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Introduction
Preliminaries

Generalizations of Banach contraction principle
(Banach, 1922) have been established in various settings.
Alber and Guerre-Delabriere (1997) introduced the
definition of weakly contractive mappings and they
proved some fixed point theorems in case of Hilbert
spaces, Rhoades in (Rhoades, 1977; 2001) give extended
results of (Alber and Guerre-Delabriere, 1997) to
complete metric spaces, and more discussed concepts
shown in (Hardy and Rogers, 1973); (Sehie, 1980), and
(Sahar Mohamed Ali Abou Bakr, 2013).

In this paper X will be a nonempty set and S be
mapping from X into X, we have:

Definition 1
If X is normed space, we have:

(1) If there arereals a, b, c € [0, 1] witha+b+c<1
such that:

IS@) =SM) i< allu=v|+b]lv=SW)|l
+c||lu—-Su)||Yu,ve X

then S is {a, b, c} generalized contraction on X.
(2) If there are reals a, b, ce [0, 1] witha+b+c=1
such that:

IS@) =SM i< allu=v|+b]lv=SW)|l
+c||lu—-Su)||Yu,ve X

then S'is {a, b, ¢} generalized nonexpansive.
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(3) Ifthere arereals a, b, c€[0, 1] with 0<c¢<J and a
+ b+ ¢ <1 such that:

[S@)=SO)[I<allu—-v]+b]lv=SO)|l
+cmax {||u—S() || x-S}

for all u, veX, then S'is {a, b, c}-ctype mapping.
(4) If there are reals a, b, c€[0, 1] with
0<a<1,0<b0<c<+ anda+b+c=1such that:

[S@)=SO)[I<allu—-v]+b]lv=SO)|
+emax {]| u—S() |l[u-SO) |}

for all u, veX, then S'is {a, b, c}-ntype mapping.

El-Shobaky ef al. (2007) proved that there is only one
fixed point (fp) of {a, b, c}-generalized contraction
mapping defined on closed and convex subset of weakly
Cauchy normed space X. The existence of only one fp of
{a, b, c}-generalized non expansive mapping when C
contains contraction point proved in (Sahar Mohamed
Ali Abou Bakr, 2009). Fixed point theorems established
for {a, b, c}-ctype and ntype in (Sahar Mohamed Ali
Abou Bakr, 2013). Mainly; we are interested in:

Theorem 1

Sahar Mohamed Ali Abou Bakr (2013) Let X be a
Banach space X, S be {a, b, c}-ctype mapping, then S
has only one fp. Moreover, for any uelX, the iterated
sequence {S"(u)},ey is convergent to the fp of S.

© 2017 Sahar Mohamed Ali Abou Bakr. This open access article is distributed under a Creative Commons Attribution (CC-

BY) 3.0 license.



Sahar Mohamed Ali Abou Bakr/ Journal of Mathematics and Statistics 2017, 13 (4): 319.324

DOI: 10.3844/jmssp.2017.319.324

In case of quasi-metric spaces, we have:
Definition 2 Sahar Mohamed Ali Abou Bakr (2013)

(1) Let r be a number; > 1 and ¢ be a mapping ¢: X —
R+. Then (X, ¢) is quasi-metric space iff the
following:

(@) qu,v)=0iffu=v.
(b) q(u, v)=q(v, u) for all u, veX.
(c) q(u,v)<rig(u, w)+ q(w, v)] for all 4, v, weX

(2) Let (X, g) be a quasi-metric space and {v,},cy be a
sequence in X. Then {v,},cy s
(a) Cauchy iff for every >0 there is n¢(€)eN such

that:

q(vm vm) <e€ \7,, ,,,_no(e)

(b) Convergent to v iff for every > 0 there is
no(€)eN such that:

q(vn, V) < €V, 2n9(€).

Remark

It is clear that every metric space is quasi-metric
space (X, g) with » = 1. There are many examples in the
literatures of quasi metric spaces which are not metric.

