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Introduction

In the mathematical field of representation theory, the
representation of a Lie algebra is a way of writing a Lie
algebra as a set of matrices (or endomorphisms of a
vector space) in such a way that the Lie bracket is given
by the commutator. More precisely, a representation of a
Lie algebra g is a linear transformation:

yig—>M(V)

where, M(V) is the set of all linear transformations of a
vector space V. In particular, if V= R", then M(V) is the
set of n x n square matrices. The map v is required to be
a map of Lie algebras so that:

v[(AB)]=y(A)w(B)-v(B)w(A)

for all A, B € g. Note that the expression AB only makes
sense as a matrix product in a representation. For example,
if A and B are antisymmetric matrices, then AB-BA is
skew-symmetric, but AB may not be antisymmetric. The
possible irreducible representations of complex Lie
algebras are determined by the classification of the semi
simple Lie algebras. Any irreducible representation V of a
complex Lie algebra g is the tensor product V = V&L,
where Vy is an irreducible representation of the quotient
0ss|Rad(g) of the algebra g and its Lie algebra radical and
L is a one-dimensional representation. In the study of
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Abstract: For ge(0, 1), we introduce the g-Riccati Lie algebra. Using
the g-derivative (or Jackson derivative), we give a representation of this
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representations of a Lie algebra, a particular ring, called
the universal enveloping algebra, associated with the Lie
algebra plays an important role. The Riccati algebra is a
finite-dimensional linear space that is closed under
commutator, that is R is a Lie algebra.

In recent years the g-deformation of the Heisemburg
commutation relation has drawn attention. Leeuwen and
Maassen (1995) and many of other researcher like
(Altoum, 2018a; 2018b; Rguigui, 2015a; 2015b; 20164a;
2016b; 2018a; 2018b; Altoum et al., 2017), the purpose
is to study the probability distribution of a non-
commutative random variable a + a", where a is a
bounded operator on some Hilbert space satisfying:

aa —gaa=1, 1)

for some q € [-1, 1). The calculation is inspired by the
case, q = 0, where a and a" turn out to be the left and
right shift on I2(N): In this case a and a* can be quite
nicely represented as operators on the Hardy class 72 of
all analytic functions on the unit disk with L2 limits
toward the boundary. Subsequently, they find a measure
Hg, qe[0, 1), on the complex plane that replaces the
Lebesgue measure on the unit circle in the above: g is
concentrated on a family of concentric circle, the largest

1
N
space (Leeuwen and Maassen, 1995) will be $H2(Dq, 1),
the completion of the analytic functions on

of which has the radius . Their representation
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’qu{ZeC|Z|2< } with respect to the inner

1
(1-a)
product defined by 4. In this space annihilation operator
a is represented by a q difference operator Dg. As g tends
to 1, uq will tend to the Gauss measure on C and Dy
becomes differentiation. We recall some basic notations of
the language of g-calculus (Abdi, 1962; Adams, 1929;
Gasper and Rahman, 1990; Jackson, 1910; Leeuwen and
Maassen, 1995). For ge(0, 1) and analytic f: C — C define
operators Z and Dq as follows (Gasper and Rahman, 1990;
Jackson, 1910; Leeuwen and Maassen, 1995):

(zf)(z)=1f (2),

(o) f(@),
(D f)(z)=4 z(1-q)
f(0)

In this paper, we introduce the g-Riccati Algebra.
This paper is organized as follows: In Section 1, we
present preliminaries include g-calculus. In Section 2, we
introduce the g-Riccati algebra. In section 3, we give a
representation of this algebra.

Representation of the g-Riccati Algebra

Let ge(0, 1). Then, we define the g-Riccati Lie
algebra as follows:

R,=(AB,C,D)
such that:
1. [A, B]=AD.
2. [AC]=[2],CD.
3. [B,C]=qCD.
4. [A,D]=0.
5. [B,D]=(1-q)BD.
6. [C,D]=(1-q)[2]4CD.

