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Introduction

In the context of multiple regression analysis,
multicollinearity refers to a scenario where there is a
pronounced interconnection among the explanatory
variables (Wondola et al., 2020). The presence of
collinearity indicates that a substantial part of the
information in one or more of these covariates is
redundant. Habshah et al. (2009) pointed out that
collinearity, or non-orthogonality of the design matrix,
is an almost linear dependence between two or more
covariates. According to Silvey (1969); Belsley et al.
(1980), in cases where the variables exhibit linear
correlations, it is possible for one or more eigenvalues of
the model X'X to be relatively tiny. The presence of
collinearity causes difficulties in the estimation of model
parameters, variable selection and model interpretation.
When covariates in a regression model are not
orthogonal, inference based on estimates of model
parameters can be invalid. Multicollinearity leads to
increased variances in the estimated parameters, which
might result in the individual predictors appearing
statistically insignificant despite the overall model being
significant. When multicollinearity is present, it can
complicate the estimation of the beta coefficients and
their interpretation. As multicollinearity intensifies, the
confidence intervals for the regression coefficients
become wider and the t-statistics shrink in value. For
coefficients to be deemed statistically significant under
these conditions, they must be larger, implying that
rejecting the null hypothesis becomes more challenging
when multicollinearity exists. However, it's important to
note that large standard errors can arise from factors
other than multicollinearity (Oke et al., 2019).

While the model's predictive performance may
remain unaffected. When the focus of the investigation
is to determine how the covariates' independent effects
differ from one another, the existence of collinearity
presents a substantial obstacle. The reason for this
phenomenon is that when collinearity is present, the
estimates of regression coefficients become less stable,
resulting in larger Standard Errors (SEs) for these
coefficients. In addition to the collinearity problem,
although multiple linear models are widely used, it is
well known that atypical observations can have a high
impact on parameter estimates, predicted values and
estimates of the covariance matrix; Cook (1977).
Although there are many procedures used to detect
collinearity, they are generally based on ad-hoc
practical rules and are often unreliable with
unquantifiable error rates. These procedures can be
categorized as those based on three key aspects to
consider in this study: (i) The correlation among
covariates, (ii) The structure of the design matrix and
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(iii) Descriptive indices such as the condition index
discovered by Belsley et al. (1980) and the factor of
inflation variance (VIF) as discussed in Kutner et al.
(2005); Fox and Monette (1992); Hair et al. (2014).

It is important to note that even these descriptive
indices are not without their critics (for example, Gunst,
1984; O’brien, 2007) and new qualitative measures
continue to be recommended; see, for example,
Chennamaneni et al. (2016). Farrar and Glauber (1967)
introduced an inferential technique for evaluating
collinearity in linear models by examining deviations
from orthogonality in the design matrix. However, this
method has faced significant criticism from researchers
such as O’Hagan and McCabe (1975); Wichers (1975);
Haitovsky (1969). Based on the current state of
knowledge, it appears that there are no alternative
methodologies currently accessible for assessing
collinearity in linear models. Subjective diagnostics have
become increasingly prevalent in contemporary research.
A notable example is the R package mctest, which was
introduced by Imdadullah ef al. (2016). In general, the
user is left to rely upon rule-of-thumb criteria to judge the
severity of collinearity. Furthermore, if an observation in
a linear model has a large value on two or more covariates,
artificial collinearity may be induced. The effect of such
collinearity in regression models, especially in biological
science where covariates are strongly correlated is not
totally studied. The aforementioned literature, including
Sengupta and Bhimasankaram (1997); Walker and Birch
(1988); Mason and Gunst (1985), demonstrates that there
exists a resemblance between the outcome and an
estimated linear relationship.

The objectives of this study are: (i) To evaluate how the
diagnostic measures (individual and overall) are affected by
atypical observations; (ii) To assess the performance of the
collinearity indices by simulations; (iii) To apply the new
indices to real-world morphological and agricultural data
sets with different collinearity structures and atypical cases.
All numerical evaluations carried out in this study were
implemented in the R software (Core Team, 2016).

Materials and Methods

Collinearity Indices

The collinearity diagnostic measures used and
implemented in R with the mctest package proposed by
(Imdadullah et al., 2016), are described by these authors
as detailed below.

Overall Collinearity Diagnostic Measures
Determinant

The matrix X X will exhibit singularity if it possesses
linearly dependent columns or rows. Hence, the
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determinant of the normalized correlation matrix R, which
is obtained by multiplying the transpose of matrix X with
X and excluding the intercept term, might serve as an
indicator for the presence of collinearity among the
regressors. Nevertheless, it is remarkable to note that the
determinant of a matrix does not offer insights into the
dependency between regressors. Instead, it merely
indicates the singularity or departure from orthogonality
of a correlation matrix. According to Cooley and Lohnes
(1971), the value of XX on the scale falls within the range
of 0<|X'X|<1. According to Asteriou and Hall (2007), if
the determinant of the value X'X is around zero, it
indicates a presence of collinearity among the regressors.

