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Abstract: A novel extension of the Inverted Exponentiated Weibull (IEW)
distribution is achieved through the utilization of the generator Alpha Power
(AP) transformation. The resulting extended distribution is denoted as the
Alpha Power Inverted Exponentiated Weibull (APIEW) distribution, which
encompasses various sub-models. The statistical characteristics of the newly
proposed distribution are established, encompassing the hazard rate
function, mean residual life, mean inactivity time, quantile function,
moments, Rényi entropy, and order statistics. The unknown parameters of
the proposed distribution are estimated via the maximum likelihood
estimation technique. Subsequently, two sets of application data are
employed to demonstrate the adaptability of the model.
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Introduction inverse Weibull distribution by Pararai et al. (2014),

the Kumaraswamy modified inverse Weibull
distribution by Aryal and Elbatal (2015), the reflected
generalized beta inverse Weibull distribution by
Elbatal et al. (2016), the Marshall-Olkin extended

The Inverse Weibull (IW) distribution is widely
employed in the field of life reliability and testing
research. It is considered the reciprocal counterpart of the

conventional Weibull distribution, as discussed by
(Drapella 1993; Mudholkar and Kollia 1994), This
distribution is utilized to characterize the deterioration of
mechanical parts within diesel engines, including
components like the crankshaft and pistons, as highlighted
by Keller et al. (1982). The expressions for the
Cumulative Distribution Function (CDF) and Probability
Density Function (PDF) of the IW distribution can be
respectively found in the following equations:

Fx)=e™ " x20,v>0,7>0 (1)
And:
fx) = v~ De= x> 0,v>0,7>0 )

where, v is the scale parameter and 7 is the shape
parameter.

Numerous generalizations of the inverse Weibull
distribution have been examined in recent years by
various researchers. These include the generalized inverse
Weibull distribution proposed by De Gusmédo et al.
(2011), the modified inverse Weibull distribution
introduced by Khan and King (2012), the beta inverse
Weibull model by Hanook et al. (2013), the gamma
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inverse Weibull distribution by Okasha et al. (2017);
Okasha et al. (2020a-b; 2021; 2022), the Bayesian
estimation of Marshall Olkin extended inverse Weibull
under progressive type Il censoring by Lin et al. (2023)
and the Generalized modified inverse Weibull
distribution by Saboori et al. (2020).

The focus is on the Inverted Exponentiated Weibull
(IEW) distribution, as introduced by De Gusmao et al.
(2012); and Lee et al. (2017) which is based on the

transformation z = % , Where X follows the Exponentiated

Weibull (EW) distribution. The Cumulative Distribution
Function (CDF) and Probability Density Function (PDF)
of the IEW distribution are provided accordingly:

FxX)=1-(1-e™")¥,x20v>0n>0&>0 (3)

And:
- e -1
f(x)=w7§x'("+1)e“’X (1—e ) X>0,v>0,7>0,&E>0 (4)

where,  and & are the shape parameters and v is the scale
parameter of IEW distribution. Bayesian parameter
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estimation of the IEW distribution has been previously
examined by Lee et al. (2017).

In contrast, (Mahdavi and Kundu, 2017) introduced a
modification to the underlying Cumulative Distribution
Function (CDF) by incorporating an additional parameter
to generate a range of distributions. This approach is
referred to as the Alpha Power Transformation (APT). If
F(x) represents the CDF of any distribution, then the CDF
and PDF of the APT can be expressed as:

A
gAPT(X): a-1 e 5)
F(x),a=1
And:
Log(a) F(x)
——f (X a>0a=l
gAPT(X): a-1 ()a “ “ (6)
f(X),azl

The APT distribution has been extensively studied, with
various distributions such as the alpha power Weibull
distribution by Nassar et al. (2017; 2019), the alpha power
Gompertz distribution by Eghwerido et al. (2021), the
alpha power transformed inverse Lindley distribution by
Dey et al. (2019), and alpha power inverse Weibull
distribution by Basheer et al. (2019; 2021; 2022).

The APIEW distribution is introduced in this study as
a new modification of the IEW distribution with four
parameters. It encompasses a range of lifetime
distributions, including the inverse exponential, inverse
Rayleigh, IW, alpha power IW, and IEW distributions, as
special cases. The APIEW distribution is highlighted due
to its inclusion of twelve-lifetime distributions as sub-
models and its PDF representation as a mixture of IW
distribution, which proves advantageous for deriving its
key properties.