Now, for the purpose of the first result of this paper
we define the contraction type of mappings, namely {a,
b, c; r}-contraction type.

Definition 3

Let (X, ¢g) be a quasi-metric space. Then S that satisfy
q(S(u), S(v)< agq(u, v) + d q(v, S(v)) + ¢ max {g(u, S(u)),
q(u, S(v))} for all u, veX and some real numbers a, d,
c€[0, 1] where atc < 1 and r(a+d)+c < 1 is called {a, d,
¢; r}-ctype mapping.

Remark

Noticed the following:

(1) If (X, g) is a quasi-metric space, S satisfies g(S(u),
S) <aq(u, vy+d q(v, SEv))teq(u, S(u))teq(,S(v))
for all u, veX and for some a, d, c and e [0, 1], 0<a
+(ct+e)<l,andr(a+d)+c+e<l, then Sis{a,
d, c +e; r}g-ctype\

If r 1 the definitions will be reduced to the
definition of {a, d, c}ctype mappings (Ali, 2013).
The class of {a, d, c; r}-ctype mappings is wider
than the class of contraction mappings.

)
€)

Main Results

We start with some basic lemmas:
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Lemma 1
Let (X, q) be quasi-metric and {v,},cy be in X such
that:

q,.,.v, )<rqV,,,v,),n=0,12,.. 2.1)

for some positive real number ry with r »<l. Then
{Vi}nen 1s Cauchy.
Proof

We have the following:

q(vn+2 s Vn+1) < 0 q(vnﬂ ’ Vn)

2
<1 g, ) =190, v,)

continuing in this process gives:

q(V,025V,0) S ronH‘I(‘ﬁ V) (2.2)
Now; let n, meN be such that m > n. We have:
q(v,,v m)_r|: (vn’vn+1)+q(vn+1’ ):|
|: (vn’vnﬂ I"{ n+1’ n+2 (vn+2’vm )}:|

< rq(vn’vnﬂ) (vn+1’vn+2)+
2
+r n+2’ n+3 +q n+3> m
(vn’vnH) ( n+1’ n+2)+r q( n+2’vn+3)+
m-n
t..tr q(vm 1 m)

Back to inequalities (2.2), we get:

2 n+l
q(v,,v,) <1, 6]( )+rrn q(vwvo)
+ 1”31’0'”25](1)1 A ) +...
—n it (mel-m)
+r’ﬂ nrn m n q(vl’vo)

q(v1 ,v0)+rr0q(v1 vo)
=rry | +(rr, )zq(v1 ,v0)+...

+(rm )" (v

1Y)
., 1_ (l’l" )mflfn
=r7, q(v1 A ){0—
S|:

1-rr,
:|L] (V1 ) )

Clearly, ry <1, taking the limit as n—o0 completes the

proof.

n
rn,

1-rr,
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Lemma 2

Let (X, q) be quasi-metric space and S satisfy g(S(u),
S(v)<aq(u, v) + d q(v, S(v)) + ¢ max {q(u, Su), q(u,
S(v))}for all u, v eX and for some a, d, ce [0, 1] with ¢ # 1.
Then for any ueX, {S"(u)}neN satisfies:

0" 0.5 )< (g sy ed)
a5 0.8 <[ 2 ] st .

Proof

Let ueX, we have:

(""" (), 8" (u))

=q(S(S" )),S(S"" (u))

< aq(S" u),S"" () +dg(S"" (u),S(S"" (u))) +
+cmax{q(S"(u),S(S" (u))),q(b"’(u),S(S'"1 (u)))}
< (a+d)q(S" (), S"" () +cq(S"" (u), S" (u))

This shows that:

(1=0)q(S"" (u), " () < (a+d)q(S" (u),S"" (u))

And hence (2.3) is proved. Continuing this inductive
process proves (2.4).
We also have:

Theorem 2

Let (X, ¢g) be a Complete quasi-metric space, S be {a,
d, c, r}-ctype mapping. Then S has only one fp; y.
Moreover, for any ueX, {S"(u)},cy is converging to y.

