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ABSTRACT

The microscopic and bulk properties of nucleaatter at zero and finite temperatures areistlih

the frame of the Brueckner theory. The resfdtsthe symmetry energy are also obtained using
different potentials. The calculations are based realistic nucleon-nucleon interactions \hic
reproduce the nucleon-nucleon phase shifts.s& hmicroscopic approaches are supplementec by
density-dependent contact interaction to achtbeeempirical saturation property of symmetric leac
matter. Special attention is paid to behavior lné teffective mass in asymmetric nuclear matter.
The nuclear symmetry potential at fixed nuclearsitgnis also calculated and its value decreasek wit
increasing the nucleon energy. The hot propertiesuxlear matter are also calculated using T
approximation at low temperatures. Good agreementbitained in comparisowith previous works
around the saturation point.

Keywords: Brueckner-Hartree-Fock Approximation, Self-Consisté&reens Function (SCGF) Method,
Three-Body Forces, Symmetry Energy, Symmetry PwtenEffective Mass and
Approximation Method

I. INTRODUCTION particle-particle correlations which means the
scattering of two nucleons from states which are
One of the most fundamental problems in nuclearoccupied in the Slatter determinant describing the
many-body theory is the attempt to evaluate theground state, into unoccupied particle states atibge
nuclear matter binding energy and saturation Fermi surface (Fricket al., 2002; 2004; Hassaneen
properties, starting from a realistic Nucleon-Nwele  and Mither, 2004).
(NN) interaction with no free parameters. In fadba The potentials we will employ here are the recent
of work has been done trying to solve this problem models of the Nijmegen group (Stoksal., 1994), the
using different approaches and methods which areArgonne \ig potential (Wiringaet al., 1995) and the
discussed in details by Mither and Polls (2000). Ancharge-dependent  Bonn  potential (CD-Bonn)
important ingredient of all these approaches is the(Machleidt et al., 1996). The recent versions of The
consideration of the two-nucleon correlations which Nijmegen group are Nijm-I, Nijm-ll and Reid93
are induced by the strong short-range components opotentials. Although all these potentials predichast
the NN interaction. In lowest-order Brueckner theor identical phase shifts, their mathematical struetig
the familiar Brueckner-Hartree-Fock (BHF) approach, quite different.
is adopted to calculate the energy, the so-called G  Most of the microscopic calculations have been
matrix for evaluating the energy in the Hartreedeoc addressed to study symmetric matter (Fechl., 2002)
approach. In the G-matrix one accounts for theand pure neutron matter (Frick and Mduther, 2003;
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Dieperinket al., 2003). The study of asymmetric nuclear terms give a large contribution to single-particle
matter is technically more involved and only few properties Iikc the mean field and the nucleoncdffe
Brueckner-Hartree-Fock ~ (BHF)  calculations  are mass. We will refer to the present approach to adenp

available (Hassaneen and Miither, 2004; Zmoal.,  huclear single-particle properties as SCGF appratan
1999; Vidana and Bombaci, 2002). The BHF (Fricketal., 2002; Hassaneen and Muther, 2004).
approximation includes the self-consistent procedofr The nuclear matter symmetry energy, which is deffine

determining the single-particle auxiliary potenti@s  @s the difference in energy per nucleon betweerptine
first devised by Brueckner and Gammel (1958), whgch ~neutron matter and the symmetric nuclear mattegnis
an essential ingredient of the method. Differepraaches ~ important quantity that determines the propertfesbgects
have been used to study the EoS of asymmetric atucle Such as the atomic nucleus and the neutron staet @li,
matter including Dirac-Brueckner-Hartree-Fock (DBHF 2008). The study of symmetry energy and its depesele
calculations (Mutheet al., 1987; Alonso and Sammarruca, ©n nuclear density and temperature is currentlyogest of
2003), Brueckner-Hartree-Fock (BHF) approximation t 9reat interest (Bararet al., 2005). Theoretically, the
Brueckner-Bethe-Goldstone ~ (BBG)  calculations Symmetry energy can be determined from microscopic
(Bombaci and Lombardo, 1991; Baldo and Ferreira, Calculations such as the Self-Consistent Green tieunc
1999) and variational methods (Wiringh al., 1988;  (SCGF) and the Dirac-Brueckner-Hartree-Fock (DBHF)
Akmal and Pandharipande, 1997). Besides thesecalculations, or the phenomenological calculatsuch as
microscopic approaches, effective theories such agdhe Skyrme Hartree-Fock (SHF) and the Relativigtéan
Relativistic Mean Field (RMF) theory (Sugahara and Field (RMF) calculations (Hassaneen and Muther 4200
Toki, 1994) and non-relativistic effective interiacts  Li €t al.,, 2008; Gad and Hassaneen, 2007; Gogeteah,
(Stone et al., 2002; 2003) have also been used 2009). These calculations currently predict widegeaof
extensively to study the EoS and mean field progexf symmetry energies for densities below and abovenabr
the asymmetric nuclear matter. nuclear denSity,po = 0:16 fm_3 AlSO, the symmetry
As it is well known, the BHF approximation largely energy and its relation with the chemical potertiave
violates the Hugenholtz-Van Hove (HVH) theorem been studied.
(Hugenholtz and Hove, 1958), which basically measur Also, the properties of asymmetric nuclear matter a
the consistency of a given order of approximatiorai  derived from various many-body approaches. This
perturbative approach. In symmetric nuclear matte#,  includes phenomenological ones like the Skyrme

inclusion of the so-called hole-hole (hh) contribot  parree-Fock and relativistic mean field approaches

greatly improves the fulfilment of the HVH theorem which are adjusted to fit properties of nuclei,vasdl as