Alpha Power
Distribution

Inverted Exponentiated Weibull

By inserting the CDF of the IEW distribution given by
(3) in the CDF of the APT distribution given by (5), we
get the CDF of a new distribution denoted as APIEW
(X;0,v,n,&) distribution given by:

1-(1—e’””’ )5
i ! 00500 %1

Gppr (X) = a-1
1—(1—e*“*’” )g,a:l

)

where, v> 0,7 >0, £> 0.

The PDF of APIEW distribution is defined as follows:

viglog(«) X~ (179’”7” )fﬁl&lﬁ(lfw ) x20,a>0a=1 (8)
Gper (X) = a-1

, I\
vpEx 1 g (1—9’vx ) a=1

where,v>0,7>0,¢>0.

Through the application of the generalized binomial
expansion and the power series, a valuable linear portrayal
of the Probability Density Function (PDF) is derived. (if
a>0,a#1l)as:

Gariew (X) = i Wiz (m +1) x 7B (meanct (9)
m=0

where:

k+1

[kj £(&i+&-1)Y(log(e))

J)(Ej+&E—m-1)I(m+1)k!(a—1)

W, =323 (1)
Several sub-models of the APIEW distribution are
enumerated in the Table (1).

Figure (1) provides a graphical illustration of the PDF
corresponding to various parameter values.

Reliability Analysis

The reliability function of APIEW distribution is
defined as follows:

a(l—a(lew)v },t >0,a>0,a#1

R(t)=1% "1 (10)

o\E
(1—e"" ”) La=1

Hazard Rate Function

The HR function of APIEW distribution is defined as
follows:

(l—e’"‘"’ )571
log(a)vpet e ——— L t20a>0a%1 (1])
“Lrafl-e)

h(t):%:

Vet g
1-e"’

The graphical representations of the HRF for various
parameter values are illustrated in Fig. (2).

Reversed Hazard Rate Function

The reversed hazard rate (RHR) function of APIEW
distribution is defined as follows:

e )™
log(a)vpet e X1 t500>0,a%1
“ e (12)
ri) -2 e

G(t) et e (l —e’ ) N

1-(1-e" )C o
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Table 1: Sub-models of the APIEW («a, v, 1, &) distribution

Parameters
Models
Inverted Exponentiated Weibull (IEW) 1 v n 13
Inverted Exponentiated Fréchet (IEF) 1 1 n 3
Inverted Exponentiated Rayleigh (IER) 1 v 2 g
Inverted Exponentiated Exponential (IEE) 1 v 1 g
Alpha Power Inverse Weibull (APIW) a v n 1
Alpha Power Fréchet (APF) o 1 n 1
Alpha Power Inverse Rayleigh (APIR) a v 2 1
Alpha Power Inverse Exponential (APIE) a v 1 1
Inverse Weibull (IW) 1 v n 1
Fréchet (F) 1 1 n 1
Inverse Rayleigh (IR) 1 v 2 1
Inverse Exponential (IE) 1 v 1 1
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Fig. 1: Plot of the PDF of the APIEW distribution for some

values of parameters
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Fig. 2: Plot of the HRF of the APIEW distribution for some
values of parameters
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Table 2: Some reliability of APIEW for selected values of A=1.3and f=5att=0.8

o & HRF MRL RHR MIT SMIT
0.3 15 1.21717 0.24858 24.2596 0.032402 0.050077
2.3 1.85296 0.18546 23.8596 0.032640 0.050439
0.8 15 0.79804 0.30161 24.5992 0.032202 0.049775
2.3 1.22173 0.22266 24.3706 0.032337 0.049977
1.4 15 0.60654 0.33461 24.7944 0.032088 0.049602
2.3 0.93246 0.24550 24.6654 0.032162 0.049714
2.6 15 0.43518 0.37224 25.0115 0.031963 0.049412
2.3 0.67272 0.27133 24.9943 0.031971 0.049424

Mean Residual Life

The MRL function is defined as follows:

u(t) —mft xg(x)dx—t,t =0

Proposition 3.1. The MRL function for a lifetime
random variable X following the APIEW distribution can
be expressed as:

1
p(t):%:ngowmv” (m+1)%7(1_%,v(m+1)r"]_t,77 1 (13)
Proof.

