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Abstract: In this study, we introduce two new generalized versions of the 

Exponentiated Pareto-I distribution called (CTEP-I-G) and (CTEP-I-R). 

Statistical properties of the two distributions such as reliability function, 

hazard function, moments and moment generating function are studied. 

Models parameters are estimated by the maximum likelihood method. 

Finally, an application of CTEP-I-G and CTEP-I-R distributions to two 

real datasets and compared with some distributions based on exponentiated 

Pareto-I distribution is illustrated. The applications suggest that the CTEP-

I-G performs better than CTEP-I-R. 
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Introduction 

In order to obtain more flexible statistical models, 

several methods for generalizing of the well-known 

distributions have been widely used. For examples, 

(Gupta et al., 1998) proposed the exponentiated family of 
distributions to model the failure time data. Several authors 

use (Gupta et al., 1998) method to propose new 

distributions for examples see (Gupta and Kundu, 1999; 

2001; 2007). Eugene et al. (2002) introduced a general class 

of distributions generated from the logit of the beta random 

variable. Another family of distributions, known as Kw-G 

distributions, proposed by (Cordeiro and de Castro, 2011) 

by using cdf of the Kumaraswamy distribution. Shaw and 

Buckley (2009) suggested a new generalization method 

called transmution map. According to (Shaw and Buckley, 

2009) the cumulative distribution function of the Quadratic 
Ranking Transformation Map (QRTM) is: 
 

       21 ; 1F x G x G x       (1) 

 
where, G(x) is the Cumulative Distribution Function 

(cdf) of the base distribution. Observe that, when λ= 0, the 

new distribution turns out to the base one. This method has 

been further studied and extended by many authors see for 

examples (Aryal and Tsokos, 2009; 2011; Nofal et al., 

2017; Alizadeh et al., 2016; Merovci et al., 2016). 

Al-Kadim (2018) introduced generalized formula for 

transmuted distribution proposed by Shaw and Buckley 

(2009), the cdf and pdf of the Cubic Ranking 

Transformation Map (CRTM) respectively are: 
 

         21 2 ; 1F x G x G x G x           (2) 

and: 

 

         21 4 3 ; 1f x g x G x G x           (3) 

 

This method used by (Al-Kadim and Mohammed, 

2017) to develop cubic transmuted Weibull distribution 
and utilized by (Ansari and Eledum, 2018; 2020) to 

introduce the Cubic Transmuted Pareto distribution and 

cubic transmuted exponentiated Pareto-I respectively. 

Another two classes of Cubic Transmuted 

distributions with two transmuted parameters have 

been developed, one by (Granzotto et al., 2017) the 

other by (Rahman et al., 2018b). The cdf and pdf of 

the Granzottoa formula are as follows: 

 

           2 3

1 2 1 21F x G x G x G x         (4) 

 

and: 
 

           2

1 2 1 22 3 1f x g x G x G x        
 

 (5) 

 

with, l, [0, 1] and 2 [-1, 1]. 

This method used by many authors to generalized a 

various of well-known distributions for examples 

(Granzotto et al., 2017; Celik, 2018). Concerning to 

(Rahman et al., 2018b) method, the cdf and pdf are 
given respectively by: 
 

           2 3

1 2 1 21F x G x G x G x         (6) 

 

and: 
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         2

1 2 1 21 2 3f x g x G x G x        
 

 (7) 

 

with l, 2 [-1, 1] and -2  l + 2 1. 

This formula used to propose some new distributions for 

examples Pareto distribution (Rahman et al., 2018a) and 

Weibull distribution (Rahman et al., 2019). In this 

article we use cubic transmuted distributions proposed 

by (Granzotto et al., 2017) of Equation (4) and by 

(Rahman et al., 2018b) of Equation (6) to propose two 

new generalized versions of the Exponentiated Pareto-I 

distribution which called Cubic Transmuted Exponentiated 
Pareto-I-G (CTEP-I-G) and Cubic Transmuted 

Exponentiated Pareto-I-R (CTEP-I-R) respectively. 

