(%+j+bJ

= J!

xF[C—H+ ‘jr"£m+c+ ‘jl""[l+ j
2 2 T

J

2 _2b
1 0

E[S}S)"R | =

Qath (1 B p2 )a+b+%

= 0'12“0'22"1“(%
\/;r [ﬂ}ma+b

+

2

deiCy ey *1
F () 500)($)](59) 3

J
2a+b a+b+
_ ( ) faazzz;r(ﬂ_'_aJ
\/;I—*(Ejma-#b 2

g ()

(m+2a m+2b c+1 m+c 1 ZJ

x . F.

372

s k) s s

2 2 2 22p

If ¢ is odd redefine k = 2j-1 then %[(—1)2'/’1+" +1J =1

and:

2a+b 1 2 (H}H%
( - ) 2a ;20

- 77N “ 2
(2 e
2
© (2 2j-1 _ _
xz( ) r m—1+j+a r m—1+j+b
@ji-n 2 2

e G

2a+b (] 2 (”b*%
— ( _p ) 2a __2b
=—— " 0/c.p

E[SIZaSZZbRc] _

+
~

Let & =j-1, then:

2a+b (1 B p2 )a+b+%

r(”lj a+b
2
% ,1(m+c+1j ,I(SJ

2 2

2a _2b

E[SIZ”SZZ”R"Jz ooy p
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a+b+l 2 \arb+

2 (1-p7)" 2
_ 2a__2b
=—>————0,'0, p

\/;F(ﬁJmaer

2

><r[m-i—l +a}l"(m+l +bjr£c+2jr,1£m+c+lJ
2 2 2 2

(m+l+2a m+14+2b c+2 m+l+c 3 2]
x5k ; =

5 s E 5

2 2 2 2 2/)

The following expression will be used in the next two
theorems, let:

b, :%[(—1)"” +1}(f{):r(kz+ljr(k+2mj m>2,k>0 (8)

Theorem 2

Form>2and -1 < p<1, we have:

(1-97) 2 = ﬁ{%;;/f}

If ¢ is even, we have:

:’:0 pkbk,m :ﬁr(%}(l_pz )—

oz

N e R e

If ¢ is odd, we have:

m+1 m+1 3
b, =2pl Fll,——=;p*
> P, p(zll(zzpj

oo "b [k+mj (m+1jr[§J
kO 2 2
+1 3 m—1 m+1 3
F|2,—==:p" |-(—),F| 1, = p?
{[ 22’3J(2)“[22’3H

Proof
Note that:

e ]

Then:

(l—pz)% = %[%;;pzj

If ¢ is even redefine k = 2;:

e

22—

(1 e
2 o
Nz (p?)

i Pkbk,m(kerJ:i(zj_ler)(z/_)) B ()

k=0 2 J=1 2 2j-n!
. 1\
xl"(zj 1+mjr_l[1+jJ\/2;(121 1)!
2 2 2 (j—l)!
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. m+1)__, é 1
xf[]—l+ 2 JF ( 1+2j(j—1)'
—Zi(mT_l)px/;(pz)j 11"(j—1+1)

. m+l\ (. 3 1
xf[]—l+ 5 JF ( 1+2j(1_1)'

To evaluate the product moments E[Sf"Szz”R“} of

some special cases, Joarder (2006) derived a result
expressed in his paper by Theorem 3.1, which only holds
when c is even and the expression for by, is different
(Equation 8). The next Theorem 3, considers the case
when c is not even.