By employing the definition of MRL and using (9),
we get:

(o) ‘Wff xg(O)dx — t

R(t)zwmf x.vn (m

+ 1)x—(n+1)e—v(m+1)x Tdx — t
Put z = v(m + 1)x~"thus

1 1

= iwmv;(m +1)n y{l—l,v(m +1)t’7j—t
n

where, y(s,t) = [T x*'e ¥ dx,s > 0

Mean Inactivity Time

The MIT function is defined as follows:

t

1
t———= ] xg(x)dx,t =0

G(t) Jo

Proposition 3.2. The MIT function of a lifetime
random variable X with APIEW is given by:

m(t) =

1
L vv(m+1)%r[1_1,v(m+1)rv],n>1(14)
n

Proof.
By employing the proof of the MRL and the relation

T(c.t)=["x"%e™dx,c >0, we get the above result.

66

Strong Mean Inactivity Time

The Strong Mean Inactivity Time (SMIT) represents a
novel reliability metric introduced by the work by Kayid
and lzadkhah (2014). The definition of the SMIT:

M(t) = %fothG(x) dx =t?— x2g(x)dx,t =0

G(t)
The SMIT function of APIEW distribution is:

2
Gtt)éowmv”(m+1)%F(17§,v(m+1)t”’j,77>2 (15)
Table (2) Provides the numerical data pertaining to
HRF, MRL, RHR, and MIT (SMIT) corresponding to the
specific set of selected parameters v =1.3, # =5, and t =
0.8 for various parameter values. a and & Also, from
Table (2) we see the:

e The decrease in HRF is observed with the increase in
the MRL

e The increases in RHR are observed with the
decreases in the MIT(SMIT)

Statistical Properties

In this section, the statistical properties of the APIEW
distribution are examined, focusing on the quantile
function, moments, moment generating function, entropy,
and order statistics.

Quantile Function

The solution for the quantile function of a distribution
is obtained by solving the equation:
G(xy) =p,0<p<1 (16)

The quantile function of the APIEW distribution can
be expressed as follows proposition.

Proposition 4.1. If a random variable X follows an
APIEW (a,v,5,&) distribution, then the quantile function
of X can be determined by:

°

log( pe — p +1)]el‘ 17)
log(a«)

X, =G(p)= _Vllog[l—[l—
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Proof.
By considering the functionh-1-e™* ", the CDF of
the APIEW distribution g () _ & ~1.
-1

The p™ quantile function is derived by solving G(x) =

p and the obtained result is h—1—e™" by solving for x
we get:

1 —1/n

log( per — p+1)Jg“

xpzefl(p): _Tllog 1[1 log(a)

Statistical measures for the APIEW distribution can be
calculated based on Eq. (17), such as obtaining the 1%
quartile for p = 0.25, the median for p = 0.5, and the 3"
quartile for p = 0.75. In order to generate samples for the
APIEW distribution, Eq. (17) can be utilized.

Moments

The r"moments of the APIEW distribution are given
by the following proposition.

Proposition 4.2. If a random variable X follows an
APIEW (a,v,,¢) distribution, then the r'" moments of X
can be determined by:

(18)

r
= E(xr)z > W v (m +1)zr71“(1—:7j,77 >r

m=0

Proof.
From the definition of moments and utilizing Eq. (7),
it can be derived:

_E( ) ZW V}] m+1 J' X" 17+1e v(erl)Xﬂ]dX

PutZ = v(m+ 1)x~" Thus

m=0

m=E(X")= ZWV;(m+1)nr(1—n]n>r

where, I'(.) denotes the gamma function. Specifically, the
initial two moments can be calculated as:

=E(X)=

o 1 1
ZWmv”(m+1)nF[1—1),77>1
n

m=0
And:
L 2 2 5
1 = E(Xz) = > W, v7(m+1)y F(lf—],n >2
m=0 n

The subsequent formulas can also be utilized to
calculate the mean, variance, skewness, and kurtosis:

67

Mean = 4 = u,

—,uz,

5 =Bt + 3/13 and

(- )2

— At + 615 10°
(4 —#2)2

Table (3) Gives the median, skewness, kurtosis and
moments of APIEW distribution for specific parameters v
= 1.3 and n = 5. along with various values of the
parameters o and &,

uariance =

skewness =

) -3u*

kurtosis =

Moment Generating Function

The next proposition provides the moment-generating
function (MGF) of the APIEW distribution.

Proposition 4.3. If a random variable X follows an
APIEW (a,v,n,¢) distribution, then the MGF of X can be
determined by:

© f r
2

om=0I':

Ms

My (t) = (m+1)2r[1-;j,n>r (19)

r

Proof.
We can express:

[e3)

My (1) =f e™ g(x)dx

0

Upon utilizing the Taylor’s series expansion of the
function e, the expression simplifies to:

[oe] tr -
My (t) = ZFJ; x" g(x)dx
r=0

By applying the same method used for proving
moments, the result presented above is obtained.