(Gad, 2004). We use realistic NN forces and operate . : like th K
within SCGF framework. It is well known that the No'e microscopic attempts like the Brueckner-Harire

selfconsistent BHF approach does not reproduce thd 0Ck approximation, a self-consistent Greens foncti
correct saturation point of nuclear matter withyothe ~ Method and the so-called oM. approach. These
inclusion of the two-body interaction (Bozek ande€ski, ~ Mmicroscopic approaches are supplemented by a gensit
2001; Bozek, 2002). But our attention is mainlyused  dependent contact interaction to achieve the eogbiri
on how nuclear matter properties change in termth@f  saturation property of symmetric nuclear mattere Th
asymmetry ratio and some caution has to be takerpredictions of the isovector component of the eifec
whenever saturation properties are involved. Iriteh it mass in neutron-rich matter, the symmetry poteratial
gives a sim_ple microscopic justification of the énapl symmetry energy are discussed.

laws governing asymmetric nuclear matter. The one-body potentials for protons and neutroas ar
1.1. In the Present Report obtained from the self-consistent Green-function
calculations of asymmetric nuclear matter, in jgaftér

the calculation of EoS for asymmetric nuclear nratte their depengenccla 0? hth(;. 3cgree of proton/n;:tron
our aim is to extend the BHF approach which ignores@Symmetry. Results of the binding energy per nuc

the hh term to SCGF approach, which includes the hh@ function of the density and asymmetry parameter a
term. It has been shown, in the case of pure neutro Presented for the self-consistent Green functiquaarch
matter (Zuoet al., 1998) and also symmetric nuclear using the CD-Bonn potential. The nuclear symmetry
matter (Fricket al., 2002; Zucet al., 1998) that the new potential at fixed nuclear density is also caledaand

In order to establish the importance of the hh tarm
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its value decreases with increasing the nucleomggne
The isoscalar proton/neutron effective mass spijtiin
neutron-rich matter has been studied.

Recently, Liet al. (2006) have studied the saturation
properties of nuclear matter within the Brueckner-
Hartree-Fock approach using continuous single garti

(kik, 1 G(w) T kgky) = (oK, U Tkgky +
1-0,(k)(1-0:(k.)

w— ek,3 - q<3

ZK’gk;‘<klk2|U | Ky k4>( (4)

(K, 16(6) ek

energies and employing the most recent accurate

nucleon-nucleon potentials. They found that thesuits
confirm the concept of “Coester line” or “Coestantd”,
i.e., density and energy of the various saturatioimts
being strongly correlated, yielding either a toogéa
saturation density or a too small binding energy.

The many-body method we will employ in deriving
the EoS of both symmetric and pure nuclear mastex i
rather simple one i.e., the non-relativistic BHFtihoel
with a conventional and continuous single particle
spectrum using different modern NN potentials.

The results in the present work which come out by
approximating the single particle self-consistesteptial
with a parabolic form.

1.2. The Theoretical Model

1.2.1. Brueckner-Hartree-Fock for
Nuclear Matter

Symmetric

In the BHF approximation, the nuclear matter total
energy & is obtained from the Brueckner G-matrix,
G(w), according to the Equation (1):

E.= Y h;r‘;fiz D <k1k2|G(q(l+ ) |I§Ig>z (1)

Ky kp<kp

with [kiko)a = |k2kD), i.e., the subscript a indicates
antisymmetrization of the matrix elements. Hegéskthe

Fermi momentum, the summation over the momenta k

include spin and isospin variables. The single igart
energies g appearing in the entry energy of the G-
matrix, are given by Equation (2):

n’k?

" 2m

e(K)

+U(K) )

where, the single particle potential U(K) is detiged by
the self-consistent Equation (3):

U(k)= 3 (Ke'16(g, + ¢ ) 1KK)

k'<kg

(3)

The self-consistency is coupled with the integral
equation for the G-matrix, i.e., in the BHF appio&i)
is obtained by solving the Bethe-Goldstone equation
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where,©r (k) = 1 defining the step function for kgk
and is zero otherwise angddenotes the starting energy.
The product Q(k, k') = (3 (k))(1-©¢ (k)), appearing

in the kernel of Equation (4), enforces the scatter
momenta to lie outside the Fermi sphere and it is
commonly referred to as the “Pauli operator”. Ire th
case of the angle-average of Pauli operator thésggn

is given as Equation (5), (Haftel and Tabakinc,@97

3k§ 6 ke
= — 2T 23 dkk
A 52m ¥ T;,J( * :I)( )-J.o

(2 KE-K2 =K
2Kk

_ 2_,2
[ akre+ [k (5)
0 kg -k

(K | Gor (0, K) [ K1)

If one assumes that the potential U(k), or equiviiye
the single particle energy e(k), has approximataly
quadratic form:

h%k?
2m*

e(k)=g+ (6)
where, g is the zero point energy. Then one can calculate
the potential, at each iteration step, in few Eootly and
interpolate the obtained values with a parabolae Th
approximation of Equation (6) is usually called the
effective mass approximation, since then the spectras

the same shape as the free one but with an effectass
m*. From Equation (2) and (6) the effective massaah

be evaluated from the slope of U(k) at the Fermi
momentum Equation (7) (Mahaux and Sartor, 1991):

:[“

1.3. Brueckner-Hartree-Fock for
Nuclear Matter

-1

m du

m* 77}
h?k dk

()

k=kg

Asymmetric

The self-energy of a nucleon with isospin i, moraemt
k and energy» in asymmetric nuclear matter is defined in
the BHF approximation by (Mither and Polls, 2000;
Hassaneen and Miither, 2004):
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BHF _ 3 equations for microscopic NN interactions. Those

2 ZJ:jd o kalc() qu” A9 ® calculation demonstrate that for the case of reall$N
interactions, the contribution of particle-partidsiders

In this equation n°(q) refers to the occupation dominates the contribution of corresponding holieho
propagation terms. This justifies the use of theFBH
approximation and a procedure, which goes beyonH BH
and accounts for hole-hole terms in a perturbatves
(Frick et al., 2002; Granget al., 1987). This leads to a
modification of the self-energy in the BHF
approximation by adding a hole-hole term of thenfor
Equation (12):

Ay o (k,w)= Y j; d%] " d*h [ o
e (12)

probability of a free Fermi gas of protons (j = and
neutrons (j = n) like in the mean-field or Hartieeek
approach. This means that for asymmetric matten ait
total densityp = pgtp, this probability is defined by
Equation (9):

oy _ |1 forlak ky,
= e ©

With Fermi momenta for protonsgkand neutrons ().