Some statistical properties are studied and the models 

parameters are estimated using maximum likelihood 

method. Moreover, an application of two models 

CTEP-I-G and CTEP-I-R to two real datasets and 

compared with some distributions based on 

exponentiated Pareto-I distribution is illustrated. 

The rest of this paper is structured as follows: The 

first version of the Cubic Transmuted Exponentiated 

Pareto-1-G (CTEP-1-G) is presented in section 2, 
investigating the density and cumulative functions, survival 

and hazard functions, moreover, some statistical properties 

such as moments and moment generating function are 

studied, this section also provides parameters estimation of 

CTEP-1-G distribution. Section 3 pertains to the second 

version of the Cubic Transmuted Exponentiated Pareto-1-R 

(CTEP-1-R). An application of the two proposed 

distributions CTEP-1- G and CTEP-1-R to two real datasets 

for the purpose of illustration is conducted in section 4. 

Finally, section 5 gives some concluding remarks. 

The new two models is motivated because it exhibits a 
bimodal right skewed distribution as illustrated in Fig. 1a 

and 3a. The justification for the practicality of the two new 

generalized models is based on its ability for modelling the 

failure times data as illustrated in section 4. 

Some Special Cases 

It can be easily see that the cubic transmuted family 

of distributions proposed by (Al-Kadim, 2018) in 

Equation (2) turned out to be a special case of the cubic 

transmuted family distribution proposed by: 
 

 Granzotto et al. (2017) of Equation (4) for 1 = 1+ 

and 2 = 1- 

 Rahman et al. (2018b) of Equation (6) for 1 = -2 =  
 

Moreover, the quadratic transmuted family of 

distributions of (Shaw and Buckley, 2009) in Equation 
(1), reduces to the cubic transmuted family 

distribution introduced by: 
 

 Granzotto et al. (2017) of Equation (4) for 1 = 

1+ and 2 = 1 

 Rahman et al. (2018b) of Equation (6) for 1 =  and 

2 = 0 

 

Further, the cubic transmuted family distribution 

introduced by (Rahman et al., 2018b) in Equation (6) is a 

special case of the family proposed by (Granzotto et al., 

2017) of Equation (4) for 1 = 1-1 and 2 = 2-1. 

Exponentiated Pareto Distribution-1 

The Exponential Pareto-1 distribution (EP-1) proposed 

by (Nadarajah, 2005) taking the logarithm of the classical 

Pareto random variable. Let X be a random variable with 

the exponentiated Pareto-1 distribution. The Probability 

Density Function (pdf) and the Cumulative Distribution 

Function (cdf) are defined, respectively, as: 

 

  1 1 ; ln , , 0a axG x k e z x k a k       (8) 

 

and: 
 

  a axg x ak e az   (9) 

 

where, z = kae-ax, k is the (necessarily positive) minimum 

possible value of X and a is a shape parameter: 

 

 

 

 

 

 

2

1 log

1

2

9

t

a k
E X

a

Var X
a

ak
M t

a t

Skewness X

Kurtosis X












 

 

Cubic Transmuted Exponentiated Pareto-1-

G Distribution (CTEP-1-G) 

This section pertains to the first version of the Cubic 

Transmuted Exponentiated Pareto-1-G (CTEP-1-G) 

using the cubic transmuted distributions proposed by 

Granzotto et al. (2017). Discussing the Probability 

Density Function (PDF), Cumulative Distribution 

Function (CDF), survival and hazard functions, some 

statistical properties and parameters estimates. 

Density and Cumulative Function for CTEP-1-G 

Distribution 

Theorem 1 

Let X be a random variable with the CTEP-1-G 

distribution. The Cumulative Distribution Function 

(CDF) and the Probability Density Function (PDF) are 

defined, respectively, as: 
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     

 

     

1 2

2 2

2

2

1 2 2

1 1 2

1

1 1 2 1

a ax a ax

a ax

F x k e k e

k e

z z z

 



  

 



    


 


       
 

 (10) 

 

 1 2, 0, ln , 0, 1,1a k x k        

 
and: 

 

   

 

   

2 1 2 1

2 2

2

2

2 1 2 1 2

3 2 2 3

3 1

3 2 2 3 3 1

a ax a ax

a ax

f x ak e k e

k e

az z z

   



    

 



     


 

        
 

 (11) 

 
where, a, k are a shape and location parameters respectively 

and 1, 2 are transmuted parameters. We can see that the 

CTEP-1-G distribution given in Equation (10) reduces to 

the EP-1 distribution given in Equation (8), for 1 = 2 = 1. 