R-Squared

R?is obtained by doing a regression analysis of all x
variables on y. According to Stock and Watson (2010), R?
exhibits a monotonically non-decreasing relationship with
the number of regressors incorporated into the model. In
other words, R? serves as an indicator of the extent to
which the regression accurately captures the data.
Conversely, when the R? values increase, there is a greater
likelihood of the regressors being affected by
multicollinearity, as the R? is influenced by the regressors
sharing their variances (Asteriou and Hall, 2007).

Farrar x*

It is the Chi-square test for detecting the strength of
collinearity over the complete set of regressors. y? =

I a2
[n ! 6(2p+5)]XZ0g"’[XX] l‘bv%p(p—l)-

Collinearity exists among regressors
Xfp(p_l)(Farrar and Glauber, 1967).

if x?>
Condition Index

méx(/lj)

4

= J=12 s M 2 Ay =2 A,

Collinearity exists if any of CI; >10, 15 or 30
(Belsley et al., 1980; Chatterjee and Hadi, 2013).

Sum of Reciprocal of Eigenvalues

In an orthogonal system 2?:1,%. = p, therefore, for a
sample based correlation matrix R with eigenvalues A;,
comparing p with 2721% can be used to indicate

J

. . 1 . .

collinearity. If 21};1/1_,- is (say) five times larger than the

number of regressors used in the model then collinearity
exists among regressors (Chatterjee and Price, 1977;
Dillon and Goldstein, 1984).
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Theil’s Indicator

Theil (1971) proposed a measure of collinearity based
on an incremental contribution (R? — R?) to the squared
multiple correlation, where Rjz is the R? from auxiliary
regression of regressors:

14
m = R? - Z(R2 - R%)
i=1

If m = 0 then all X'’s are mutually uncorrelated (no
redundancy exists) as the incremental contribution all
add up to R%. However, if m~1 then Collinearity exists
among regressors.

Red Indicator

In their study, Kovacs et al. (2005) introduced a novel
and synthetic normalized indicator for diagnosing
collinearity. This indicator leverages eigenvalues or
quantifies the average correlation of the data:

2= - 1)*

p
p—1

Red =

In the event that the value of the Red indicator is zero
(Red = 0), it signifies the lack of redundancy, while a
value close to 1 (Red ~ 1) indicates the presence of
maximal redundancy.

Individual Collinearity Diagnostic Measures
Klein’s Rule

If the value of R, obtained from the auxiliary
regression exceeds the total R?> obtained from the
regression of y on all the regressors, it suggests the
presence of potential issues with multicollinearity. The
decision rule for the discovery of collinearity is.,

RJZ(j.xl,xz,...,xp > R_’)Zl.xl,xz,...,Xp (Klein, 1969)
VIF and Tol

The Variance Inflation Factor (VIF) quantifies the
extent to which the variances of the predicted regression
coefficients are amplified when there is no connection
among the p regressors. The significance of the diagonal

elements in the ((X’X)™!)matrix for identifying
multicollinearity is widely recognized:
=(X'X)7l=— =1 —1_R?
VIF; = (XX)j} = =z and Tol = 77 = 1 — K

The criticism on VIF is that var(B;) = ;—:2 VIF depends
i

on o2, Zx]-z and VIF, which shows that a high VIF can be
counterbalanced by a low % or high ¥ x?. So a high VIF
is neither a necessary nor a sufficient measure of
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multicollinearity. The value of VIF >3, 5,10 or value of
Tol~0 indicates existence of collinearity among
regressors (Neter et al., 2004).

Eigenvalues

Kendall (1957); Silvey (1969) proposed use the
eigenvalues of the correlation matrix (X 'X) as a means to
assess the existence of multicollinearity. They established
that small eigenvalues, which are close to zero, serve as
an indication of high collinearity. However, they did not
specify the precise threshold for determining the degree
of smallness. The presence of one or more lower
eigenvalues in the matrix X'X or its corresponding
correlation matrix is indicative of collinearity.

CVIF

Curto and Pinto (2011) introduced a novel metric
for assessing multicollinearity, which aims to quantify
the influence of intercorrelation among independent
variables on the variance of the Ordinary Least Squares
Estimators (OLSEs):

1-R?
1-R2

CVIF; = VIF; x

2
yxp:

where, R2
CVIF; > 10.

RZ,1 + Ry, + -+ + R2,,. Collinearity exists if

Leamer’s Methods

Leamer in Greene (2002) suggested a measure of the
effect of multicollinearity for the /" variable:

( ?:1(Xij —)?j)z)_l (7)

xX);}

=

This measure is the square root of the ratio of variances
of estimated coefficients (f;) when estimated without and
with the other regressors. If X; is uncorrelated with the
other regressors C; would be 1 otherwise will be equal to

1 .. . . .
(1 —R]-Z)z, i.e., C;~0 indicates existence of collinearity
among regressors.

F and R? Relation

The relationship of F-test and R from regressing X ; on
the other remaining regressors can be used to detect
multicollinearity. The relationship is described as:

Raztj,xl,...,xp
_p-2
1- R}%j,xl ..... Xp

n—-p+1

F; =

Jj ~Fp-2n-p+1)s
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where, F* = F,_, ,_,4+1. If F; > F*, then it means that the
regressor X; is collinear with other regressors and it should
be dropped from the model (Gujarati and Porter, 2003).