The antisymmetrized G matrix elements in Equation <kp|G(Q) Ih @>
(8) are obtained from a given NN interaction byvsai O+Ey =€y —Epy—iN
the Bethe-Goldstone equation:

The quasi-particle energy for the extended self-

(kq 16(0) Ik% - (kq| Vlk% energy can be defined as Equation (13):
+Id3pld3p2< ka|VIR B>ij (10) £ LS R 2 iBHF(k,W ) Sgip) (13)
o(nip.) Cram ey r(kw=e)

X

Q _(Sp“ +8"“)+m X<p1p2|G(Q) |k0>ii Accordingly, the Fermi energy is obtained evalugtin

this definition at the Fermi momentum k g for protons
The single-particle energies,; of the intermediate  and neutrons, respectively Equation (14):
states should be the corresponding BHF singlegarti
energies which are defined in terms of the redl pthe &+ =&& (14)
BHF self-energy of Equation (8) by Equation (11): . )
The spectral functions for hole and particle sttbng
S'(k,w)ands’(k,w) ,are obtained from the real and

— k2 BHF —_
B = om * Re[zi ( kw=#g, )J (11) imaginary part of the self-
energyy =3 ®"+A%" #"* Equation (15):
with a starting energy parame@r= o+gg in the Bethe-

Goldstone Equation (10). §0 (k) = L1 : Im>, (ko) i (15)
1.4. Self-Consistent Green’s Function Mw-k?*/2m-Re}}, ( kw)]
2
One of the drawbacks of the BHF approximation is HImY, (k)]

the fact that it does not provide results for thaation of _ . _
state, which are consistent from the point of viefy ~ Where, the plus and minus sign on the left-hane sii
thermodynamics. As an example we mention that BHFthis equation refers to the case of hole ¢ker) and
results do not fulfill e.g., the Hugenholtz van teov particle states (pw>er), respectively. The hole strength
theorem. This is due to the fact that the BHF represents the probability that a nucleon with psos,
approximation does not consider the propagation ofmomentum k and energy can be removed from the
particle and hole states on equal footing. An esitenof ~ ground state of the nuclear system with the removal
the BHF approximation, which obeys this symmetry is energy w, whereas the particle strength denotes the
the Self-Consistent Green’s Function (SCGF) method.probability that such a nucleon can be added to the
During the last years techniques have been dewetlope ground state of the system with A nucleons resgilima
which allow to evaluate the solution of the SCGF state of the A+1 particle system which has an gnefgo
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relative to the ground state of the A particle eystHence  calculation using M. plus the contact term of
the occupation probability is obtained by integratihe Equation (21) yields the empirical saturation pdint

hole part of the spectral function Equation (16): symmetric nuclear matter.
The same parameterization of a contact term has bee
n, (k)=”_£Fi dwd ( kw) (16) used to evaluate corrections to the self-energBioF

and SCGF in such a way that also these calculations

Note that this vyields values for the occupation reproduce the saturation of symmetric nuclear matte
probability, which ranges between values of 0 afor All The many-body problem at finite temperatures hasbe
momenta k, leading to a partial depletion of thiedstates ~ considered by several authors within different
in the Fermi gas model (kgkand partial occupations for approaches, such as the finite temperature Green’s
states with momenta hzkA similar integral yields the function method (Fetter and Walecka, 1971), thentioe
mean energy for the distribution of the hole andige field method (Henning, 1995), or the Bloch-De Doisiic

strength, respectively Equation (17 and 18): (BD) diagrammatic expansion (Bloch, 1958; Bloch and
De Domicis, 1958). The latter, was developed sdter a
I R dwws”( k,w) the Brueckner theory, represents the “natural” msitm
<8hi(k)>:_m—k a7 to finite temperature of the BBG expansion, to ahic
n, (k) leads in the zero temperature limit. Baldo and étear
. (1999) showed that the dominant terms in the BD
L don ( kw) expansion were those that correspond to the zero
<8pi(k)>=w (18)  temperature of the Brueckner-Bethe-Goldstone (BBG)

diagrams, where the temperature is introduced only

Our self-consistent Green's function calculation is through the Fermi-Dirac distribution Equation (22):

defined by identifying the single particle energythe o
Bethe-Goldstone equation as well as in the Zhlpf(k,T)={1+exp(e(k’T)_“(T)ﬂ 22)

correction term in Equation (12 and 19): T
e (k) fork <kg Therefore, at the BHF level, finite temperaturesef$
ke = sm(k>) fork >k, (19) can be introduced in a very good approximation just

replacing in the BGE (4):

This definition leads to a single particle Greens
function, which is defined for each momentum k bgt;|
one pole atw = g,. Hence, the total energy per nucleon
is evaluated by Equation (20):

the zero temperature Pauli operator Q 9(k))(1-
02(k)) by the corresponding finite temperature one
Q(T) = (1-)(1-f)

e The single—particle energies e (k) by the tempegatu
3, [EFi - dependent ones e (k, T)pbtained from Equation
E X[ o (k) (keo)( K /2mrw) /2 (20) (3) and (4) when (K) is replaced by f (k, T)
A > [okn ()
In the present work, two simplifications are used t
In order to achieve saturation in nuclear matteg on calculate the thermodynamic properties of nuclear
has to add three-body interaction terms or a densit matter. Firstly, the G-matrix calculation is perfad at
dependent two-nucleon interaction. So, it is qoééural T = 0 MeV and using the continuous choice for U. (k)
to supplement the effective interaction by a simple Secondly, the internal energy of the systemHfA, is
contact interaction, which we have chosen followihg computing by using 'Ehe entropy of the free Ferns ga

notation of the Skyrme interaction to be of therfor with effective mass m where the internal energy of
nuclear mater is defined by:

— 1 2 l 2+8
AH —Et0 p +1—2t3p (22) F=E-Ts 23)

where, p is the matter density,ottz and 8 are  where, ESE/A is the total energy at T = 0; $s the
parameters. For a fixed value dftypically 5 = 0.5) we entropy of the system at temperature T. In addition
have fitted ¢ and § in such a way that a Hartree-Fock thermal effects are treated in a low temperaturgt lof
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the internal energy. Starting from Equation (28)the potentials are close to each other in the conveatio
low temperature limit the energy and entropy behave choice and at high momentum after k =tke results
E = B+ aT®and § = 2aT, respectively, where a is the of all potentials come together, this means that th
so—called level density parameter. Therefore, fug t effect of the potential disappear at values aboseni-

internal energy we have the following expression: momentum k. In the continuous choice we note that
the CD-Bonn and Nijm-1 (non-local) potentials are
F=E+aTF-2af= E gf )T (24) more attractive than the Argonnggy/the Nijm-Il and
the Reid 93 (local) potentials and the difference
With Equation (25): between the potentials continues even at high
momentum k, this means that the effect of the
1, 2m (k) potential continues at values above k
a(0)=2 [ 2 ] If we compare the results we note that, one fitds t
: (25) the single particle energies are more attractivethim

_1 2m (p) \( 3 Y continuous choice than those in the conventionaiceh
6| #? 2 ) P This reflects the fact that the effective interastis more
attractive between nucleons in the continuous &hoic

where, the level density parameter a is a functibthe ~ than the conventional choice. Frdfig. 1 one can also
nucleon effective mass mt T = 0 MeV with k = k By see that the BHF single particle energies haveanplsi

using Equation (24) the internal energy (Mansetual ., para_bolic shape as a function of the momentum flor a
1997) of the system at temperature T is defined bythe interactions. So, one uses a parametrizatiothef
Equation (26): single particle energies in terms of an effectivasm

using Equation (7).
T/ om 3 Fina_llly we want to stress that, despite the. parabol
F=E _7{7@1]{7] [ (26) approximation is not accurate (Baldo and Fiascgnaro
o 8L A2 2000) and we use a not so large cutoff for thelsing
. ) particle momentum, we believe that the differerioethe
where m is the effective mass of the nucleon at zero regits for various NN interactions, obtained wittthe

temperature with k = d defined in Equation (7). It game approximation scheme, are sensible and méalning
should be pointed out that the same expressions are

obtained for zero range forces (Barranco and Treine 2.2. The Nuclear Matter Binding Energy
1981). In fact they reflect a general property bé t

Landau theory of normal Fermi liquids. We present the results of the non-relativistic BHF

calculations irfFig. 2 obtained with different modern NN

2 DISCUSSION potentials. The energy per particlg B MeV is plotted
against the density in terms of Fermi momentunt kn

2.1. The Symmetric and Pure Neutron Matter fm™, for symmetric nuclear matter using different
potentials, the CD-Bonn potential (solid line), theee

2.1.1. The Single Particle Energy Nijmegen potentials, Nijm-I (short dashes), Nijm-II

In this section we present the results for the lsing (double dot-dashed line) and Reid 93 (dot-dashee) i
particle energies which is calculating using Equa2). ~ 2nd the Argonne ¥ potential (dotted line). Left panel is
More discussion can be read in (Hassaret@h, 2011). for ponventlonal_ choice and _the r!ght pan_el is for
Figure 1 shows the dependence of the single particlecontinuous choice. The solid points indicate the
energy on the momentum k up te ke 1.6 k for saturation points and the dashed box indicates the
symmetric nuclear matter using the CD-Bonn poténtia €mpirical saturation one. One observes from theréig
(solid curve), the Argonne ¥ potential (dashed-double that the binding energy per nucleon, first decreasith
dot curve), the Nijm-I potential (dotted curve)e tNijm- increasing k, until it reaches the minimum (saturation)
Il potential (dashed curve) and the Reid 93 po#énti point then it increases with increasing the Fermi
(dashed-dot curve) at the normal saturation depsgity momentum k The continuous choice leads to an
0.16fm? in terms of Fermi momentumg k 1.333 fm". enhancement of correlation effects in the mediud an
Left panel for conventional choice, right panel for tends to predict larger binding energies for nuclea
continuous choice. We observe that the resultsllof a matter than the conventional choice.
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100 I 100 1 '
— CD-Bonn — CD-Bomn
- Nijm I i -+ Nijm1 f’_
——- NijmII —- NijmII /5
s0b |-—-- Reid 93 50— |-—-- Reid 93 ﬁ"{:
-—-- Argonne V. -—-- Argonne V,, j"’
)
-50 - -50 —
-100 I | I | I | I -100 I | I | I | I
0 0.5 1 1.5 2 0 0.5 1 1.5 2

Fig. 1.The single particle energy within BHF approachngsmodern nucleon-nucleon potentials. The left paepresents the
results with conventional choice and the right pavith the continuous choice for the auxiliary putial at the normal Fermi
momentum k = 1.333fm?