Theorem 3

For m> 2 and -1< p <1 and by, defined in (8), we
have for ¢ even:

G X ke'b, = an\/ZrGJ(l - pz)_%_l
(ii) Z::()kzp"bk’m :(m2p4 +2mp2)(1—p2)72L(m,p)
(iii) - pth,, =wy(m,p)L(m, p)
(iv) D kP by, =w,(m,p)L(m, p)
S ke, = (m(m s 1)t 5 mp?)
) <(1-p*) " L(m,p)
(vi) D kT D, = wy (m, p)L(m, p)
(vii) > Ko D, =wy (m,p)L(m, p)

For ¢ odd, we have:

(vill) Y7 kp'h, = 4r("‘2+ IJBAI + [’"3“)/12}

R e e

(524

(ix)

(x) +72(m3+ ljtm 3

(xi)

=
2y

(xiii)

><|:p3A2 +6(m;3jp5A3 +12(’";3j[’"7+5jp7/14}

© W k. m+1\m+1) m+3
Dok pbk,m—8l"[ 5 J[ 3 5

x{45p5A3 +118(’"7+5jp7A4 +96(’”7+5j(’”9+7jp9/15}

Where:

(xiv)

L(m,p) = \/;F(%)(l -p’ )’%
K9 =k(k=1)...(k—c+1),k" =1

W, (m, p) = [(m® +3m* +2m) p° + (Bm* + 6m)p*]

><(1—pz)73
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W{A‘}(m,p)zm[(m3 +6m’ +11m+6)p8

+(6m* +30m+36) p° + (3m+6) p* |(1- )
wy(m, p) = [4mp2 + (6m2 + 4m)p4 + mqu(l -0’ )73

w,(m,p)= [(m4 +18m° + 12m)p8
+(12m* = 20m* +8m) p°

+(46m2 - 4m)p4 + 32mp2J(1 -p’ )41

4=, F(,(m+1)/2:3/2;p%);

m+3 5
4, =,F| 2,—=:=:p" |;
221( 5 2/3]

N
I
5
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Proof

When c is have

k
b, = (2) F(EJF(HT’"), m > 2, k> 0 and under this

even, we

k! 2

scenario the proof was provided by Joarder (2006).
If ¢ is odd, let z = o, then:

EX;%”mM=2ﬂﬁ(m;1jE[Lm+35mj ©)
2

Differencing identity (9) with respect to z, we got

(viii):
1 1
jbl: m :Zr(m+ J lz 221;; (l>m+ ’gazj
’ 2 2 2 2

i(ka(ﬁ

k=0

(10)

Differencing now (10) with respect to z, we obtain

(ix):

an

Differencing (11) with respect to z, we obtain (x):

© f,l _1
o AL CAaN | Eep PRI
R ' 2 2 2

3 2
5
+3(m+5jz[2]2},1(4,m+7;9;zj
7 2 2

(12)

Differencing now (12) with respect to z, we obtain

(xi):
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k=0
+40[m+1j ZzE[25m+3a§a j
3 2 2
5
e ML mE3 s plymtS. T,
3 5 2 2
5

Finally, (xii), (xiii) and (xiv) can be obtained by
notice the following:

z;ok{z}pkb (X Z:=ok2pkbk,m - Z::Okpkbk,m
LKV, =3 (K -k +2k)p'b,,

> ke, =Y (K -6k +11k> - 6k) p'b,,

Next Theorem 4, will be useful to evaluate some
product moments.

Theorem 4

For a finite a, b:

JF(abib—1z)=(1-2)" + (1—z)y @ (13)

(b 1)

Proof
Note that:
) @), (b+k—112{b()b+k—1)zk
F(abb-1z)=)"" Tb-1+k),,
(-1

If we let j = k-1, the above hypergeometric function
can expressed as:

F (a,b;b —l;z)

i (b — 1)(a)k Zk + lim——

- k! x>0 T
T(b-1) k=0 (%)

» Dla+1+)) 2/ z/
Lk) |+z Z/O T+ ()
(@)

Now consider that (Ngo, 2012):
tim( L~ T(x) |=tim[ - L -T(-x) | =y
x>0\ x x—=0 X
where, yis the Euler’s constant:

y= _j:e--* In(x)dx ~ 0.57721566

So the gamma function behaves almost exactly like

behaves almost

1
[fj when x gets close to zero and

b I'(x

exactly like zero when x gets close to zero, so we have:

(abb lz)

Foa32) +

az
7 v(a+1;2)
1
Some examples of product moments are given below

For a:%,b:% and ¢ = 1 we have:

m

E[S,S,R]= %clczpr[m; 2JFGJ
2

s L] s

m+2 m+2 3 m+2 3
x JF, ; Zip
2 2 2 2 2

1
=—0,0
412/0

For a= ,b=§ and ¢ = 1 we have:

1
2
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a2 o 2 )2
2

2 43 23
X3F2£m+ m+4 3 m+ *;pzj

E[S,SR]=

s P

2 2 727 2 72

m(m+1) 1E)[%+2;;pz)

4m?