Proof 

The proof is straightforward. Equation (10) is obtained 

by substituting Equation (8) into Equation (4) and 

performing some algebra calculations and Equation (11) is 

gotten from differentiating Equation (10) with respect to x. 

Remark 1 

Consider the random variable 

   
ln lna ax a k z

Z u X k e X Z
a

 
      then for (x = 

lnk)  (z = 1) and for (x  )  (z  0) also
1dx

dz az


 . 

Using Remark 1, Equation (11) can be rewritten in 

term of the random variable Z as follows: 

 

   

   

     

 

2

2 1 2 1 2

2

2 1 2 1 2

1
3 2 2 3 3 1

1 3 2 2 3 3 1

0,1

dx
f z f z

dz

az z z
az

z z

if z



    

    

   

             

         
 



 (12) 

 

Lemma 1 

The limit of CTEP-1-G density as x  ln k is a1 and 

as x   is 0. 

Proof 

The proof is straightforward. 

Lemma 2 

The limit of CTEP-1-G distribution function as x  

ln k is 0 and the limit as x   is 1. 

Proof 

The proof is straightforward. 

Lemma 3 

f(x) of Equation (11) is a probability density function. 

Proof 

To prove f(x) is a pdf, we need to prove f(x) 0 and 

 
ln

1
k

f x dx


 . 

From Lemma 1
ln

lim
x k

 f(x) = a1 and lim
x

 f(x) = 0, since 

a, k > 0 and 1  [0, 1] then a1  0. It follows that f(x) 0. 

The proof of  
ln

1
k

f x dx


 is equivalent to prove 

 
0

1
1f z dz  and  

1

0
1f z dz  , using Equation (12) we 

get: 
 

     

   

 

     

  

1 1
2

2 1 2 1 2
0 0

1 1

2 1 2 1
0 0

1
2

2
0

1
1 2

2 1 0 2 1
0

1
3

2
0

2 1 2 1 2

3 2 2 3 3 1

3 2 2 3

3 1

3 2 3

1

3 2 3 1 1

f z dz z z dz

dz zdx

z dx

z z

z

    

   



   



    

        
 

     

 

     

 

        

 

 

  

 
Therefore, Lemma is Proved. 
Some of possible shapes of the pdf and cdf of CTEP-

1-G for selected values of 1 and 2 setting a = 0.5 and k 
= 1 are illustrated in Fig. 1a and 1b respectively, note 
that the pdf and cdf of the base distribution EP-1 are 
shown as a solid black curves. 

Survival and Hazard Function 

The survival function is defined as s(x) = 1-F(x) and 

for the CTEP-1-G distribution is given as: 
 

        2

1 2 21 1 1 2 1S x z z z          
 

 

 

The hazard function is defined as  
 

 

f x
h x

s x
  and 

for the CTEP-1-G distribution is given as: 
 

 
   

     

2

2 1 2 1 2

2

1 2 2

3 2 2 3 3 1

1 1 1 2 1

az z z
h x

z z z

    

  

       
 

       
 

 

 
where, z = kae-ax. Figures 2a and 2b illustrate the 
behavior of the survival and hazard functions of CTEP-
1-G for selected values of 1 and 2 setting a = 0.5 and k = 
1, where s(x) and h(x) of EP-1 distribution are demonstrated 
as a solid black curves. Note that h(x) for EP-1 distribution 
is a constant function, that is h(x) = a if 1 = 2 = 1. 
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Fig. 1: The pdf and cdf of CTEP-1-G for different values of parameter 1 and 2 setting a = 0.5 and k = 1 

 

 
 

Fig. 2: The s(x) and h(x) of CTEP-1-G for different values of parameter 1 and 2 setting a = 0.5 and k = 1 

 

Statistical Properties 

In this subsection, some statistical properties for CTEP-
1-G distribution are explained. Including moments, moment 

generating function and order statistics. 