Rényi Entropy

Rényi entropy of order ¢ is defined as:

Hs = 1 6log(f (g(x))%dx),6 20,6 = 1

Let X ~ APIEW(X;a,v,7,£) then:

1 log(a + e\
H‘,‘lglog['[o[ a( )Vl]cf (7+1) g ><(l—evx ) a

a ]d] 20)

Sn+o-1 N
-t Iog|:zwm1(a+m1) K I‘[mﬁ'(s_lﬂ

1-6 1=0 n
where:
em (KDY L8 +8(£-1))(log(a))™™ 22 0
mlikglouz:o( Y [ J[ ml J (a—l)'skll vTeTTe
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Table 3: Median and moments of APIEW for selected values of v=1.3andn=5

o g Median Mean Variance Skewness Kurtosis
0.3 15 0.99044 1.03516 0.04331 2.25544 15.1943
2.3 0.94313 0.96974 0.02181 1.50423 7.89711
0.8 15 1.04191 1.09113 0.05562 2.06334 13.3022
2.3 0.98298 1.01049 0.02657 1.34908 7.00147
14 15 1.07581 1.12584 0.06236 1.97078 12.5658
2.3 1.00861 1.03539 0.02894 1.26953 6.65369
2.6 15 1.11538 1.16533 0.06911 1.89135 12.0279
2.3 1.03788 1.06339 0.03105 1.19840 6.41016
Table (4) presents the Renyi entropy values (o |0) = 1_[9 (x)= Hlog e e (Pewx_,,);,lal,[\ke )

corresponding to the chosen parameters (v = 1.3 and 5 =
2.1) and various values of o, & and d. Also, from Table (4)
we see that the Rényi entropy increases when the «
increases (¢ decreases).

Order Statistics

The order statistics of a random sample Xj,..., Xn refer
to the ordered sample values. They are typically denoted
as Xin,..., Xnn. The PDF of the i order statistic X;., can be
expressed as:

(21)

Gin(0) = =g OGO 1= GI"Li=1,...,n

(- 1)‘(7l i)!

Hence the PDF of the i order statistics Xi.» of APIEW
distribution can be obtained by substituting from (7) and
(8) into (21), we get the i order statistics of APIEW
density function as follows:

9in (X) (i-1)Y(n-i)la-1

1-(1-¥)¢ i-1 o\
| e _q [ a (1_0!_(1-?); )]
a-1 a-1

where ¥ = g™,
The CDF of the i order statistics Xin can be
expressed as:

-3 Jfewre-ceor

Hence the CDF of the i*" order statistics Xin of
APIEW distribution can be obtained by substituting
from (7) into (23).

Xf(ml)\P (l— \I_,)é'fl al—(l—‘i’)f
(22)

(23)

Materials and Methods
Maximum Likelihood Estimation Method

This subsection discusses the Maximum Likelihood
Estimation (MLE) for the parameters ® = (o,v,7,¢) of the
APIEW distribution. Consider a complete random sample
of size n from the APIEW distribution, denoted as
X1,X2,...,Xn. The likelihood function can be expressed as:

68

Then, the logarithm of the likelihood function is given
by:

X,|®) =nlog(log())—nlog (e —1)+ nlog(vi&) — (1 +1)Zi£log(xi ) (24)

Upon deriving the first partial derivatives of the log-
likelihood function with respect to the parameters in ©,
we obtain a set of equations:

_vg X7+ (& —1)%|Og (1—e"’xf" ) + Iog(a)é[l— (e’

oL 19 5
azalog(arﬁﬁé(ka”’i) )- )
= 772x T+ (E- l)z X glog(a)Zx "p(L-w)

(26)

20 Sog(x) +vox loa(x) -v( -3 A0 )

+v§|og(a)§‘¥, (1-,) " x"log(x ) =0

and

%:g—znl“log(l—‘i’,)—Iog(a)il:(l—‘i’ifIog(l—W,):O (28)
where ¥ = e—vi .

Due to the complexity of these equations, explicit
solutions are not feasible. Therefore, numerical methods
become necessary for the estimation of the MLEs of the
parameters © = (a,v,7,<).