Farrar w

It is an F-test for locating the regressors which are
collinear with others and it makes use of multiple
correlation coefficients among regressors:

n—p
<p _ 1) ~F("—P.P_1)

2

_ B
YT R
J

If w; > F,_p -1y, there is indication of considerable
collinearity (Farrar and Glauber, 1967).

Most of the overalland individual measures to detect
multicollinearity described above are included in the R
mctest package, which mainly implements functions
for detecting multicollinearity between covariates
using the omcdiag () functions in the case of general
measures and imcdiag () for individual measurements
(Imdadullah et al., 2016).

Simulation Studies
Simulation [

The primary objective of the initial Monte Carlo
simulation study is to accomplish the following: (a)
Demonstrate the application of collinearity tests; (b)
Determine the accuracy rate of correctly identifying
collinearity cases using collinearity indices; (¢) Compute
the Mean Squared Error (MSE) of the regression
coefficient estimators; and (d) Compare various widely-
used overall and individual collinearity measures. The
commonly utilized comprehensive measures include the
Farrar-Glauber (FG) test, Determinant of the matrix X X
(DE), Red Indicator (RI), Sum of Reciprocals of
eigenvalues (SR), Theil Indicator (TI) and Condition
Number (CN). On the other hand, the prevalent individual
measures consist of VIF, Tolerance Limit (TL), WI and F1
statistics, Leamer Indicator (LI), Corrected VIF (CVIF)
and Klein Indicator (KI). It should be noted that the
standard indices mentioned are implemented in the R
package mctest. For more comprehensive information,
please refer to the study conducted by Imdadullah et al.
(2016) and the references provided therein. The
simulation is grounded on the linear regression model,
which is formally stated as:

Y =By + B1Xy + BoXy + B3Xs + ¢

where the random error € is generated from the N(0,1)
distribution.

Three covariates X;, X, and X5, where $X; = kX,, with
k € {1/4, 2} were considered. Three distributions are used
to generate X; and X,: uniform, normal and exponential.
We set B =0, B, =1, B, =1 and B; =1, considering
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10000 simulations and six sample sizes: ne€
{7,10, 20,30, 50, 100}. Furthermore, we assume the linear
model with heteroscedastic and homoscedastic errors.

Simulation 11

A second simulation study is conducted to consider the
effects of outlier contamination on the percentage of
correctly identified collinearity cases by two of the current
indicators, overall measure F'G and individual measure FI.

In the scenario, a linear model includes three
covariates, labeled X;, X, and X5,. The first two covariates,
X, and X,, originate from a normal distribution. The third
covariate, X3, is defined as a multiple of kX,, specifically
with k € {1/4,2} were considered.

The random errors ¢, are generated from the N(0,1)
distribution but are contaminated at random with 5, 10, 15
and 20% of outliers which are generated from the N(0,4)
distribution. The simulations are carried out for sample
size n € {7, 10,20, 30,50, 100}.

Application to Real-World Data Sets
Corn Data

To manage corn production, it is important to estimate
the yield potential. To do this, the grain yield, Y, is
considered as a function of the covariates: Distance
between rows, X;, number of corncobs per m?, X, and
number of grains per corncob, X;. The objective is to build
a model with the yield of corn as the response and using
the other measurements as covariates. The fitted model
can then be used to predict corn yield in future years.

Fig. 2: Landmarks used for extracting truss measurements from
C. macropomum
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Table 1: Truss measurements from C. macropomum specimens

Tip of snout to end of epiphyseal sulcus

Tip of snout to insertion of pectoral fin

Anterior edge of the epiphyseal sulcus to the end of the
epiphyseal sulcus

Anterior edge of the epiphyseal sulcus at the insertion of the
pectoral fin

Anterior edge of the epiphyseal sulcus when articulating
Articulate to insertion of pectoral fin

Posterior edge of epiphyseal sulcus to end of dorsal fin
Posterior edge of the epiphyseal sulcus at the insertion of the
pelvic fin

Posterior edge of the epiphyseal sulcus to the insertion of the
pectoral fin

Posterior edge of the epiphyseal groove when articulating
Insertion of pectoral fin to insertion of pelvic fin

Dorsal fin base

Anterior edge of dorsal fin to anterior edge of anal fin

Anterior edge of dorsal fin to insertion of pelvic fin

Anterior edge of dorsal fin to insertion of pectoral fin

Insertion of pelvic fin to end of anal fin

Posterior edge of dorsal fin to the fatty fin

Posterior edge of dorsal fin to posterior edge of anal fin
Posterior edge of dorsal fin to anterior edge of anal fin
Posterior edge of dorsal fin to insertion of pelvic fin

Anal fin base

Posterior edge of the fatty fin to the last scale of the lateral line
Posterior edge of fatty fin to posterior edge of anal fin
Posterior edge of the fatty fin to the anterior border of the anal
fin