~(1-p*)  o0ip

_m)

Fora=1,b=1 and ¢ = 3 we have:

4+m
4(1-p?) 2
E[SIZSZZRZ]—('O)o-fo-fl"[m+2jl"£m+2}1"£3j
=l EniEpit
2

xr*(”’”j F(m+2 m+2 3 m+2 l.sz
2 372

s P EIE

2 2 2 2 2

m 2
(-0 |
= 0,0,
m

m+2

X{(l—pz)z +(m+ 2)p2(1—p2)2}

2 2
:M{

1+ (m+1)p’|

For a= b=% and ¢ = 3 we have:

1
>

2
m+2 m+4 5 m+4 3 ,
X F. s Bt ST
“( 2 ) 2’))

2+

3(1-p7)2  ,  (m+253
oy

s
e e S
ﬂF(—jm

=— 7 60,0F
am 10201
S\2+ 2
(=)
= 0,0,p
4m

m+2

2 4D et
X{(l—pz) 2 +Tp2(l—p2) 2}
3
=2%L 34 p2(m-1))
4m

For a=1,b=% and ¢ = 4 we have:

3+m

3
23 1- 02 2

(1-p7) 30_1262F£m;-2Jr(m+1]
m[gjma

o« 5 ! m+4 < ,F, m+2,m+1’§;m+4’l;p2
2 2 2 2 2 2 2

3+m

(B)V2(1-p%) 2

) m+1
= o, 10'1021" 2
(n+2)F — |m?

E[S}S,R"]=

2
3Fz(m+2 m+15 m+4 1, 2}

s LI LI

2 2 2 2 2

Corollary 1

The moments of the sample correlation, if ¢ is even,
are given by:

n-1
1-p%)2 _ _
E[R(.]:( p’) F(n 1]F(c+1jr,l(n 1+c}
Jr 2 2 2 (15)
n—-1n-1c+l n-1+c 1 ,
XF 77777;777;
”(2 27 2 2 sz

If ¢ is odd, are given by:

1

SR AHESEE

(n nc+2 n+c 3, zj

(16)

2727 2 s 2 ’Zap

Proof

Use a =0, b = 0 in Equation 3 and 4, then replace m
=n-1.

The first moment of R, is obtained using, ¢ = 1 in
Equation 16:

R G )

(17)

2 1_ 27 _ 2
_2p(1-p") F[QJF,IU 1) ﬂ(ﬁ’ﬁ;m;pz)
n-1 2 2 2’27 2
2
2p n\ ., (n-1 11 n+1 zj
=—— - Bl —o—p |
n—l{ [2} (2}}“(22 ) P

Equation 17 is a well-known equation for the first
moment of R (Ghosh, 1966).
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The second, third and four moments of R, are
obtained using, ¢ =2, 3 and 4, depending the case:

A ()

Xs@(L—l,L—l,é;Lﬂg;pzj

(18)

(=2, (EESEE

(19)

el () ()
(XSRS o0

C3(1-p7) 2 F(”‘l n-15n+3 l,pzj
2n-D(n+D> L2 72727 2 72

In the literature there are expressions for the first
four moments of R (Ghosh, 1966; Soper et al., 1917).
The second, third and four moment of R may be
expressed as:

B ]-1- =D g1l | @)
; o 2(n=-2
E[R]=E[R]-p(1-p )(n +(1)(n )1)
) 22)
n\.,(n-1 33 n+3 ,
X|:F(2JF sz:| 21‘—1[5,5, > 7pJ
n=2)(n-4)(1-p* n
E[R“]:H( )(2(n—3§ 4 )2F1(1,1;;15p2]
(i) (23)
n(n=2)(1-p o+l
—4,&{21‘1(1,1,2,9 ]—1}