Moments 

Theorem 2 

If X is a random variable having the CTEP-1-G then 
the rth moment of X about the origin is: 

 

     

   

   

2 1

2 1

2

2

3 1, ln

2 3 1,2 ln
2

1 1,3 ln
3

a
r

r

a

r

a

r

k
E X r a k

a

k
r a k

k
r a k

 

 



    

    


    



 (13) 

Proof 

We know that: 

 

   r rE X x f x dx



   

 
Substitute f(x) in above equation by its value in 

Equation (11) to get: 
 

    

  

   

 

   

 

2 1 2 1
ln

2 2

2

2

2 1 2 1
ln

2 3 3

2
ln ln

2

2 1 1 2 1 2

3

2 3

3 2 2 3

3 1

3 2 2 3

3 1

3 2 2 3

3 1

r r a ax

k

a ax a ax

a r ax a

k

r ax a r ax

k k

a a

a

E X x ak e

k e k e dx

ak x e dx ak

x e dx ak x e dx

ak I ak I

ak I

   



   



   






 




 
 

     


  


     

  

     

 





 
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where, 2

1 2
ln ln

,r ax r ax

k k
I x e dx I x e dx

 
     and 

3

3
ln

r ax

k
I x e dx


   now: 

 
 

 

1 11

1
ln ln

1

1/

1 / 1, ln

rr ax r u

k a k

r

I x e dx a u e dx

a r a k

     



 

  

   

 
where, u = ax, dx = du/a it follows that for x = ln k then u 

= a ln k and for x =  then u =  similarly I2 = 1/(2a)r+1 

 (r + 1, 2a ln k) and I3 = 1/(3a)r + 1 (r + 1, 3a ln k) by 

performing some algebra calculations we get: 
 

       

     

2 1 2 1

2

2

3 1, ln 2 3
2

1,2 ln 1 1,3 ln
3

a a
r

r r

a

r

k k
E X r a k

a

k
r a k r a k

   




       




      

  

 

Moments Generating Function 

Theorem 3 

If X is a random variable having the CTEP-1-G then 

the moments generating function of X is: 

 

 
 

   

2 1

2 1 2

3

2 2 3 3 1

2 3

t

X

t t

ak
M t

a t

ak ak

a t a t

 

  

 




  
 

 

 (14) 

 

where, a-t > 0,2a-t > 0 and 3a-t > 0. 
Further, the mean and variance of the distribution are 

given respectively as: 

 

  2 111 2 3
ln

6
E X k

a

  
   

 

and: 

 

 
2 2

1 1 1 2 2

2

49 12 9 12 4

36
Var X

a

       
  

 

Proof 

We know that: 
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Equation (11) to get: 
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performing some algebra calculations we get: 
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The mean and variance have been obtained by 

differentiating Equation (14) i times (i = 1,2) with 

respect to t and setting t = 0. Table 1 and 2 show the 

mean and variance of CTEP-1-G for various 

combinations of model parameters respectively. 

From Table 1 it is observed that, holding the 

transmuted parameters 1 and 2 constants, as the 

shape parameter a increases the mean decreases. On 

the other hand, holding a constant, as the transmuted 

parameters 1 and 2 increase the mean also 

decreases. From Table 2 it is clear that, keeping the 

shape parameter a and transmuted parameters 1 

constants, as the transmuted parameter 2 increases 

the variance decreases. Further, keeping a constant, as 

1 increases the variance increases this for negative 

values of 2, while, for 2 > 0 the variance decreases. 

Order Statistics 

Let X1, X2,…, Xn ~iid CTEP-1-G(a, k, 1, 2). Then the 
pdf of the X(n) is given by: 
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where, z = kae-ax, x  ln k, a, k > 0. Using j = 1 and j = n 

we get the pdf of smallest X1:n and largest Xn:n order 

statistic respectively: 
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Parameters Estimation 

This subsection discusses the Maximum Likelihood 

Estimation (MLE) for parameters of CTEP-1-G 

distribution. 