Posterior edge of the fatty fin to the anterior border of the anal
fin

Eye diameter

Head length

Fat fin base

Fish Morphology

The present study involved the analysis of 92
specimens of Colossoma macropomum (refer to Fig. 1)
obtained from artificial ponds located at the Papelon fish
station in Venezuela. The specimens had an average
weight of 600 g. The study employed the "Truss protocol"
or "trusses" approach proposed by Strauss and Bookstein
(1982). This method enables a comprehensive
reconstruction of the shape by utilizing the distances
between homologous anatomical landmarks, as presented
in Table 1 and Fig. 2. The landmarks are connected by
distances that create a sequence of uninterrupted
quadrilaterals, each with its own internal diagonals (refer
to Fig. 2). This arrangement enables the identification of
variations in shape along the vertical, horizontal and
oblique orientations.
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Results and Discussion
Simulation [

Tables 2-7 report the percentage of correctly
identified collinearity cases for the overall and
individual collinearity measures, whereas Table 8
presents the empirical mses of the estimators for the
regression coefficients. From Tables 2-7, using
uniform, normal and exponential distributions for X;
and X, and with heteroscedastic and homoscedastic
errors, note that for the FG (overall) and Fi (individual)
collinearity indices, the percentage of cases of
collinearity correctly identified exceeds the values for
all the other measures and that the percentage increases
as n increases.

In Table 8, using uniform, normal and exponential
distributions for X; and X,, observe that the empirical
MSE of the estimators of the regression coefficients

decreases as the sample size increases, which shows the
empirical consistency of the OLS estimators of the
regression coefficients. The three scenarios considered
(uniform, normal and exponential distributions) produce
very particular results in relation to the empirical MSE of
B;, which measures the effect of the covariate Xj,
expressed as a linear combination of X; and X,. This
estimator (f;) has an MSE close to zero, in addition to
being the smallest in comparison to the MSE of the other
three estimators (B, fjand f,). In summary, this
simulation study quantifies the effect of the degree of
collinearity on the collinearity measures. In particular, the
FG and Fi collinearity indices more robust as both sample
size and collinearity degree increase. This is a major
advantage since collinearity is a matter of degree and not
simply presence or absence of collinearity. Likewise, the
results show the superiority of these indices compared to
the other used measures.

Table 2: Percentage of correctly identified Collinearity cases, for various values of k and n, where X; and X, follow uniform distributions, X; = kX,

and with heteroscedastic errors

% of correct collinearity

X3 Collinearity
= kX, measurement Index or test n=7 n=10 n=20 n=30 n=>50 n=100
k=1/4 Overall FG 0.0057 0.0353 0.1527 0.2677 0.4821 0.8385
Det 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000
Red Ind 0.2621 0.1148 0.0125 0.0013 0.0000 0.0000
Sum lambda 0.0494 0.0061 0.0000 0.0000 0.0000 0.0000
Theil 0.0422 0.0066 0.0000 0.0000 0.0000 0.0000
CN 0.0687 0.0161 0.0003 0.0000 0.0000 0.0000
Individual VIF 0.0105 0.0009 0.0000 0.0000 0.0000 0.0000
TOL 0.0105 0.0009 0.0000 0.0000 0.0000 0.0000
Wi 0.0095 0.0037 0.0009 0.0006 0.0013 0.0082
Fi 0.2411 0.3411 0.6017 0.7543 0.9132 0.9940
Leamer 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
CVIF 0.0132 0.0168 0.0295 0.0356 0.0441 0.0495
Klein 0.0152 0.0024 0,000 0.0441 0.0495 0.0000
k=2 Overall FG 0.3348 0.9734 1.0000 1.0000 1.0000 1.0000
Det 0.0581 0.0078 0.0000 0.0000 0.0000 0.0000
Red Ind 0.9822 0.9888 0.9883 0.9997 1.0000 1.0000
Sum lambda 0.8534 0.8452 0.8698 0.8819 0.9296 0.9737
Theil 0.1886 0.0621 0.0022 0.0000 0.0000 0.0000
CN 0.9970 0.9989 1.0000 1.0000 1.0000 1.0000
Individual VIF 0.6819 0.6281 0.5488 0.5065 0.4552 0.3862
TOL 0.6819 0.6281 0.5488 0.5065 0.4552 0.3862
Wi 0.6536 0.8497 0.9990 1.0000 1.0000 1.0000
Fi 0.9943 0.9999 1.0000 1.0000 1.0000 1.0000
Leamer 0.0295 0.0037 0.0000 0.0000 0.0000 0.0000
CVIF 0.0009 0.0002 0.0001 0.0000 0.0000 0.0000
Klein 0.1386 0.1052 0.0356 0.0130 0.0013 0.0000
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Table 3: Percentage of correctly identified Collinearity cases, for various values of k and n, where X; and X, follow uniform distributions, X; = kX,
and with homoscedastic errors

% of correct collinearity

X; = Collinearity

kX, measurement Index or test n=7 n=10 n=20 n=30 n=>50 n=100

k=1/4 Overall FG 0.0052 0.0242 0.0862 0.1361 0.2369 0.5006
Det 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
Red Ind 0.2202 0.0836 0.0067 0.0009 0.0000 0.0000
Sum lambda 0.0421 0.0047 0.0000 0.0000 0.0000 0.0000
Theil 0.0518 0.0119 0.0002 0.0000 0.0000 0.0000
CN 0.0192 0.0024 0.0000 0.0000 0.0000 0.0000

