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Abstract: Problem statement: The main problem in solving of the Boltzmann eguaby statistical
methods is its long computational time (CPU timé)e problem of decreasing of CPU time usage in
statistical solution methods of Boltzmann equafmmrarefied vortex flows was studiedpproach: In

this study the Boltzmann equation in a rarefiedl@ia@uette flow regime was solved using the new
Monte Carlo method which is officially named timel&xated Mont Carlo method that applied the
equilibrium conditions in each time steResults. The results obtained from time Relaxated Mont
Carlo method for the problem at hand were compavithl those from the usual Direct Simulation
Monte Carlo method. This comparison showed goockegent between the two sets of results.
Conclusion: Whereas, the number of collisions and CPU usage inh the suggested method, as
compared to the direct simulation Monte Carlo mdttshowed a significant decrease.
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INTRODUCTION The main problem in all previous solution methods
of Taylor-Quette flow (Reichelmann and Nanbu, 1993;
The Taylor-Quette Flow is a flow between two Stefanov and Cercignani, 1993; Bird, 1994) is thedr
coaxial cylinders, in which the outer cylinder iged  long CPU time usage. So using of other appropriate
and the inner one rotates. Taylor (1923) while yingi  method which leads to adequate result in less fone
this flow noticed that at certain angular speedshef Problem at hand is needed.
inner cylinder, vortex flows are created. Karma834) On the other hand, Carlet al. (2000) solved the
analyzed the Taylor-Quette flow in dense flow regsm Boltzmann equation by using a method which was

and Kuhltau studied the Taylor-Quette flow in raggf Ccompatible with the application of the Maxwellian
gas flow regimes experimentally (Kuhlthau, 1960)'§qulllbr|um cond.mons and Pareschi and Russo (2001
Since the Navier-Stockes equation can not describ@troduced the Time Relaxed Monte Carlo method that

rarefied gas flow regimes properly, it is essent@l Vo> proportional - to the_’ method introduced by
solve theg BoItzmanngequatti))n pwhi)(/:h is valid for anyCarIenet al_. (2000). Pareschi’s meth(_)d is abbreviated
flow regime (rarefied and dense). Within the sct as TRMC, in the references. Pareschi analyzed ter ou

: flow problem with his new method. Since, Maxwellian
was developed by Kuhitau, Reichelmann and Nanbléquilibrium conditions applied in TRMC method

numerically solved the Boltzmann equation by theyecreases the calculation time, TRMC method canh lea
Direct Simulation Monte Carlo method, known as the;, appropriate results for the problem at hanchialier
DSMC method and found that the Results from th&jme n (Zeytooniaret al., 2009), for the first time, the
DSMC were in good conformity with the experimental Tayjor-Quette flow between two coaxial cylindersswa
ones (Reichelmann and Nanbu, 1993). Stefanov angplved by the TRMC method and a comparison
Cercignani (1993) used the DSMC method to studibetween some results with those obtained by theé’sBir
specially vortex flows between two coaxial cylinsler DSMC method done.

Following that, Bird, by considering more detailsed In this study, the authors have completed their
the DSMC method and could obtain, in a more exacbefore study and made a complete comparison between
fashion, the stable solution for the Taylor-Qudltev =~ two methods. The complete comparison of the results
(Bird, 1994). from TRMC method with those obtained by the DSMC
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method, shows that obtained results are in goo :J‘3 fdv (4)
agreement with those of the DSMC and that the °°
calculation time required to get stable results tfue
TRMC method, as compared to the same for the DSMC
method, is significantly less.

Similarly, the macroscopic velocity is defined as:

u== _[ , fvdv (5)
MATERIALSAND METHODS p

The appropriate mathematical model of theand _the temperature and energy of the fluid can be
analysis of rarefied gas dynamics is the BoltzmanrPbtained from:

equation:
5 L ngi . \v—u\z fdv (6)
p
—+v.0 f== f, f
ot VTS Q(f.7)
xO0Qoo? Q) g-1 IV fdv @)
voo? 2
With initial conditions: In the equilibrium state, whegf, f)=0, every
local distribution function has a Maxwellian
f(x,v,t=0)="f,(x,v) distribution form as:

In relation (1), f is the density distribution fttion P \u—wz
(a non-negative function) and depends on the jositi M(p u, T) (V)= 2nT)” -7 (8)
X, the velocity v and the time t. In Eq.€lis the Knudson
number which is proportional to the mean free path

between the collisions. Dual collision operator,ickh In relation (8), T ,u p are the mean temperature,
appears as Q (f, f) in Eq. 1 defines the collissetween  Velocity and density of the gas, respectively.
two molecules in a monoatomic gas as: To solve the Boltzmann equation by Mont Carlo
method, transient step (consideridg 0) and collision
Q (f, f) (v):j' Ic ( ‘ v-v| o ) step (considering, f =0) will be solved separately. To
0 (2) begin the numerical solution of each steps simplest
(f (V) f(v.) = f(v) f(v) ) do .dy discritization, the first order time discretizatiafi the