Let X1, X2,…, Xn be a random sample of size n from 

CTEP-1-G distribution. Then the likelihood function is 

given by: 
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so, the log likelihood function is: 
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Since x  (ln k, ), the MLE of ln k is the first-

order statistic x(1). The log-likelihood can be 

maximized either directly or by solving the non-linear 

likelihood equations obtained by differentiating 

Equation (15). The components of the score vector are 
given by: 
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where, R1 = [3-2-1+2(22+1-3) iaxak e
 +3(1- 2) 

22 iaxak e ]. 

Now setting, 
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1

ln k
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= 0 and 

2

ln k




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= 0 and 

solving the nonlinear system of equations, the maximum 

likelihood estimates  1 2
ˆ ˆ ˆˆ, ,a    of  = (a, 1, 2) is 

obtained.

 
Table 1: Mean of CTEP-1-G distribution 

  a = 1   a = 3   a = 5 

  1   1   1 

  ------------------------------------------- -------------------------------------------- ------------------------------------------- 

  0.25 0.5 1 0.25 0.5 1 0.25 0.5 1 

2 -0.5 2.280465 2.155465 1.905465 1.030465 0.988798 0.905465 0.780465 0.755465 0.705465 

 0 2.113798 1.988798 1.738798 0.97491 0.933243 0.84991 0.747132 0.722132 0.672132 

 0.5 1.947132 1.822132 1.572132 0.919354 0.877687 0.794354 0.713798 0.688798 0.638798 

 1 1.780465 1.655465 1.405465 0.863798 0.822132 0.738798 0.680465 0.655465 0.605465 

 
Table 2: Variance of CTEP-1-G distribution 

  a = 1   a = 3   a = 5 

  1   1   1 

  --------------------------------------- ---------------------------------------- ------------------------------------------ 

  0.25 0.5 1 0.25 0.5 1 0.25 0.5 1 

2 -0.5 1.4427 1.5208 1.5833 0.1603 0.1690 0.1759 0.0577 0.0608 0.0633 

 0 1.4288 1.4653 1.4444 0.1588 0.1628 0.1605 0.0572 0.0586 0.0578 

 0.5 1.3594 1.3542 1.2500 0.1510 0.1505 0.1389 0.0544 0.0542 0.0500 

 1 1.2344 1.1875 1.0000 0.1372 0.1319 0.1111 0.0494 0.0475 0.0400 
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Cubic Transmuted Exponentiated Pareto-1-

R Distribution (CTEP-1-R) 

This section pertains to the second version of the 

Cubic Transmuted Exponentiated Pareto-1-R (CTEP-1-

R) using the cubic transmuted distributions proposed by 

(Rahman et al., 2018b), studding the Probability Density 

Function (pdf), Cumulative Distribution Function 
(CDF), survival and hazard functions, some statistical 

properties and parameters estimates. 

Density and Cumulative Function for CTEP-1-R 

Distribution 

Theorem 4 

Let X be a random variable with the CTEP-1-R 

distribution. The Cumulative Distribution Function 

(CDF) and the Probability Density Function (PDF) are 

defined, respectively, as: 
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and: 
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where, a, k are a shape and location parameters 

respectively and 1, 2 are transmuted parameters. 

Using Remark 1, Equation (17) can be rewritten in 

term of the random variable Z as follows: 
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Proof 

The proof is straightforward. Equation (16) is 

obtained by substituting Equation (8) into Equation (6) 

and performing some algebra calculations while 

Equation (17) is gotten from differentiating Equation 

(16) with respect to x. 

Lemma 4 

The limit of CTEP-1-R density as x  ln k is a(1+1) 

and as x   is 0. 

Proof 

See proof of Lemma 1. 

Lemma 5 

f(x) of Equation (17) is a probability density function. 

Proof 

To prove f(x) is a pdf, we need to prove f(x) 0 and 
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From Lemma (4)
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The proof of  
ln

1
k

f x dx


 is as follows: 

 

   

 

   

 

1

ln 0

1
2

1 2 2 1 2
0

1 1

1 2 2 1
0 0

1
2

2
0

1 2 2 1 2

1 2 2 3

1 2 2

3

1 2 1

k
f x f z dx

z z dx

dz zdx

z dz

    

   



    





      
 

    



      

 



 



 

 

This completes the proof of Lemma. 