20

The equation of the third moment given by Ghosh
(1966) is not correct. Equation 22 comes from the
equation reported by Soper et al. (1917), which is

-2

E[R]=E[R]- p(1 - p7) e =2)

9y N
.\ p43252
2(n+3) (4)(2)(n+3)(n+5)

p6325272 :|
+ +...
BGHE®)(n+3)n+5)(n+7)

Where:
g, =" sin"" 0o

We note that:

272
zE[E,E;HS;pZ}H p3
227 2 2(n+3)

. p43252
(4)(2)(n+3)(n+5)

. p6325272 .
BN®)n+3)n+5n+7

And:
\/Zr(g + 1)

2r(”+1+1j
Guiz _ 2

()]

- (n+D)(n-1)

The expressions for the second, third and four
moment of R, that we derived, are shorter than existing
equations. Algebraically it is not easy to verify if
Equation 18-20 are equal to Equation 21-23 respectively,
as an exercise we wrote a program using the software R
to get values of the above expectations for some
parameters, the results obtained do not show differences
between the equations derived here and the equations
reported in the literature. In Table 1, we show some data
reported by Soper et al. (1917) p. 337 and what we got
with Equation 17-20.
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Table 1. Comparison of the first four moments of R, between data reported by Soper et al. (1917) and values obtained with Equation

17-20, when p=0.6 and n = 25

Values reported by Soper et al. (1917) Values obtained by Equation 17-20
E[R"] 0.591825 0.59182508
E[Rz] 0.368739 0.36873932
E[RS] 0.238293 0.23829348
E[R4] 0.158510 0.15851038

2
, be the ratio of two sample variances.
2

The statistic W is widely used to test the homogeneity of
two variances and sometimes is useful to know the mean
and variance of W. With the next corollary 2, we can
obtain the mean and variance of W.

Corollary 2

For m > 2a, the moments of the ratio of two sample
. S? .
variances, W =—%, are given by:
SZ

E[W"]_(l_pz){ %i T %Za r m—22a

m+2a m—2a m
XzFl[ SRR ;E;pZJ

Proof

Use b = -a and ¢ = 0 in Equation 3.
The expectation of the ratio of two sample variances,
W, is given by:

(51
2
{(l—pz) 2 +%(l—pz)f 2 }

B ]
o; )(m=2)1-p)[  (m-2)1-p%)
(0'12} m(m—2+4p%)

o) [(m—2)(l—pz):|2

The second moment of the ratio W, is given by:

21

The variance of W is given by:
2)(1-p7) (02 ) -
Var[W]:M 112 ZE(m+4’L4;ﬁ;p2J
(m—2)(m—4) o, 2 2 2
3 (012] m(m—2+4p%)
o; [(m—Z)(l—pz)}2
_[O-IZJZ m (m+2)(1—p2)
(

o; m—2) (m—4)

m
2

m+4 m—4 m_ ,
F , s
2 1( > D) pJ

_m(m—2+4p2)21
(m-2)(1-p*

In the case of p= 0, we have:
e
=[] e [y
@ (mzi" Sy@z—)‘o

If furthermore, the two wvariances are equal the
expectation and variance of W become the expectation
and variance of a central F-distribution with parameters
d, = d, = m. In the future, it will be useful to study the
variance of W to test homogeneity of variances for two
correlated samples.




Juan Romero-Padilla/ Journal of Mathematics and Statistics 2016, 12 (1): 12.22
DOI: 10.3844/jmssp.2016.12.22

Conclusion

We derive a general result to get any product
moments of the sample variances and sample
correlation coefficient when the data come from a
bivariate normal distribution, the final expression is
given in terms of the hypergeometric function which
is a well-known function and there exists
computational routines to be evaluated. A general
expression to get the moments of the correlation
sample is obtained and a validation of the result was
carried out. Finally and equation to get the moments
of the ratio of two sample variances was derived and
as a particular case, the expectation and variance of
the ratio of two sample variances were obtained.
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