Boltzmann equation, is discussed. After discretizat
the main problem seems to appear in the way ofreplv
the collision step. Therefore, it is discussed i¥ssie in
more details. So with considering only collisioast

In the relation abovew is a vector on the unit
sphere S 00°%° which shows the direction of the
molecule’s collision. ¢ Kernel is a non-negative
function which specifies the details of interaction af 1
between two molecules. Molecule’s velocities after 7:g Q( f.f) 9)

collision ( v,v.) depend on the velocities before the

collision (v,v.) and are defined as: By using the simple Forward Euler method for
discretization of relation (9) (which is used mypdtbr
discretization) (Bird, 1994), we will have:

®3)
¢ =(urv-id o) =t alre) (10)

v :%(v+ v.+|q o)

The relative velocity of two molecules with respec It can be seen that the essential condition fer th
to each other is defined as= v- v, If fis the density in  numeric scheme stability is thatt should be in the
the phase space, then; the macroscopic density game order of amplitude as the mean free pathnSo i
defined as: small value ofg, this discretization method is not a
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proper one. In other hands, in the implicit disizegton The (16) power series is known as Wild extension.
method, stability condition becomes less important,  Considering the relatio (f, f)=Q (f, f)+u f in the
other problems associated with solving the implicit
collision operator (that is, insufficient data the initial
conditions required for the solving), makes thighod,
not a proper one, also. So, an appropriate solditioa
nonlinear equation like (9), which, in additionhtaving
unconditional stability, can still remain valid methe  where, M(v) is the local Maxwellian distribution
dense range, can be obtained as follows. Cons@lerin f,tion. Considering this case, the following $inin,

variable change such aB(f, f)=Q(f, f)+uf EQ. 9  which is based on the Maxwellian equilibrium for

Boltzmann equation, we have:

mek(v):lti[nwf Vv, t)=M (v) a7)

becomes (Carleet al., 2000): m=1, can be obtained (Pareschi and Russo, 2001):

ﬂ:1[ P(f.f)-pf] (11)  f"Hv)=emi i(l— ") (V)

ot ¢ k=0 (18)
+(1—e‘“A”E)m+1 M(v)

Initial condition in (11) is similar to (1) #0 is a
constant parameter and P is a linear two-directiona _ _
operator. By changing the variables and defining ne In (18), f"=f (n at) and &t is a small time step.

variables (Carleet al., 2000), we get: Consideringu=4mnop, the following result will be

e derived (Pareschi and Russo, 2000) (to have a non
= (1_ € ) ' (12) negative result, such assumption is essential):
Flv,1)=f(v,1f) &

P(f, f)=Q(f, f)+4mop f2 0 (19)
In which 1 is the Relaxed Time. Also Eq. 11 B
changes to the simple form as follow: Here, o is the maximum collision section in the
flow field and is calculated according to (20). In
Esz( F. B (13) relati_o_n (20), o is the collision section between two
o u specified molecules:

With boundary condition&(v, 1= 0) = f,( V). 0= max9(vi-v|) (20)
Considering Eq. 13 as a Qushi equation, it can be L

solved by the following power series: Considering the result from (18), It should beeabt

that, this method can be derived through different

F(v, 1) :irk f (V) weight functions which make the best estimate fghh
k=0 (14)  order coefficient in Wild extension (Pareschi and
feo (V) =fo(v) Russo, 2000); so, in the overall form:

M (21)

m+1

In which, f, functions can be calculated from the f”"l:i A f +A
relation (15): k=0

fc is calculated from (15) andh, =A,(t) is a non-
P(%. 1) k=01. (13)  negative weight function that should satisfy the
following conditions:

By substituting the main variables (the ones keefor Compatibility conditions:
the variable change), we get the following equation

which is the solution of the Qushi Eqg. 9 as: limA, (1)/ =1
-0 1
o limA,(t)/ =0 (22)
flv, )=y (1- ") 16 o X
(v )=e* 2 (1-e) 1 (Y e S
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Conservation condition: through the sum total of partial probabilit{és pat /€)
. of " plus pat/e of P(f", ") /.
DAL It should be mentioned that the interpretation of
P (23) E i .
g. 27, when the value dft/¢ is too large, is not true
0[] (because the' toefficient on the right hand side of the
equation may come out negative). So, in a semialens
Threshold condition: flow, due to the mean free path of the flow beintah,
the time step of the solution should be reduced to
limA, (1) =0 satisfy the restriction condition. Consequentlyjsth
o (24)  method of solution takes much time and practicedly
k=0,..,m not usable. Velocities of the molecules after sl

are obtained as:
One function which satisfies the above conditions

and also is based on relation (18) concept is: VY, \vi—vj
Vi=——+— 0
' 2 2
- (28)
A, =(1-T1)T% VitV ‘vl—vj
k=0,...,m (25) ittt @
Am+1 :Tm+1