Proof

Let ueX be an arbitrarily chosen element, using
Lemma (2) insures that:

a+d

("™ (u),S" () S[ n )
Cc

q(S" (w),S" " (u)),n=0,1,2,...

Since S'is {q, d, ¢, r}-ctype, we have r(a + d) + ¢ <1,

consequently r atd <1. Taking r, = atd
I-c I-c

} msures

that the inequalities (2.3) of Lemma (1) are satisfied,
then we have:

lim (™" (), 5" ())) = 0 (2.5)
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and {S"(u)},ey is Cauchy. Since X is complete,
{8"(1)} ey is converging to some element y €X:

lim (8" (), y) =0 (2.6)

On the other side:

q(S(y),S"+1 (u)) > aq(y,S" (u))
+d q(S" (u),Sn+l(u))

+emax {q(y,S(1))¢(,5"" @)}
Accordingly, we have:

q(S(y),y) < rq(S(y),S”*l (u)) + rq(S”*l (u),y)
aq(y,S”(u))+dq(S” (u),s"" (u))
+emax {q(,5(),q (8" @)}

+rq(S™" (), y)

Taking the limit as n—oo with the use of (2.5) and
(2.6) prove:

q(S(y).y)<cq(».5()

If ¢(S(»), y) # 0, then 1<c, this yields ¢(S(»), y) = 0,
consequently S(y) = y.

Finally to prove that there is only one of such a point,
let y and z be two distinct points of S such that S(y) = y
and S(z) = z. Then the following strict inequality gives an
obvious contradiction:

q(».2)=q(S(»),8(2))
< aq(y,z)+dq(z,S(z))
+cmax{q(y,5(»)),q(.5(2))}

=(a+c)qQy; 2)
<q(; 2).

Corollary 1
Let (X, ¢g) be complete and S satisfy:

q(S(u),S(v)) < aq(u,v)+ d q(v,S(v))
+cq(u,S(u))+eq(u,S(v))
for all u, veX and for some a, d, ¢ and e<[0, 1], 0<a + ¢
+e<1,and r(a +d) + c + e<1. Then S has only one fp.
Proof

Let S satisfy g(S(u), S(v))<aq(u, v)+d q(v, S(v))+cq(u,
S(u))+ eq(u, S(v)) for all u, veX and for some real
numbers a, d, ¢ and e€[0, 1], "(a + d) + ¢ + e < 1. Then
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q(S(), S(v)) <aq(u, v) +d q(v, S(v)) + (¢ + €) max {g(u,
S(u)), q(u, S(v))} for all u, veC, since r(a + d)+(c + e)
<1, S'is {a, d, ¢ + e}-ctype mapping, using Theorem (1)
proves that S has only one fp.

In some situations it is difficult to determine the fixed
point of {a, d, ¢, r} types of mapping, approximating
such a fixed point is va-porable tool. For this direction
we have the following result.

Theorem 3

If {S,},cnv and S are {a, d, c, r}-ctype of mappings on
the complete quasi metric space (X, g), wn is the unique
fixed of each S,, Sy(w) = w and {S(W ).y

converges to w¥,
lim, . q(S,(w"),S(w")) =0,

where, w* is the unique fixed of S; S(w*) = w*, then
{w} _, converges to w*:

lim q(w:, w, ) =0
Proof
We have:
g(w,. w*) = q(S, (), S(w*))

2.7
<r[q(8,06),505)) + (S0, 5 |

Because of contraction condition we have:
q(SOw,), S(w))
< ag(w,, w*)+dgq (w,,S(w,) )+
+emax {g(w*, S(w¥), g (w*, S0w;) )|
< aq(w,,w)+dq(S, (W), S(w,))+ (2.8)
+c max{q(w*, w¥), q(mf",S(w:))
< ag(w,,w)+dg(S, (w,).S(w,))+
+cq (S, S(w)))
Inequalities (2.8) shows that:

q(S(w,TxSw))sﬁ[aq(wj,wﬁ)+dq(S,,(w,T>,S«w:>)] (2.9)