Table 4: Values of Rényi entropy of APIEW distribution

) o & R’enyi entropy
1.2 0.3 0.2 2.92597
1.5 0.42441

0.8 0.2 3.56940

1.5 0.64175

1.4 0.2 3.96504

1.5 0.75677

2.3 0.3 0.2 1.99853
1.5 0.16046

0.8 0.2 2.46871

1.5 0.38243

1.4 0.2 2.77052

1.5 0.50334
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Simulation

In this subsection, we examined the behavior of MLEs
derived from unspecified parameters. The simulation was
carried out using the Mathematica program and the
following is the technique that was followed for it:

1.  Two different sets of initial parameter values are
considered set(A): «=0.6,v=0.8,7=05and &=
0.3andset (B): «=0.3,v=0.5,7=0.7and £=0.6

2. 1000 random samples from different sample sizes n
=50, 100, 150, 200, 300 are generated using the (17)

3. The calculated Mean Squared Error (MSE) as well
as the Bias are then presented when the result has
been obtained

The MSE and bias of respective estimators are given by:
1000
o A A2 Biord
MES(8) = - oooz(@ 6)?, Bias(0)
= " 1000
~ 1000 Z (©-6)
i=1
where ® = (& ,V , 7, ¢).
Table (5) Hlustrates the Mean Squared Error (MSE)
and the bias value of the parameters. Moreover, it is

evident from Table (5) that the MSE (Bias) diminishes
with the increment in sample size.

Real Data

model for lifetime estimation, in comparison to
established distributions such as Alpha Power Inverse
Weibull (APIW), Inverted Exponentiated Weibull (IEW)
and Inverse Weibull (IW) distributions.

The first data set pertains to the mortality trends
attributed to the COVID-19 outbreak in the United
Kingdom over a span of 76 days, spanning from 15t
April to 30" June 2020. This dataset was initially
scrutinized by Mubarak and Al-Metwally, (2021). The
second dataset delineates the durations of waiting (in
minutes) prior to receiving customer assistance in a
financial institution. The second dataset has been
initially scrutinized by Ghitany et al. (2008). The first
data and second data are displayed in Table (6).

The MLEs of the APIEW distribution as well as
several other competing distributions are showcased in
Tables (7-8) for the first and second datasets,
respectively. Furthermore, Tables (7) and 8 also present
various goodness-of-fit metrics such as the Akaike
Information Criterion (AIC), Bayesian Information
Criterion (BIC), and Kolmogorov-Smirnov (K-S)
statistic along with their corresponding p-values for both
sets of data. Analysis of these tables reveals that the
APIEW distribution outperformed all other competitive
distributions, establishing itself as the most suitable
model for fitting the provided datasets. Figures (3-4)
exhibit the fitted PDFs, CDFs, RFs, and PP plots for the
APIEW distribution with respect to the first and second
datasets. These visual representations illustrate the

In this section, we conduct an analysis of empirical capacity of the APIEW distribution to closely
data to demonstrate the efficacy of the APIEW as a viable approximate the given datasets.
Table 5: MLE of parameters a, 4, fand 8
MSE(4 ) MSE(V) MSE(7) MSE(&)
APIEW (a, 4, B, 6) n Bias(& ) Bias(V) Bias(7) Bias(¢&)
50 0.637984 0.641329 0.100141 0.560831
0.384949 0.101142 0.113329 0.118349
100 0.586985 0.306908 0.058644 0.233698
0.295446 -0.095049 0.093508 0.027588
APIEW (0.6,0 150 0.506365 0.235828 0.037153 0.132643
8,0.5,0.3) 0.258647- 0.079209 0.072439 -0.018376
150 0.506365 0.235828 0.037153 0.132643
0.258647- 0.079209 0.072439 -0.018376
200 0.487527 0.155893 0.035711 0.065784
0.236805 -0.050396 0.068773 -0.006879
300 0.389554 0.113611 0.021887 0.019242
0.219046 -0.031330 0.045049 -0.003664
50 0.960334 1.276341 0.209416 0.704751
0.534367 0.232847 0.172251 0.091041
100 0.810275 0.890308 0.129319 0.672735
0.497137 0.112601 0.141588 0.075258
APIEW (0.3,0.5, 150 0.703661 0.660812 0.102225 0.652296
0.7,0.6) 0.438629 0.085103 0.109805 0.058749
200 0.650309 0.534065 0.078401 0.589692
0.395532 0.061709 0.091561 0.040322
300 0.203455 0.117308 0.026731 0.005775
0.075293 -0.058479 0.058635 -0.009791
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Table 6: The first data and second data