Components ofe vector on the unit sphere are
It should be noted that another weight functionaccording to:
could be selected, but it must be checked to make s

that it is an optimal choice (Pareschi and Ruse60» cosp sid
Now with considering the TRMC and DSMC , =| sing sir®
solution methods (both of them are based on thet&lon oD (29)

Carlo method), for solving the previous equatiofs,

first, it is presented a Direct Simulation of theoivie =arccos( %, - J=0= &,

Carlo method which corresponds to Eq. 10 and is

compatible with the Nanbu-Babovsky algorithm. It & andg, are random numbers which will be generated
should be pointed out that the molecule here m@ansiy a random manner on [0,1] interval. Further

model molecule which, by itself, represents manyemo information on that is available in (Bird, 1994).

molecules. Considering f as a probability distribatof On the other hand, the TRMC method can also be
the particles, we have: used to determine the f distribution function. The
TRMC method is based on considering three terms of
p :J'Daf (v,it)dv=1 (26)  the Eq. 21 right hand according to the following:
Having used the variable change, the Boltzmann'd " =A,f "+A,f,+A M (30)
new form was the relation (11). With discritizatiand
using the Forward Euler method and usififv) as Since relation (30) satisfies the condition of)(23

the probabilistic expression of this relation isitththe
position of a molecule at™ could be determined
through the summation of partial probabilitiag of f"
f"*lz(l_LAtJ fog HAL P(i", 1) (27)  Plus A, of f,=P(f, f)/u plus A of the Maxwellian

& & H function M. for calculate ofA, A, A, amounts, it is
essential to evaluate from Eq. 12 and also use of
Eq. 25. Relation 30 is valid on whole range dft /¢
P(f,f) /uz0. It should also be observed that between zero and infinite which is Inspire with DEM
P(f, f) /u=f1, is the first term of the Wild expansion. method (which based on Nanbu-Baboski) that
Thus, the probabilistic Interpretation of Eq. 27that,  MAt/e<1.If time step size selected as a big amount as
the position of a molecule f**, could be determined HAt/e - «, calculate of distribution function on n+1
41
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step is based on Maxwellian distribution samplénigk result, thus obtained, totally agrees with the lteftom
In other words it can be said that** convert to (Bird, 1994). Also, in Fig. 2, density contours are
distribution function on equilibrium condition (Reschi  presented. Since the three vortices in Fig. 2 lsawdar

and Russo, 2000). flow properties, for a more precise analysis, offlg
middle vortex is considered. In Fig. 3 and 4, dignsi
RESUL T AND DISCUSSION results obtained from the TRMC and DSMC methods

are shown. As it was predicted, the density ineeas
Figure 1 shows the problem’s geometries. Thehe radial direction, but, in the axial directidiecause
conditions presumed for solving the problem arelaim ©f existing vortex flows, it decreases and increase
to the conditions used by Stefanov and Cercignanflternately. _ _ _
(1993) and Bird (1994) all of whom solved the Taylo Due to the high speed of the inner cylinder, gas

Quette problem by the DSMC method. The radius ofémperature increases significantly. ~The field
the outer cylinder, ,f is twice the radius of the inner temperature increase continues until the heatfeeesl

cylinder and the gas between the two cylinders is a2 the surface equals the study done by the sudce

: . : e rotating inner cylinder. As it can be observed
monoatomic gas with hard sp_heres model (in thei:ig. 5 and 6 which represent the results obtaimenh f
simulation, the molecular properties of Argon hagtb

considered). The gas, at the initial conditionsstegtic the TRMC and DSMC methods, the maximum

d unif Density i | d that th ¢ temperature occurs near the inner cylinder. Adflthe
and uniform. Density Is so selected that the mea@ a5 away from the inner cylinder's surface, its

path becomes, -r,)/50. The selected length along the temperature” decreases. Also, it can be seen teat th
rotation axis is 4 times the distance between the t temperature gradient inside the vortex flow, in dxél
cylinders. The two end plates along the rotatiois ake ~ direction is greater than the temperature gracierthe
assumed with the axial symmetry boundary conditiorputside of the vortex.

and the cylinder surfaces are assumed with the
reflection boundary condition in equilibrium.

At 't = 0, the inner cylinder rotates with a spéieat e e e O Ta—
is three times the most probable speed. Hencéeiset l_fl
conditions, The Knudson number is 0.02 and the
velocity ratio (sec) is 3.0. ] ] ] ] ]

In_ both methods, 400 calculation cells areFid. 1: Axial cutting of two coaxial cylinders
considered along the axial direction and 100 @dtiag
the radial direction with cells having similar dinsons
to each other, the fluid field is divided into 4000cells.
The time step value is selected sts=1 07 for the two
solution models and each molecule of the modeldstan
for 10" real molecules.