Some of possible shapes of the pdf and cdf of CTEP-

1-R for different choices of parameters 1 and 2 setting 

a = 0.5 and k = 1 are illustrated in Fig. 3a and 3b 

respectively. Note that the pdf and cdf of the base 

distribution EP-1 are shown as a solid black curves. 

Survival and Hazard Function 

The survival and hazard functions for CTEP-1-R 

distribution are given below: 
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where, z = kae-ax. 

Figures 4a and 4b show the behavior of the survival and 

hazard functions of CTEP-1-R for the different choices of 

parameters 1 and 2 setting a = 0.5 and k = 1, where s(x) 

and h(x) of EP-1 distribution are shown as a solid black 

curves. Note that h(x) for EP-1 distribution is a constant 

function, that is h(x) = a if 1 = 2 = 0. 
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 (a) (b) 
 

Fig. 3: The pdf and cdf of CTEP-1-R for different values of parameter 1 and 2 setting a = 0.5 and k = 1 
 

 
 (a) (b) 
 

Fig. 4: The s(x) and h(x) of CTEP-1-R for different values of parameters 1 and 2 setting a = 0.5 and k = 1 
 

Statistical Properties 

In this subsection, some statistical properties for 

CTEP-1-R distribution are explained. These properties 

include moments and moment generating function. 

Moments 

Theorem 5 

If X is the random variable having the CTEP-1-R 

then the rth moment of X about the origin is: 
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Proof 

See proof of Theorem 2. 

Moments Generating Function 

Theorem 6 

If X is a random variable having the CTEP-1-R then 

the moments generating function of X is: 
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where, a-t > 0,2a-t > 0 and 3a-t > 0. 

Further, the mean and variance of the distribution are 

given respectively as: 
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Proof 

See proof of Theorem 3. 

The mean and variance have been abstracted from 

differentiating Equation (19) i times (i = 1,2) with 

respect to t and setting t = 0. Table 3 and 4 explain the 

mean and variance of CTEP-1-R for various 

combinations of model parameters respectively. 

From Table 3 and 4 it is observed that, holding the 

transmuted parameters 1 and 2 constants, as the shape 

parameter a increases the mean and variance decrease. On 

the other hand, holding a and 1 constants, as 2 increases 

the mean and variance are also decrease. 

Parameters Estimation 

This subsection discusses the Maximum Likelihood 

Estimation (MLE) for Parameters of CTEP-1-R 

distribution. 

Let X1, X2,…, Xn be a random sample of size n from 

CTEP-1-R distribution. Then the likelihood and log 

likelihood functions are given respectively by: 
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The MLE of ln k is the first-order statistic x(1). The 

maximum likelihood estimates of a, 1 and 2 are 

obtained by maximize Equation (20). The derivatives 

of Equation (20) with respect to the unknown 

parameters are: 
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where: 
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Now setting, 
ln k

a




= 0 

1

ln k






 = 0 and 

2

ln k






 = 0 and 

solving the nonlinear system of equations, the 

maximum likelihood estimates  1 2
ˆ ˆ ˆˆ, ,a   of  = 

(a,1,2) is obtained. 

 
Table 3: Mean of CTEP-1-R distribution 

  1 = -1 1 = -0.5 1 = 0 1= 0.5 1 = 1 

a = 1 2 = -1 2.2388 1.9888 1.7388 1.4888 1.2388 

 2 = -0.5 2.0721 1.8221 1.5721 1.3221 1.0721 

 2 = 0 1.9055 1.6555 1.4055 1.1555 0.9055 

 2 = 0.5 1.7388 1.4888 1.2388 0.9888 – 

 2 = 1 1.5721 1.3221 1.0721 – – 

a = 3 2 = -1 1.0166 0.9332 0.8499 0.7666 0.6832 

 2 = -0.5 0.9610 0.8777 0.7944 0.7110 0.6277 

 2 = 0 0.9055 0.8221 0.7388 0.6555 0.5721 

 2 = 0.5 0.8499 0.7666 0.6832 0.5999 – 

 2 = 1 0.7944 0.7110 0.6277 – – 

a = 5 2 = -1 0.7721 0.7221 0.6721 0.6221 0.5721 

 2 = -0.5 0.7388 0.6888 0.6388 0.5888 0.5388 

 2 = 0 0.7055 0.6555 0.6055 0.5555 0.5055 

 2 = 0.5 0.6721 0.6221 0.5721 0.5221 – 

 2 = 1 0.6388 0.5888 0.5388 – – 
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Table 4: Variance of CTEP-1-R distribution 