Representation of the g-Riccati Algebra
Let Mog, M1,q and M4 given by:

My, =D,
M, , = XD,
M,,= XZDq

where, Dq and X are defined as follows:

Proposition 3.1

For ge(0, 1) we have:

i) [Mog, Mi,g] = MogHq
i) [Mog, M2,g] = [2]qM1,dHq
i) [Myg, Mz2g] = qM2qHq
where, Hq is given by H, f(x) = f(qx)
Proof
We have:

[Mqu,Mlqu:[Dq,XDq]
=D, XD, - XD, D,

But:

and:

f(x)- f(qx)j
x(1-q)
f(x)=f(ax) f(ax)+ f(a’%)
X gx

XD,D, f (x)= xDq[

X
1-q

x(1-q)

1 af(9)-af (@) f (@) + T (o)
B ax(1-q)

1-q
Then, we obtain:

_f(@)(1-a)-(1-q)f (a%x)

[Mo,q’MLq}f(X)* qx(l_q)z

f () f (a*)
© gx(1-q)

= qu(qx)
=D,H, f(x).

But:

21



Amna Hasan et al. / Journal of Mathematics and Statistics 2020, VVolume 16: 20.23
DOI: 10.3844/jmssp.2020.20.23

2 x) = x Xzf(x)—f(qx) 2 X) = x2 f(X)_f(qX)
DX Df( )_ Dq[ (1_q) ] X DqXqu( ) Dq[ (1_q) ]
L y x [ F(x)=f(ax)=f(ax)- f(a’x)
T De (XF (%)= xf (o)) —1_q[ e ]
1 ax)  xaf (qx) - xaf (a°x) X 2t (0)e £ (o
1[ x(1-q) ] _Q(l—Q)z(f( )21 (@) 1(5)
- )= (L+a) f (ax) +af (a°%)) Then, we get:
Similarly, we get: [MW Mz'q] f69= q(1iq)2 ((1_q) F#)-la-)r (qzx))
X?DZf (x)=x°D [f(x)— f(QX)J :@(f(qx)_f(q )
! '\ x(1-q) B Xz[f(qx)—f(qzx)]
of (x)-qf (ax) f(gx)+ f(qzx) ~d gx(1-q)
_x ax ax =qx°D, f (qx)
- x(1-9) = gX*D,H, f (x).
= q(ll—q)(qf (x)—(1+a) f (ax)+ f (a*x)) Proposition 3.2
For ge(0, 1) we have:
Which gives: i) [Mog, Hq] =0.
i) [Mag, Hol = (1-9)M1gHg.
(Mo M, ]= i 7((2+a)(—a+1) f () +(a* 1) F (o)) ) Mz, Hal = (1-)2JMzaHa
9(-9) ) Proof
=x(1+ q)[f(qx);xf(qx)] We have:
=x[2]aD, f (ax) [, Hq ] (%)= DyH f (x) =HD, f (x)
=[2A® A, ) AR
We have: F(e) - (o) f(ax)-F(a’))
~ gx(1-q) gx(1-q)
[M, .M, ]f(x)=[ XD, X*D, ] =0.
= XDy XD, ~ X*D XD, Then, we get:
) e x xf (x)— xf (ax) [MOq HJ:O.
XD, XD, f (x) = Dq[(lq) ]
[ X () = xf () - axf () + oxf (a%x) We have:
B x(1-9) [ XD, H, ] f ()= XD H, f (x) ~H, XD, f (x)
= (1_Xq)z ( f (X)_(1+q) f (qx)+qf (qzx)) =xD, f (gx)-H ( D, f x))

=xD, f (ax) —gxD, f (gx)

Similarly, we have: =(1-q) XD,H, f (x).
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Then, we get:
[Mo‘q, Hq] =(1-q)M,H,.
We have:

[ X?D,, H, | f(X)= XD H,f
=x’D, f (qx)—(qx)2 D, f (x)
=(1-9*)X*DH, f (x)

= (1-q)[2], XD,H, f ().

()= Ho (XD,  (x))

Then, we obtain:

|:M2,q' Hq:| = (1_q)[2]q MZ,qu'

which complete the proof.
Now, we give the representation theorem of the g-
Riccati algebra.

Theorem 3.3
Let ¢: Ry — gl(H%(Dq, 1)) a linear mapping such that:

Then, (H%(Dq; 1q), @) is a representation of Rg.

Proof

The proof follows from Proposition 3.1 and
Proposition 3.2.
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