Because of the existing high temperature
differences and high density gradients createdhey t Fig. 2. Strain lines and density contours on Taylor
supersonic rotational speed of the cylinder, theallo Quette flow (by TRMC method)
and effective values of many no dimensional
parameters, such as the Knudsen number, are differe
from their nominal values at stable flow conditions
(beginning and end conditions). Therefore, at the
beginning of the problem’s solution, many small
vortices are generated which together, graduatligmf
larger vortices and after about 30 rotations ofitimer
cylinder, three large vortices form between the two
coaxial cylinders. It can be seen from Fig. 2 ttet
system’s stable flow answer obtained from the TRMC
method, takes the form of three vortices whose, size
geometry and physical properties are similar toheacFig. 3: Nondimentional density (density ratio tatiad
other and the only difference is their direction of density) contours in one vortex on radial and
rotation which changes for every other vortex. The axial direction (by TRMC method)

42

Ro




Phy. Intl. 1 (1): 38-44, 2010

Fig. 4: Nondimentional density (density ratio tatial g, 7: Nondimentional rotational speed contours

de_nsity) co_ntours in one vortex on radial and (rotational speed ratio to the most probable

axial direction (by DSMC method) velocity) in one of Taylor-Quette flow vortexes
on radial and axial direction (by TRMC method)

Ro

Fig. 5: Nondimentional Temperature (temperatur rat
to initial temperature) contours in one of Fig. 8: Nondimentional rotational speed contours
Taylor'Quette flow vortexes on radial and axial (rotationa| Speed ratio to the most probab|e
direction (by TRMC method) velocity) in one of Taylor-Quette flow vortexes
on radial and axial direction (by DSMC method)
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Fig. 6: Nondimentional Temperature (temperaturerat . .
to initial temperature) contours in one of Fig. 9: Number of collisions in two methods (_TRMC
Taylor-Quette flow vortexes on radial and axial and DSMC methods) on ten (consecutive time

direction (by DSMC method) step in stable condition

In Fig. 7 and 8, no dimensional rotational spee CPU time required for the DSMC is 63 h and for

' ' . N he TRMC is 43.1 h. Calculations are performed on a
contours (w|/v,,) along the radial and axial directions Pentium 4, 2.8 GHz processor. CPU time for the
of the cylinders and in the distance between the tw calculations based on the TRMC method is 63% of the
cylinders are shown. As can be expected, the marimu CPU time required for the DSMC. This shows that the
rotational speed of the flow occurs near the rotati TRMC is faster than the DSMC. The main reason for
inner cylinder. In Fig. 9, the numbers of collissofor  the increase in calculation speed is that the nurabe
ten succeeding time steps are shown. collisions in each time step is reduced.
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CONCLUSION Karman, V., 1934. Some aspects of the turbulence
problem. Proceeding of the 4th International
By comparing Fig. 3, 5 and 7 with Fig. 4, 6 and 8, Congress for applied Mech., Cambridge, England,

respectively and in the same order, it is obserthead pp: 54-91.

the results obtained from the TRMC and the DSMCKuhlthau, A.R., 1960. Recent low density experirsent

methods have many similarities. In general, dughéo using rotating cylinder techniques. Proceeding of
application of the Maxwellian equilibrium conditi®m the 1st International Symposium on Rarefied Gas
each time step, the results obtained from the TRIVEC Dynamics, Sept. 20-21, Pergamon, London,
more uniform and show less fluctuations. Thereftire, pp: 192-200.

TRMC method, by eliminating these fluctuations, Pareschi, L. and G. Russo, 2000. Asymptotic présgrv
provides more fitting results, when compared to the = Monte Carlo methods for the Boltzmann equation.
DSMC scheme. However, the main advantage of the Trans. Theory Stat. Phys., 29: 415-430. DOI:
TRMC method over the DSMC, is in the reduction of 10.1080/00411450008205882

the time required to process the program algoritine  Pareschi, L. and G. Russo, 2001. Time relaxed Monet
main reason for this time reduction in the TRMC Carlo methods for the Boltzmann equation. SIAM.

method is that the number of intermolecular callis J. Sci. Comput, 23: 1253-1273. DOI:
(which engage the bulk of the computations), egigci 10.1137/S1064827500375916
in more dense areas of the flow, decreases that Reichelmann, J. and K. Nanbu, 1993. Monte Carlo
because of exerting of Maxwellian equilibrium direct simulation of the Taylor instability in
condition in each time step. rarefied gas. Phys. Fluids, 5: 2585-2587. DOI:
10.1063/1.858775
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