20 . . 20 . I .
— CD-Bomn
- 1 Tooee Argonne V )
-—- NijmI
10— —  104---- NijmII -
=+ Reid 93 i
.'7."
i 7 i 7
= i
= ot
Z o0~ - o a I
gt
i ry

Fig. 2.The binding energy per nucleon calculated for sytnim nuclear matter as a function of the Fermi ranotam k within BHF
approach using modern nucleon-nucleon potentidis. [€ft panel represents the results with conveatiechoice and the
right panel with the continuous choice for the éiary potential. The solid points are the satumafmints and the big square
indicates the empirical saturation area

///// Science Publications 43 Pl



Khaled Hassaneen and Hesham Mansour / Physicetitamal 4 (1): 37-59, 2013

It is found that our calculations lead to results f nucleon rising approximately monotonically with
saturation points, which lie along a line (Coedire) increasing the Fermi momentum, which is in agreémen
shifted with respect to the phenomenological séituma  with most of the many-body calculations. We not the
point (b = 0.16 fm?, E5 = -16MeV ). One can see that differences between the potentials are small, tsecthe
the continuous choice leads to an enhancement ofnain source of differences among the potentials ibe
correlation effects in the medium and tends to ipted strength of the tensor force, which is mostly 1Ee in
larger binding energies for nuclear matter than thethe (T = 0)*S,-°D; coupled states. In pure neutron matter
conventional choice. In the continuous choice finat is (T = 1), however, this partial wave does not ctioiie.
close to the empirical data than the conventiohalae. Only T=1 states contribute to the energy of pure
So, we can say that our results confirm the conopt  neutron matter while both isospin states contriltatthe
“line”, density and energy of the various satumnamints  energy of symmetric nuclear matter, if major T = 0
being strongly linearly correlated, where that basistent ~ partial waves become increasingly repulsive at tshor
with the results in (Liet al.,, 2006; Day, 1981). The distances. It is possible for the energy of symimetr
saturation points for our results are presentethine 1 nuclear matter to grow at a faster rate and evéntua

A very important source for the origin of the two- approach the neutron matter EoS. This is just wiet
body correlations is the tensor force, which foample, observe in our model. In the presence of repulfivees
describes the scattering of a proton-neutron pehich only, symmetric matter would be a more repulsive
originally is in a relative’S, state with momentum below system than neutron matter (for the sam)e k
ke, into a°D; state above the Fermi sea. A measure of the
strength of the tensor force is expressed in tertheoD- 2.3. Symmetry Energy
state probability p obtained for the deuteron (Day, The neutron matter EoS combined with that of
1981; Hjorth-Jensenet al., 1995). These D-state symmetric nuclear matter provides us with informatbn
probabilities for the present potentials are liste@able the isospin effects (Zuet al., 1999), in particular on the
1. We also observe frorifable 1 that the continuous symmetry energy. The symmetry energy of nucleatemat
choice in the Nijm-II potential and Argonnggpotential is defined as a second derivative of energy pelennds,
obey approximately the correct Fermi momentum with respect to the asymmetry parameteas follows
saturation point but at low binding energy per eodl. Equation (27 and 28):

The continuous choice in the Nijm-I potential obeys

approximately the correct binding energy per nucleo 1[ 9%E, (p,a)

but at high Fermi momentum. The CD-Bonn potential Esym(p):2|:m.2:| (27)

leads to strong over-binding and too high saturatio =0

density than the others, because it contains a weak . i
! where, we introduce the asymmetry parameter:

tensor force. It looks that any increase of the-non

locality would improve the fitting of binding energf 0. —p

nuclear matter, but shifts the saturation poinhigher a=—-F (28)

density and binding energy. P

In Fig. 3, we plot, for comparison also, the energy
per particle as a function of Fermi momentupuking
:)hoete%?igtlmvl\ji?ﬁstl‘fg Orlggulfg ct)l;)?aisr:gglewﬁﬁrt;ﬁf ?Fr:;ydatr is the total d_ensity of asymmetric nuclear matters .
and T-matrix +3BF method with CD-Bonn potential by Well established (Gad and Hassaneen, 2007;
Somua and Bozek (2008) and with BHF +3BF using both1assaneen and Gad, 2008; Bombaci and Lombardo,
CD-Bonn and Argonne } potentials by Baldo and Shaban 1991) that the binding energy per nucleon flfills
(2008). There is another method can be used tmeefiae  the Simple &law not only for a«l as assumed in the
present results if one goes beyond BHF approach. empmcal nuclear mass formula (Haustein, 1988}, bu

In Fig. 4, the energy per particlesEs plotted against S0 in the whole asymmetry range. THdaw of the
Fermi momentum & for pure neutron matter using EOS Of ANM at any isospin asymmetry leads to two
different potentials. Left panel is for conventibna !Mportantconsequences.
choice, right panel is for continuous choice. Wenpare First, it indicates that the EoS of ASM at any fsios
the results by CD-Bonn +3BF and;g¥3BF. The pure  asymmetry is determined completely by the EoS dfISN
neutron matter EoS is unbound with the energy perand the symmetry energy.

Both p, andp, are the neutron and proton densities
in Asymmetric Nuclear Matter (ANM) angl = p, + p,
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Fig. 3. The binding energy per nucleon calculated for symim&uclear matter as a function of the Fermi motae k- within
BHF approach using modern nucleon-nucleon potenti@ll the results are calculated with the contumichoice for the
auxiliary potential and compared with other apphesc see the text for details. The big squareateliche empirical saturation area
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Fig. 4. The binding energy per nucleon calculated for pugatron matter as a function of the Fermi momenkgrwithin BHF
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right panel with the continuous choice for the ¢éiary potential
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Table 1. Summary of the main features of the nuclear mati@r be extracted from the equation of state @fraion points. These
values are the Fermi momentuk], saturation energy & symmetry energy &n incompressibility K and effective mass