  1 = -1 1 = -0.5 1 = 0 1 = 0.5 1 = 1 

a = 1 2 = -1 1.3611 1.4653 1.3611 1.2986 1.0278 

 2 = -0.5 1.3333 1.3542 1.3333 1.0208 0.6667 

 2 = 0 1.2500 1.1875 1.2500 0.6875 0.2500 

 2 = 0.5 1.1111 0.9653 1.1111 0.2986 – 

 2 = 1 0.9167 0.6875 0.9167 – – 

a = 3 2 = -1 0.1512 0.1628 0.1605 0.1443 0.1142 

 2 = -0.5 0.1481 0.150 0.1389 0.1134 0.0741 

 2 = 0 0.1389 0.1319 0.1111 0.0764 0.0278 

 2 = 0.5 0.1235 0.1073 0.0772 0.0332 – 

 2 = 1 0.1019 0.0764 0.0370 – – 

a = 5 2 = -1 0.0544 0.0586 0.0578 0.0519 0.0411 

 2 = -0.5 0.0533 0.0542 0.0500 0.0408 0.0267 

 2 = 0 0.0500 0.0475 0.0400 0.0275 0.0100 

 2 = 0.5 0.0444 0.0386 0.0278 0.0119 – 

 2 = 1 0.0367 0.0275 0.0133 – – 

 
Table 5: Kevlar 49/epoxy strands failure times (pressure at 90%) (FTK) dataset 

0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.06 0.07 0.07 0.08 0.09 0.09 

0.1 0.1 0.11 0.11 0.12 0.13 0.18 0.19 0.2 0.23 0.24 0.24 0.29 0.34 0.35 

0.36 0.38 0.4 0.42 0.43 0.52 0.54 0.56 0.6 0.6 0.63 0.65 0.67 0.68 0.72 

0.72 0.72 0.73 0.79 0.79 0.8 0.8 0.83 0.85 0.9 0.92 0.95 0.99 1 1.01 

1.02 1.03 1.05 1.1 1.1 1.11 1.15 1.18 1.2 1.29 1.31 1.33 1.34 1.4 1.43 

1.45 1.5 1.51 1.52 1.53 1.54 1.54 1.55 1.58 1.6 1.63 1.64 1.8 1.8 1.81 

2.02 2.05 2.14 2.17 2.33 3.03 3.03 3.34 4.2 4.69 9.89 

 
Table 6: Failure Times of Components (FTC) dataset 

0.008 0.017 0.058 0.061 0.084 0.090 0.134 0.238 0.245 0.353 0.374 0.480 0.495 

0.535 0.564 0.681 0.686 0.688 0.921 0.959 1.022 1.092 1.260 1.284 1.295 1.373 

1.395 1.414 1.760 1.858 1.892 1.921 1.926 1.933 2.135 2.169 2.301 2.320 2.405 

2.506 2.598 2.808 2.971 3.087 3.492 3.669 3.926 4.446 5.119 8.596 

 

Table 7: Summary statistics for selected datasets 

 n Min Max Mean Median Skewness Kurtosis 

FTK 101 0.01 9.890 1.0447 0.8 4.0704 24.9668 

FTC 50 0.008 8.596 1.6728 1.33 1.9165 08.4351 

 
Table 8: Parameters estimates, -Log (L), k-s test value and p-value for the selected distributions for FTK dataset 