Using (2.9) in (2.7) gives:

q(w,,w*) < rq (S, (w,),S(w,)) +
(2.10)

. ’ aq(w:,w*)
L=c|+dg(S,(w)),5(w)))
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Inequalities (2.10) shows that:

q(w:,w*) < Il—lc_—crail{“— 16_10}
4.(S, (0,), S(w)))
Hence:
. l—c+d)r . .
90w, W) < (l_c—f) 4,(S, (0)),50%;))
Since:
q(S,(w,),S(w'))
<rlg(S,(w, )8, (W) +q(S,(w),S(W)))]
<rq(S,(w,),S,(w)) +

+17¢(S, (W), S(W)) + 2 g(S(W),S(W'4))
Using (2.9) in (2.12):

q(S,(w,).S0v,))
<rq(S,(w)).S, (w9 +rq(S, (W), S(w¥))

2

[ aq(w, w9 +dg (S, (4),504)))
Inequalities (2.13) proves:
. . 1-¢
9(S, (W), 50w,)) < {m}
rq(S, (w)), S, (w%) +
+17q(S, (), S(w¥)) + f‘_c g(w], w¥)
On the other hand:
q(S,(w)).S, ()

<aq(w,,w*)+dg(w,.S, (W) +
+emax{g(w). S, (W), (.5, (W)}
< aq(w,, W) +dg(S(wh), S, (w)) +
+emax{g(w),w,),q(S, (w,), S, w)}
< aq(w,, W) +dg(S(wWh), S, (w)) +
+cq(S, (w,),S, ()

+cq (S(w*), S(w*))

Consequently:

2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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* 1
S, (w),S, (wH))<| —
q(S,(w)). 8, (w%)) L } 016

[ ag (o), w)+ dg (S(w*), 5, ()]
Using (2.16) in (2.14):

q(sn(w:),S(w:))S[l_l%rzd]

r . s . . (2.17)
(N, w) +d g(S0v).8,00))]
+rg(S,00). S0+ (g, w)

c

q(Sn(w:),S(w:))s[(m(”“)

e=r]

Using (2.18) in (2.11) yields:

]q(WZ,W"‘H

(2.18)
rd
1-¢

1-¢
l—c—r*d

j+r2}q(S(w*), S, (w%)

v (I-c+d)r ra(1+ a) C
q(w,,w,) < [=— o ]{[(l—c—rzd)]q(w”’w )+
l-c¢ rd )
+[—1—c—r2d][(1—c)+r ]q(S(w*),S,,(w*))}
(=c+d)r .. ra(l+a) ..
<[ Ep— ][(I_C_rzd)]q(w”,w”)+
(I-c+d)r l-¢ rd ,
e | ey o Rt 19 (S(*), S, (w*))
Consequently:
(w,w) <[ 1 ]
qW,,W )= L (1—c+d)r}|: ra(l+a)}
l-c—ra | 1-c—7r'd

(1-c+ad)r

l-c—ra

=1

1-¢ rd ) . .

+r Sw),S (w

L_C_rzd}ﬂl_cj }q(( 1.5, 00)
Taking the limit as »n—oo yields that

lim, , g(w,,w*)=0 because of the given assumption

lim ‘I(Sn (w*),S(w*)) = 0. This completes the proof.

Conclusion

This paper adjusts conditions on new defined
contraction type of mapping; namely {a, d, c, r}-ctype
on quasi metric space, checked the validation of
existence of unique fixed point of such type, gives a
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generalization of theorem (1) with these adjustments,
shows that Corollary (1) extends some of the results
given in (El-Shobaky et al., 2007; Gregus, 1980; Wong,
1975) and then builds a convergence theorem for

sequence of fixed points of {S ! _.:{w} . to the
unique fixed point of S; w under the as-
sumption lim, , S, (w)=w.
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