Individual VIF 0.0073 0.0006 0.0000 0.0000 0.0000 0.0000

TOL 0.0073 0.0006 0.0000 0.0000 0.0000 0.0000
Wi 0.0065 0.0027 0.0002 0.0000 0.0002 0.0001
Fi 0.1939 0.2541 0.4412 0.5643 0.7347 0.9196
Leamer 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CVIF 0.0177 0.0214 0.0324 0.0388 0.0449 0.0619
Klein 0.0230 0.0060 0.0001 0.0000 0.0000 0.0000

k=2 Overall FG 0.1401 0.8255 1.0000 1.0000 1.0000 1.0000
Det 0.0177 0.0017 0.0000 0.0000 0.0000 0.0000
Red Ind 0.9157 0.9084 0.9085 0.9122 0.9331 0.9684
Sum lambda 0.5979 0.4828 0.2997 0.2087 0.1133 0.0313
Theil 0.1618 0.0555 0.0023 0.0000 0.0000 0.0000
CN 0.8662 0.8411 0.8365 0.8374 0.8769 0.9214

Individual VIF 0.3787 0.2427 0.0702 0.0292 0.0040 0.0000

TOL 0.3787 0.2427 0.0702 0.0292 0.0040 0.0000
Wi 0.3506 0.4866 0.9282 0.9963 1.0000 1.0000
Fi 0.9641 0.9970 1.0000 1.0000 1.0000 1.0000
Leamer 0.0077 0.0004 0.0000 0.0000 0.0000 0.0000
CVIF 0.0063 0.0025 0.0001 0.0000 0.0000 0.0000
Klein 0.1274 0.0935 0.0286 0.0097 0.0008 0.0000

Table 4: Percentage of correctly identified Collinearity cases, for various values of k and n, where X; and X, follow normal distributions, X; = kX,
and with heteroscedastic errors

% of correct collinearity

X; = Collinearity

kX, measurement Index or test n=7 n=10 n=20 n=30 n=>50 n=100

k=1/4 Overall FG 0.0248 0.2409 0.8410 0.9745 0.9994 1.0000
Det 0.0032 0.0000 0.0000 0.0000 0.0000 0.0000
Red Ind 0.5676 0.4372 0.2055 0.1054 0.0296 0.0008
Sum lambda 0.1798 0.0635 0.0031 0.0006 0.0000 0.0000
Theil 0.0531 0.0074 0.0001 0.0000 0.0000 0.0000
CN 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

Individual VIF 0.0724 0.0180 0.0003 0.0000 0.0000 0.0000

TOL 0.0724 0.0180 0.0003 0.0000 0.0000 0.0000
Wi 0.0663 0.0574 0.1277 0.2829 0.7156 0.9984
Fi 0.6328 0.8448 0.9920 0.9998 1.0000 1.0000
Leamer 0.0013 0.0000 0.0000 0.0000 0.0000 0.0000
CVIF 0.0030 0.0018 0.0008 0.0002 0.0001 0.0000
Klein 0.0049 0.0002 0.0000 0.0000 0.0000 0.0000

k=2 Overall FG 0.9335 0.9998 1.0000 1.0000 1.0000 1.0000
Det 0.5883 0.4866 0.2877 0.0230 0.0991 0.0245
Red Ind 0.9997 0.9999 1.0000 1.0000 1.0000 1.0000
Sum lambda 0.9974 0.9995 1.0000 1.0000 1.0000 1.0000
Theil 0.2354 0.0804 0.0027 0.0002 0.0000 0.0000
CN 0.2376 0.1287 0.0275 0.0067 0.0003 0.0000

Individual VIF 0.9970 0.9977 0.9999 1.0000 1.0000 1.0000

TOL 0.9970 0.9977 0.9999 1.0000 1.0000 1.0000
Wi 0.9895 0.9995 1.0000 1.0000 1.0000 1.0000
Fi 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000
Leamer 0.4959 04111 0.2436 0.1746 0.0842 0.0219
CVIF 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
Klein 0.1533 0.1063 0.0370 0.0168 0.0014 0.0000
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Table 5: Percentage of correctly identified Collinearity cases, for various values of k and n, where X; and X, follow normal distributions, X; = kX,
and with homoscedastic errors