m*/m. All results are calculated within BHF apprbagsing the conventional (first group) and contimsigsecond group)
choice for the auxiliary potential. Also listed dhe values of D-state probability in the deutelfgn

kg 'EA Esym K kg 'EA Esym K

fm™ MeV  MeV MeV m*m  fm? MeV MeV MeV m*/m R, %
CD-Bonn 1.743 17.70 32.24 208.83 0566  1.627  B58.2 30.23 180.23 0.602 4.85
Arg. V18 1.506 11.94 23.05 137.42 0.632  1.353 291. 20.11 189.51 0.681 5.76
Nijm | 1.643 1450  30.40 156.38  0.566  1.530 15.4928.84 148.51 0.639 5.66
Nijm II 1.522 11.92  25.89 136.10 0.634  1.361 71.1 22.16 182.94 0.682 5.64
Reid 93 1.578 13.51  28.08 148.18 0.618  1.418  713.1 24.60 121.55 0.664 5.70

Second, the aboveé-law implies that the difference values of the asymmetry parameter a. In order to
of the neutron and proton chemical potential8-stable establish the importance of the hole-hole termha t
neutron star is determined by the symmetry enarggni  calculated binding energy we have compared BHF
explicit way: pr-Hp = 4aE,m (Hassaneen and Gad, 2008) calculations (which ignore the hole-hole term) with
and thus the symmetry energy plays a crucial role i SCGF, which includes the hole-hole term. As
predicting the composition of neutron stars. expected, the hh term gives a repulsive contributm

This enables us to calculate the symmetry energythe EoS of asymmetric nuclear matter. This
Esm in terms of the difference between the binding contribution becomes stronger by increasing the
energy of pure neutron mattery Ep,1) and that of density and makes the EoS at high density much

symmetric nuclear matternHp,0), i.e., Equation (29): stiffer. As the density increases the phase space f
the hole-hole propagator is no longer negligible,
Eyn(P)=En(P.)- Ei(p.9 (29) resulting in an enhanced repulsive effect on thalto

energy. The additional repulsion from the hh immev
but one would refrain from applying it at very high greatly the predicted saturation density of cold
density. symmetric nuclear matter. As the neutron density
The results of our calculation for the symmetryrgpe  increases (the total density remaining constarig, t

as a function of baryonic density in terms of thernki EoS becomes more and more repulsive. From the
momentum k are depicted irFig. 5. Also the values of figure one notices that, the saturation densitiés o
symmetry energy at saturation points are liste@iable 1 asymmetric nuclear matter depend on the asymmetric
We observe that the symmetry energy first increasts parametera. and the saturation points shift to lower
increasing the Fermi momentunt kintil it reaches a  densities. In addition the instability of nucleantter

maximum value then it decreases with increasing k decreases with increasing asymmetry paramgtéor
In Table 2 we present the Fermi momentum at which decreasing proton fraction).
the symmetry energy takes maximum valgg,kand it The EOoS in the case of asymmetric nuclear matter wa

reaches zerogk (critical Fermi momentum) for various studied in more detail in (Gad and Hassaneen, 2007)
potentials. At high k the symmetry energy can take . . )
negative values, this occurred because at highkkEoS ~ 2.5. The Symmetry Energy and its Relation with
for symmetric nuclear matter increases more rapcly the Chemical Potential

in some potentials increase more than the Eo0S doe p Within the parabolic approximation (Equation 16)
neutron matter. This means that pure neutron matter

. in (Hassaneen and Gad, 2008) one can obtain the
system becomes more stable than symmetric matter, a

. . L neutron and proton chemical potentials in asymroetri
phenomenon referred to as isospin separation ifistab : . :
(Li, 2002). nuclear matter in the following way (Vidarat al.,

2000; Baldoet al., 2000) Equation (30):
2.4. Asymmetric Nuclear Matter

2.4.1. The Binding Energy Hop(P0) =y (P00 = 0)

Figure 6 shows the energy per nucleon as a function of —[az F20 - azpaj E,m(P)
the densityp in asymmetric nuclear matter for various %

(30)
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Fig. 5.The symmetry energy obtained from Equation (24 asction of the Fermi momentura. K he left panel represents
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Fig. 6. The energy per nucleon for asymmetric nuclearemat$ a function of density for various valueshef &symmetry parameter
a. The predictions are obtained from the BHF (lefbe@l) and the SCGF (right panel) approaches
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Table 2. The values of the Fermi momentum that t_he symmetry relativistic mean-field calculation the parametatian
energy takes a maximum valuenkc and it reaches  for DDRMF in (Gogeleiret al., 2008) has been used.

zero at kc in units of fni* for the various potentia First let us turn to the binding energy of symneetri
kema(CONV) ke KemadCONt) e nuclear matter, which are displayedFig. 7. Compared
CD-Bonn 2.1 above 3.0 1.9 2.6 to other realistic NN interactions the CD-Bonn i,
Arg.vig 1.8 2.8 1.5 2.2 which we have chosen here is a rather soft NN
Nijm | 1.9 2.8 1.8 2.5

interaction with a weak tensor force. This is irdéd by

Nijm Ii 18 2.1 1.6 22 the results for the saturation point of symmetniclaar

Reid 93 1.9 2.8 1.6 2.3

matter as obtained in the BHF approximation (the
Table 3. The difference between neutron and proton chemical_rplgllmlim _(I_);] the ?asftw_ed zlack.tlln_e Iﬁlg. 7 ?Qd dtatg mth
potentials are reported for two approximations uged able 4). The saturation density is larger than twice the

the present work for CD-Bonn potential at asymmetry em_pirical value and the calculated energy is Welbh.’v
papameten, = 0.8. All chemical potentials difference  Which means that the CD-Bonn result is locatedhia t

are given in MeV large binding energy high density part of the Cewest
BHF SCGF band (Mather and Polls, 2000).