First 0.0587 0.0863 0.1165 0.1247 0.1277 0.1303 0.1652 0.2079 0.2395
data 0.2751 0.2845 0.2992 0.3188 0.3317 0.3446 0.3553 0.3622 0.3926
0.3926 0.4110 0.4633 0.4690 0.4954 0.5139 0.5696 0.5837 0.6197
0.6365 0.7096 0.7193 0.7444 0.8590 1.0438 1.0602 1.1305 1.1468
1.1533 1.2260 1.2707 1.3423 1.4149 1.5709 1.6017 1.6083 1.6324
1.6998 1.8164 1.8392 1.8721 1.9844 2.1360 2.3987 2.4153 2.5220
2.7087 2.7946 3.3609 3.3715 3.7840 3.9042 4.1969 4.3451 4.4627
4.6477 5.3664 5.4500 5.7522 6.4241 7.0657 7.4456 8.2307 9.6315
10.187 11.1429 11.2019 11.4584
Second 0.80 0.80 1.30 1.50 1.80 1.90 1.90 2.10 2.60
data 2.70 2.90 3.10 3.20 3.30 3.50 3.60 4.00 4.10
4.20 4.20 4.30 4.30 4.40 4.40 4.60 4.70 4.70
4.80 4.90 4.90 5.00 5.30 5.50 5.70 6.10 6.20
6.20 6.20 6.30 6.70 6.70 6.90 7.10 7.10 7.10
7.10 7.40 7.60 7.70 8.00 8.20 8.60 8.60 8.60
8.80 8.80 8.90 8.90 9.50 9.60 9.70 9.80 10.70
10.90 11.00 11.00 11.10 11.20 11.20 11.50 11.90 12.40
12.50 12.90 13.00 13.10 13.30 13.60 13.70 13.90 14.10
15.40 15.40 17.30 17.30 18.10 18.20 18.40 18.90 19.00
19.90 20.60 21.30 21.40 21.90 23.00 27.00 31.60 33.10
38.50

Table 7: MLEs and different statistics of APIEW for first data

Estimates Statistics
Distributions o v n & AIC BIC K-S P-Value
APIEW 0.9186 3.805 0.242 25.18 287.538 296.861 0.0563 0.9693
APIW 17.523 0.2617 0.9450 — 292.04 299.03 0.0796 0.7208
IEW — 1.621 0.46821 3.231 289.19 296.18 0.1009 0.4210
W — 0.6701 0.7896 — 294.34 299 0.1021 0.4059

Table 8: MLEs and different statistics of APIEW for second data

Estimates Statistics
Distributions a v n é AIC BIC K-S P-Value
APIEW 32.317 4,474 1.020 2.1 652.48 662.90 0.0549 0.9231
APIW 98.324 3.076 1.487 — 658.61 666.43 0.0876 0.4261
IEW — 7.832 1.1 1.49 668.52 676.34 0.1048 0.2218
W — 6.533 1.163 — 672.76 677.97 0.1166 0.1314
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and PP plot for the second data

Results and Discussion

Table (5) shows the numerical results of the
simulation applied to our model which had four
parameters using the maximum likelihood estimation
method where the results showed the small MSE and
bias of these parameters. Also, Tables (7-8) applied to
real data by our model show the suitability of these data
to our proposed model and Figs (3-4) support this. Thus,
our model appears to be a better fit for this data set than
many existing models.

Conclusion

Contemporary research has made a significant
contribution by introducing a novel extended distribution
utilizing the Alpha Power (AP) transformation on the
Inverted Exponentiated Weibull (IEW) distribution.
Referred to as the APIEW distribution, this new
distribution serves as a generalization of the IEW
distribution. Various statistical characteristics of the
APIEW distribution have been obtained and deliberated
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upon, such as the hazard rate function, mean residual
life, mean inactivity time, quantile function, moments,
Rényi entropy, and order statistics. Moreover, the
maximum likelihood estimation method has been
suggested for estimating the parameters of the APIEW
distribution, with the outcomes of a simulation study
endorsing the effectiveness of the MLE method in
parameter estimation. The efficacy of the model has
been exhibited through the application of two real
datasets, showcasing its practical utility. The proposed
distribution emerges as a more suitable model for fitting
such datasets compared to numerous existing models
and recently developed distributions. Subsequent
research endeavors may focus on exploring the
estimation challenges of the proposed model under
progressive type Il censoring. Additionally, a
comparison could be made between the traditional
parameter estimation techniques, such as the maximum
product of spacing and least squares methods, utilizing
the squared error loss and LINEX loss functions.
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