% of correct collinearity

X; = Collinearity
kX, measurement Index or test n=7 n=10 n=20 n=30 n=>50 n=100
k=1/4 Overall FG 0.0043 0.0234 0.0844 0.1374 0.2411 0.4974
Det 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
Red Ind 0.2238 0.0833 0.0059 0.0006 0.0000 0.0008
Sum lambda 0.0447 0.0034 0.0000 0.0000 0.0000 0.0000
Theil 0.0555 0.0130 0.0001 0.0000 0.0000 0.0000
CN 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Individual VIF 0.0079 0.0004 0.0000 0.0000 0.0000 0.0000
TOL 0.0079 0.0004 0.0000 0.0000 0.0000 0.0000
Wi 0.0072 0.0014 0.0000 0.0003 0.0002 0.0004
Fi 0.1918 0.2526 0.4338 0.5633 0.7420 0.9201
Leamer 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
CVIF 0.0195 0.0217 0.0319 0.0373 0.0418 0.0620
Klein 0.0277 0.0063 0.0000 0.0000 0.0000 0.0000
k=2 Overall FG 0.1396 0.7817 0.9994 1.0000 1.0000 1.0000
Det 0.0187 0.0011 0.0000 0.0000 0.0000 0.0000
Red Ind 0.8805 0.8795 0.8773 0.8887 0.9102 0.9465
Sum lambda 0.5559 0.4653 0.3052 0.2232 0.1305 0.0433
Theil 0.1631 0.0532 0.0018 0.0002 0.0000 0.0000
CN 0.0147 0.0011 0.0000 0.0000 0.0000 0.0000
Individual VIF 0.3514 0.2446 0.0912 0.0407 0.0081 0.0001
TOL 0.3514 0.2446 0.0912 0.0407 0.0081 0.0001
Wi 0.3277 0.4657 0.8842 0.9918 1.0000 1.0000
Fi 0.9385 0.9935 1.0000 1.0000 1.0000 1.0000
Leamer 0.0090 0.0009 0.0000 0.0000 0.0000 0.0000
CVIF 0.0081 0.0058 0.0012 0.0002 0.0000 0.0000
Klein 0.1293 0.0862 0.0261 0.0105 0.0008 0.0000

Table 6: Percentage of correctly identified Collinearity cases, for various values of k and n, where X; and X, follow exponential distributions, X3 =
kX, and with heteroscedastic errors

% of correct collinearity

X; = Collinearity
kX, measurement Index or test n=7 n=10 n=20 n=30 n=50 n=100
k=1/4 Overall FG 0.0033 0.0175 0.0395 0.0462 0.0510 0.0675
Det 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
Red Ind 0.1988 0.0582 0.0018 0.0002 0.0000 0.0008
Sum lambda 0.0389 0.0030 0.0000 0.0000 0.0000 0.0000
Theil 0.1004 0.0315 0.0012 0.0000 0.0000 0.0000
CN 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
Individual VIF 0.0044 0.0001 0.0000 0.0000 0.0000 0.0000
TOL 0.0044 0.0001 0.0000 0.0000 0.0000 0.0000
Wi 0.0038 0.0007 0.0000 0.0000 0.0002 0.0004
Fi 0.1553 0.1682 0.2513 0.2881 0.3397 0.4255
Leamer 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CVIF 0.0312 0.0268 0.0200 0.0101 0.0031 0.0002
Klein 0.0663 0.0294 0.0027 0.0000 0.0001 0.0000
k=2 Overall FG 0.0076 0.0608 0.2801 0.4617 0.7446 0.9763
Det 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000
Red Ind 0.3127 0.1548 0.0294 0.0073 0.0003 0.0000
Sum lambda 0.0727 0.0106 0.0001 0.0000 0.0000 0.0000
Theil 0.1174 0.0411 0.0032 0.0001 0.0000 0.0000
CN 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
Individual VIF 0.0185 0.0015 0.0000 0.0000 0.0000 0.0000
TOL 0.0185 0.0015 0.0000 0.0000 0.0000 0.0000
Wi 0.0156 0.0061 0.0057 0.0087 0.0211 0.1567
Fi 0.3126 0.4388 0.7391 0.8787 0.9728 0.9996
Leamer 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
CVIF 0.0337 0.0405 0.0502 0.0553 0.0613 0.0676
Klein 0.0887 0.0534 0.0118 0.0034 0.0001 0.0000
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Table 7: Percentage of correctly identified Collinearity cases, for various values of k and n, where X; and X, follow exponential distributions, X3 =

kX, and with homoscedastic errors

% of correct collinearity

X; = Collinearity

kX, measurement Index or test n=7 n=10 n=20 n=30 n=>50 n=100

k=1/4 Overall FG 0.0045 0.0250 0.0848 0.1368 0.2364 0.4937
Det 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000
Red Ind 0.2308 0.0791 0.0072 0.0009 0.0000 0.0000
Sum lambda 0.0467 0.0041 0.0000 0.0000 0.0000 0.0000
Theil 0.0576 0.0109 0.0002 0.0000 0.0000 0.0000
CN 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

Individual VIF 0.0066 0.0002 0.0000 0.0000 0.0000 0.0000

TOL 0.0066 0.0002 0.0000 0.0000 0.0000 0.0000
Wi 0.0056 0.0012 0.0005 0.0002 0.0002 0.0008
Fi 0.2001 0.2490 0.4361 0.5461 0.7195 0.9141
Leamer 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
CVIF 0.0204 0.0229 0.0284 0.0360 0.0419 0.0579
Klein 0.0283 0.0069 0.0000 0.0000 0.0000 0.0000

k=2 Overall FG 0.1465 0.6695 0.9901 0.9997 1.0000 1.0000
Det 0.0253 0.0024 0.0000 0.0000 0.0000 0.0000
Red Ind 0.8083 0.7887 0.7723 0.7793 0.8020 0.8554
Sum lambda 0.4885 0.3990 0.2990 0.2527 0.1782 0.1022
Theil 0.1611 0.0499 0.0026 0.0002 0.0000 0.0000
CN 0.0028 0.0001 0.0000 0.0000 0.0000 0.0000