p 40 Egym 4 o Egym In order to reproduce the empirical saturation pofn
0.08 65.3 56.4 symmetric nuclear we have added an isoscalar
0.16 96.3 90.6 interaction term as defined in Equation (21) chogsh
0.32 145.0 142.4 value ford = 0.5 and fitting the parametegsaind &. The
0.48 189.5 185.9 results for these fitting parameters are listedamle 5
0.80 289.3 288.3

and the corresponding energy versus density claxes

displayed inFig. 7.
where, the minus sign is for neutrons and the pige

for protons and in particular Equation (31): 2.7. The Nuclear Compressibility Modulus or

the Incompressibility

Mo (P.0) =1y (p.a) = 4 Eyyr () (1) The results for the calculated saturation points in
Table 4 are supplemented by the corresponding values

The nucleon chemical potential difference can befor the nuclear compressibility modulus EquatioR)(3

calculated once we have the coefficient of symmetry
energy from Equation (31). Irirable 3 the shift o*(E/A)
between neutron and proton chemical potentigigl, K :993672
as function of the density for BHF and SCGF P lopo
approaches using CD-Bonn potential at asymmetry Thi | ibilit hich | lculated
parametera. = 0.8. Reveals that there is a negligible h IS nuc ea:j compressi "hy' W.'E r:s calcula ?
difference between the BHF and the SCGF N€ saturation density, together with the increase o
approximations. This means that the hh ladder bdrbug energy at large density displayedfiy. 7 characterize

. L . : the stiffness of the EoS of symmetric nuclear matte
about negl|g|ble_ contnbgtlons to.the chemical poie Comparing the different approaches we find that the
difference specially at high density.

relativistic features included in the DDRMF approac
2.6. Properties of Asymmetric Nuclear Matter ~ lead to the stiffer EoS around the saturation deres
in Different Approaches well as at higher densities. The SCGF and thg.V
calculations yield rather similar results after gmntact
2.6.1. How to Reproduce the Empirical terms are included, which are a little bit softeart the

(32)

Saturation Point DDRMF results and characterized by a compression
) ) B modulus of 270 MeV and 258 MeV for SCGF ang,¥
All results of calculations, which refer to realisNN respectively. At higher densities the results dse sery

interactions, have been obtained using the CD-Bonnclose to those obtained for the Skyrme Hartree-Fock
(Machleidt et al., 1996) interaction. This includes all using SLy4. Note, however, that SLy4 yields a rathe
BHF and SCGF calculations. Also the evaluation of low value for K as compared to the SCGF anglV
Viowk has been based on the proton-neutron part of CD-<alculations. The softest EoS for symmetric matter
Bonn. The Skyrme Hartree-Fock calculations havenbee among those approaches which fit the empirical
done using the parameterization SLy4 and for thesaturation pointis provided by the BHF approximati
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Fig. 7. (Color online) Comparison of binding energy percleon of symmetric nuclear matter as obtained fi®kyrme SLy4,
DDRMF, BHF, SCGF and V¥« Results of approaches based on realistic NN dntems are also compared with an
additional contact interaction of the form displdye Equation 21

Table 4. Properties of symmetric nuclear matter are compdoe Skyrme SLy4, DDRMF, BHF, SCGF and,\. The results,
which are listed in the columns labeled with +@& abtained employing the additional contact intéoacof Equation (21)
with parameters as listed Trable 5. The quantities listed include the saturation dgns, the binding energy at saturation
E=A, the compressibility modulus K and the symmetngrgy at saturation density (@o)

SLy4 DDRMF BHF BHF(+ct) SCGF SCGF(+ct) oM + ct
po (fM™) 0.160 0.178 0.374 0.161 0.212 0.160 0.160
E/A(po) (MeV) -15.970 -16.250 -23.970 -16.010 -11.470 666 -16.000
K (MeV) 230.000 337.000 286.000 214.000 203.000 Kv.(0) 258.000
as (po) (MeV) 32.000 32.100 51.400 31.900 34.000 28.300 1.7G0

Table 5. Parameterstand § defining the contact interaction of ~ 2.8. The Nuclear Symmetry Energy
Equation (21) as obtained for the fit to the satara
point p = 0.16fm* and E/A = -16.0 MeV ab = 0.5
for various realistic approaches

Table 5 also displays results for the symmetry energy
Equation (33):

BHF SCGF ouk
t (MeV fm?) 1153 311 4381 g (p)= 9(E /ZA)| a=N"Zog oy (33)
ts (MeV fm**®) 2720 3670 6248 oa |p A
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Evaluated for each approach at the correspondingncluded in SCGF (Dieperinket al., 2003). The
saturation densityp,. The two phenomenological symmetry energy rises as a function of densitydibr
approaches SLy4 and DDRMF yield results which areapproaches considered. Note, however, that the two
in the range of the experimental value of 32+1 MeV. phenomenological approaches Skyrme Hartree-Fock
Also the BHF and SCGF approach lead to resultsusing SLy4 and DDRMF provide rather different
which are rather close to the empirical value,hiét predictions at high densities although the symmetry
contact term has been added. The BHF and SCGFnergy at normal density is identical. The relatii
calculations without the contact term lead to non- approach predicts symmetry energies for high
realistic values for a(py) since these values are densities, which are well above all those derivexnf
calculated at the corresponding saturation derssitie the microscopic calculations, while the Skyrme
which are larger than the empirical saturation dgns  interaction yields a symmetry energy which is even