Distribution Parameters estimates   -log(L) k-s P-value 

EP-1 a = 0.9665   104.441 0.0984 0.282 

CTEP-1 a = 0.9444  = 0.1887  104.1523 0.08466 0.4641 

CTEP-1-G a = 1.3989 1 = 0.99 2 = -0.3735 102.2592 0.0824 0.4987 

CTEP-1-R a = 0.56539 1 = 0.81430 2 = 0.05022 103.2035 0.0922 0.3569 

 
Table 9: Parameters estimates, -log (L), k-s test value and p-value for the selected distributions for FTC dataset 

Distribution Parameters estimates   -log(L) k-s P-value 

EP-1 a = 0.6006   75.4877 0.0909 0.7694 

CTEP-1 a = 0.5983  = 0.0336  75.4832 0.0921 0.7552 

CTEP-1-G a = 0.8577 1 = 0.99 2 = -0.296 74.0117 0.061214 0.9863 

CTEP-1-R a = 0.3344 1 = 0.6582 2 = 0.3418 75.3877 0.08412 0.8419 
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Fig. 5: The pdf of the selected distributions for the two datasets 
 

Application of CTEP-1-G and CTEP-1-R 

distributions 

In this section the proposed distributions CTEP-1-G 

and CTEP-1-R are fitted to two real lifetime datasets to 

test their goodness of fit. Moreover, CTEP-1-G and 
CTEP-1-R are compared with some related distributions 

included the exponentiated Pareto-I (EP-I) and cubic 

transmuted exponentiated Pareto-I (CTEP-I) 

distributions. With a view to compare CTEP-1-G and 

CTEP-1-R some different comparison measures includes 

-log-likelihood and Kolmogorov-Smirnov (k-s) test are 

used. For the aim of the analysis we set ln k = 

exp[min(x)]. The computations are done by R. 

The first data in Table 5 is leptokurtic, bimodal, highly 

right skewed reported by (Barlow et al., 1984) represents 

the failure times of Kevlar 49/epoxy strands when the 
pressure is at 90% stress level (FTK) and used by 

(Andrews and Herzberg, 2012; Cooray and Ananda, 

2008; Al-Aqtash et al., 2014; Ansari and Eledum, 2020). 

The second data in Table 6 is leptokurtic bimodal, 

moderate right skewed adduced by (Murthy et al., 

2004) shows the Failure Times (in hours) of 50 

Components (FTC). 

Table 7 shows the summary statistics of the two 

datasets. Tables 8 and 9 respectively demonstrate the 

results obtained from the two datasets including 

maximum likelihood estimates and comparison measures 

for the fitted distributions. Moreover, the estimated pdf’s 
and cdf’s of (FTK) and (FTC) are displayed in Fig. 5a 

and 5b respectively. 

Based on the values of the k-s and its corresponding 
p-values in Table 8 we observe that all distributions fit 
the Kevlar 49/epoxy strands failure times data adequacy 

while the CTEP-1-G is the best one Fig. 5a. Moreover, 
CTEP-1-G has the minimum value of -log(L) (101.231). 
We conclude that the CTEP-1-G is the most appropriate 
model for FTK dataset. 

From the results of FTC dataset in Table 9 it is clear that 

all distributions fit the Failure Times of components data 

adequacy while the CTEP-1-G is the best one Fig. 5b and it 

has the minimum value of -log (L) (74.017). 

Hence we infer that the CTEP-1-G is the most 

appropriate model for FTC dataset. 

Conclusion 

In this study two new generalized models of the 
Exponentiated Pareto-I distribution Called (CTEP-I-G) and 

(CTEP-I-R) are introduced. Some statistical properties of 

the two distributions including survival and hazard 

functions, moments and moment generating function are 

studied. The models parameters are estimated by using the 

maximum likelihood method. Finally, an application of 

CTEP-I-G and CTEP-I-R to two real datasets and 

compared with the exponentiated Pareto-I and cubic 

transmuted exponentiated Pareto-1 distributions is 

illustrated. Based on applications results we conclude 

that the proposed distributions CTEP-I-G and CTEP-I-
R have fitted the two datasets better than other 

distributions, further among the proposed distributions 

the CTEP-I-G is the best. We recommend the proposed 

distributions for modelling the failure times datasets 

adequacy and hope that they would receive significant 

applications in the future. 
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