Individual VIF 0.3219 0.2332 0.1287 0.0800 0.0314 0.0062

TOL 0.3219 0.2332 0.1287 0.0800 0.0314 0.0062
Wi 0.3030 0.3965 0.7696 0.9447 0.9992 1.0000
Fi 0.8621 0.9655 0.9998 1.0000 1.0000 1.0000
Leamer 0.0129 0.0011 0.0000 0.0000 0.0000 0.0000
CVIF 0.0133 0.0092 0.0039 0.0020 0.0002 0.0000
Klein 0.1229 0.0870 0.0264 0.0095 0.0008 0.0000

Table 8: Empirical MSE of the indicated parameter estimator in a regression model, using the specified n and a distribution for X; and X,

Uniform Normal Exponential

Bo by 2 Ps  Bo by Po B Bo by Pa Ps
7 1.94 0.64 0.69 0.17 2.45 0.70 0.34 0.15 0.81 0.78 1.11 0.14
10 1.35 0.58 0.62 0.12 1.88 0.37 0.28 0.11 0.55 0.41 0.82 0.11
20 0.78 0.35 0.35 0.06 1.10 0.21 0.16 0.06 0.36 0.23 0.47 0.06
30 0.59 0.28 0.27 0.05 0.83 0.16 0.13 0.05 0.27 0.18 0.34 0.05
50 0.45 0.20 0.22 0.04 0.67 0.12 0.10 0.03 0.20 0.13 0.25 0.03
100 0.23 0.09 0.10 0.02 0.46 0.03 0.06 0.01 0.14 0.02 0.14 0.01

Table 9: Percentage of correctly identified collinearity cases in a linear modelo contaminated with the indicated percentage of outliers, for various
values of k and n, where X; and X, follow normal distributions, X; = kX, and with homoscedastic errors

% of correct collinearity

X; = Collinearity
% Outlier kX, measurement  Index or test n=7 n=10 n=20 n=30 n=150 n=100
5 k=1/4 Overall FG 0.0042 0.0244 0.0832 0.1427 0.2431 0.4933
Individual Fi 0.1986 0.2644 0.4361 0.5696 0.7460 0.9214
k=2 Overall FG 0.1432 0.7867 0.9996 1.0000 1.0000 1.0000
Individual Fi 0.9427 0.9937 1.0000 1.0000 1.0000 1.0000
10 k=1/4 Overall FG 0.0042 0.0244 0.0832 0.1427 0.2431 0.4933
Individual Fi 0.1986 0.2644 0.4361 0.5696 0.7460 0.9214
k=2 Overall FG 0.1432 0.7867 0.9996 1.0000 1.0000 1.0000
Individual Fi 0.9427 0.9937 1.0000 1.0000 1.0000 1.0000
15 k=1/4 Overall FG 0.0042 0.0244 0.0832 0.1427 0.2431 0.4933
Individual Fi 0.1986 0.2644 0.4361 0.5696 0.7460 0.9214
k=2 Overall FG 0.1432 0.7867 0.9996 1.0000 1.0000 1.0000
Individual Fi 0.9427 0.9937 1.0000 1.0000 1.0000 1.0000
20 k=1/4 Overall FG 0.0042 0.0244 0.0832 0.1427 0.2431 0.4933
Individual Fi 0.1986 0.2644 0.4361 0.5696 0.7460 0.9214
k=2 Overall FG 0.1432 0.7867 0.9996 1.0000 1.0000 1.0000
Individual Fi 0.9427 0.9937 1.0000 1.0000 1.0000 1.0000
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Table 10: Collinearity diagnostics in a linear model with corn data

Collinearity Index or test Value p-value
Overall FG 60.2073 <.000001
Det 0.0197 NS
Red Ind 0.8520 *
Sum lambda 41.7184 *
Theil 0.6679 *
CN 7.0974 NS
Individual Fy 38.5740 .0058698
F2 370.6573 .0002019
F3 287.6991 .0002951
* and p<.05 (Collinearity identified); ns (unidentified
collinearity)
Table 11: Overall collinearity diagnosis in patterns of

morphological covariance in C. macropomum species

Index or test Collinearity diagnosis

Determinante
Farrar-Glauber

Red indicator

Suma de Lambda
Theil indicator
Numero de codicion

S

*z****

* (Collinearity identified); NS (unidentified collinearity)

Table 12: Individual collinearity diagnosis in patterns of morphological
covariance in C. macropomum species

Landmarks VIF

Tip of snout to end of epiphyseal sulcus *

Tip of snout to insertion of pectoral fin

Anterior edge of the epiphyseal sulcus to the end

of the epiphyseal sulcus

Anterior edge of the epiphyseal sulcus at the

insertion of the pectoral fin

Anterior edge of the epiphyseal sulcus when
articulating

Articulate to insertion of pectoral fin

Posterior edge of epiphyseal sulcus to end of dorsal fin
Posterior edge of the epiphyseal sulcus at the insertion
of the pelvic fin

Posterior edge of the epiphyseal sulcus to the
insertion of the pectoral fin

Posterior edge of the epiphyseal groove when
articulating

Insertion of pectoral fin to insertion of pelvic fin
Dorsal fin base

Anterior edge of dorsal fin to anterior edge of anal fin
Anterior edge of dorsal fin to insertion of pelvic fin
Anterior edge of dorsal fin to insertion of pectoral fin
Insertion of pelvic fin to end of anal fin

Posterior edge of dorsal fin to the fatty fin

Posterior edge of dorsal fin to posterior edge of anal fin
Posterior edge of dorsal fin to anterior edge of anal fin
Posterior edge of dorsal fin to insertion of pelvic fin
Anal fin base

Posterior edge of the fatty fin to the last scale of the
lateral line

Posterior edge of fatty fin to posterior edge of anal fin
Posterior edge of the fatty fin to the anterior border of
the anal fin

Posterior edge of the fatty fin to the anterior border of
the anal fin

Eye diameter

Head length

Fat fin base

* x[om

*

* * oKX X X X X X X ¥ ¥ X X

* ¥ X ¥

NS

* (Collinearity identified); NS (unidentified collinearity)
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Simulations 11

The results, shown in Table 9, do not provide any
evidence for an effect from outliers on collinearity
identification using the collinearity indices (individual
and overall) since, as the proportion of outliers increases,
the percentage of collinearity cases correctly identified
remains stable. In summary, the results show the
robustness of the FG (overall) and Fi (individual)
collinearity indices in presence of outliers.

Aplication to Real-World Data Sets
Corn Data

Figure 3 displays scatter-plots for all the variables
and their corresponding correlations. This figure
indicates that Y has moderate or high correlation with
each covariate, suggesting that a multiple linear
regression model is suitable. However, high
correlations are also found between some covariates,
indicating the likely presence of collinearity. Table 10
shows the corresponding values of the collinearity
diagnostics. We include the currently used general
collinearity measures and an individual collinearity
measure F;. The FG test, red indicator, sum lambda and
Theil confirming the presence of collinearity.
Similarly, since F: provides p<.01 for each covariate:
X1, X, and X; it is assumed that these covariates are
collinear, as indicated by Farrar and Glauber (1967).
This allows us to infer that the three covariates are
involved in one or more linear dependency
relationships between them. When comparing the
indices F'G and F; with the other measures, note that are
shown as powerful tools for the study of collinearity,
since they verify the presence of collinearity and at the
same time identify whether a covariate is collinear or not.

Morphology Fish (C. macropomun)

Table 11, most of the diagnostic measures, except
for the Theil indicator, identify that there are redundant
characteristics  associated  with  morphological
covariation patterns in C. macropomum specimens, that
is, there is multicollinearity, which can contribute to
the entropy of the models used to identify patterns of
morphological covariation of this species. Table 12,
VIF's can modify most of the distances measured on the
lateral profile of these examples are attributed to
redundant  morphological characteristics. ~ Only
morphological characteristics tales like; posterior edge
of the epiphyseal sulcus at the insertion of the fin
pectoral variables, anterior edge of the dorsal fin to the
anterior edge of the anal fin, anterior edge of the dorsal
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fin at the insertion of the pectoral fin, insertion of the
pelvic fin at the anterior edge anal fin, posterior edge
of dorsal fin to anterior edge of anal fin, posterior edge
of fat fin to last scale of lateral line and base of fat fin
not direct redundant morphological information, saber,
not son causing multicollinearity (Fig. 4). These
variables are associated with morphological
covariation patterns that make the difference in the
head area, in the area of the bases of the fins of the
abdomen and in the anterior part of the fish. The results
of the farra-glauber test (individual diagnostic measure
of multicollinearity) do not perform well in relation to
the identification of the origin of multicollinearity,
since it is not capable of identifying non-redundant
covariates associated with the morphology of the
examples C. macropomum.
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Fig. 3: Scatter-plots and their correlations for the indicated
variables with corn data

Fig. 4: Non-redundant covariates (landmarks) in the truss
protocol on C. macropomum
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Conclusion

The results do not provide any evidence for an effect
from outliers on collinearity identification using the
collinearity indices (individual and overall). The FG and F;
collinearity indices more robust as both sample size and
collinearity degree increase. On the fitted models on corn
data and fish morphology the most of overall collinearity
indices confirmed the presence of collinearity. However,
the VIF (individual measure) had a better performance on
the fitted model on the morphology of C. macropomum.
These results suggest an effect of the number of model
parameters (p) on the performance of the collinearity
indices (individual and general), therefore a more
exhaustive study that considers models with a greater
number of parameters is recommended.
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Appendix 1

R code for collinearity diagnosis (individual and
overall) in agricultural trials.

> library('mctest')

> x <- Data.morfometria[, -1]

>y <- Data.morfometria[, 1]

> omcdiag (X, y, detr = 0.001, red = 0.6, conf = 0.99,
theil = 0.6, cn = 15)

> omcdiag (X, y, Inter = FALSE)

> omcdiag (X, y)

> imcdiag(x, y, corr = TRUE)

> imcdiag(x, y)
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