The symmetry energy calculated in the SCGF below the \,, estimate at densities above four times
approach is slightly smaller than the one obtainedsaturation density.
from the BHF approximation. This is valid for all N
densities under consideratioRig. 8). This difference  2-9-B-Equilibrium

can easily be explained: As we already mentioned Rather similar features also observed, when weeirtsp
above, the contribution of the hole-hole terms is ihe properties of nuclear matter ifi-equilibrium

repulsive, which leads to larger energies for SGBF o iralizing the charge of the protons by electrons

compared to BHF for all densmgs i symmetric displayed inFig. 10 The upper panel of this figure
nmuzﬁiz?rFTattgir nggncg) r?nggs(!ratshéncgl;]{ﬁbﬂfig:\rogf displays the proton abundancg=YZ/A, which are to some
ladder di%'gra.ms i ’Iarger ‘1 the proton-neutron extent related to the symmetry energy: large symymet

energy should correspond to large proton abundas®es

interaction (due to the strong tensor terms inBe . .
3D, partial wave) than in the neutron-neutron the largest proton abundances are predicted wittén

interaction, this repulsive effect is stronger in DDRMF approach. Already at a density around 0.7 fr
symmetric nuclear matter than in neutron enriched€xceeds the about 10%, which implies that the DWECA
matter. Therefore the symmetry energy calculated inProcess could be enabled, which should be refleictenl
SCGF is slightly smaller if the hole-hole terms are fastcooling of a neutron star.

150 | T T I T T T T T T T T T T T T T T J T T J

Symmetry energy (MeV)

S S S R [T S TR

0.5 0.6 0.7 0.8

GI..!...I. L 4

0.1 0.2 0.3 0.4

Density p (fm™)

Fig. 8. (Color online) Comparison of the symmetry energlp)aas a function of densify as obtained from Skyrme SLy4, DDRMF,
BHF, SCGF and ¥, approaches
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Fig. 9. (Color online) Energy per nucleon of pure neutnzatter as a function of density as obtained froyr®le SLy4, DDRMF,
BHF, SCGF and ¥, approaches

| T J T I T I T T | |'| T
- # ]
—_— ].:-‘_ ',‘ 1l
= [ e ]
3 L - .
E 10 g
£ S iR BRI s 41 4
£ s 1
=) l:!r/ -
O H—+——+—F—+—+—+—+—+—+—+++
L 7
Ao » o= Skymme SLy4 o el
% 150~ :=— DDRMF sl
= A= & BHF + ct i s
= T ®=—e SCGF+ct AP _
S 100 —_— Vi Tt //A/ |
2 i AT |
= ”."/
5 S0 |
o
2 li -
0 _
| | | | | | | 1 | L | L | \

0.1 02 0.3 04 0.5 0.6 0.7 0.8
Density p (fm™)

Fig. 10. (Color online) Results for a system of infinite thea consisting of protons, neutrons and election§-equilibrium. The
upper panel show the proton abundances and the jwavee| displays the energy per nucleon as a fomaif density using
the various approximation schemes discussed itettie
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The Viewk and SCGF approaches lead to similar in neutron rich matter for the calculations usieglistic

proton abundances at large densities. This denatesthat
the evaluation of the proton abundancepiaquilibrium

interactions, while it is opposite applying the Bkg
parameterization. In fact, if we define the effeetmasses

cannot directly be deduced from the symmetry energy for protons mm_ and neutronsm, in terms of isoscalar

since the former observable is derived from proamadl
neutron energies at large asymmetries (Z<<N), velscitee
symmetry energy is calculated from the second dtivi at
N = Z (Equation (28). The BHF approach shows dight

lower values for Y at high density, but the results are still in

the same range as SCGF angly/

. . 1 1 1 1
At low densities the Skyrme HF approach yields *=*—0([—j

large proton fractions as compared to the resdlihe
other calculations. Large proton fractions at leemsities
tend to enhance density inhomogeneities and thuor fa
the existence of a large variety of pasta strusture

Therefore the Skyrme HF (Sly4) and the DDRMF

mg and isovector masses, by Equation (34):

1 1 1 1
= tal =
m, my ms my

- (34)
mS ITlV

N-Z

p S

with o =

It turns out most of the Skyrme parameterizations

approach, which have been explored in detail inyield an effective isovector massy,, which is even

(Gogeleinet al.,, 2008; Gogelein and Muther, 2007),

larger than the bare nucleon mass M (Stone anchRein

should favor the formation of pasta structures a52007) which implies that it is larger than the effee

compared to the microscopic approaches. Compahnimg t
energies of matter ig-equilibrium derived from the
various approaches as a function of denskig.( 10,
lower panel) we find the same trends as in the cdise
pure neutron matter displayedFig. 9.

The equation of state of nuclear matter fa
equilibrium is the main input to predict mass aadiirof
neutron stars. A stiffer equation of state suppaterger
maximum mass and a lower central density. In aoiditi
thicker crust is found for the stiffer equation sthte
(Engviket al., 1996).

2.10. The Isovector Effective Mass

Another important information for the evaluation of
dynamical features of matter in neutron stars esdibnsity
of states, which can be characterized by an effectiass.
The term effective mass is used in various conmestin
many-body physics. This includes the effective msss
which express the non-locality of the self-enengyspace

isoscalar massn,. This means that the effective mass

for neutrons is smaller than the correspondingfonéhe
protons in neutron rich matte0). These Skyrme
parameterizations leading to a large effective eéstar
mass are usually favored as they correspond witien
mean-field approach to an enhancement factor bhef t
Thomas-Reiche-Kuhn sum-rule (Ring and Schuck, 2004;
Benderet al., 2003).

Non-relativistic descriptions of nuclear matter,ieth
are based on realistic interactions yield an effect
isovector mass m, which is smaller than the

corresponding effective isoscalar mass, which leads
larger effective mass for neutrons than for protams
neutron-rich matterHig. 11). In order to analyze this
finding we inspect the dependence of the nucledfr se
energy in the BHF approximatidn ™, defined in

Equation (7), as a function of energyand momentum
k of the nucleon considered. Following the discoissi

and time, which corresponds to a momentum and gnergof Mahaux and Sartor (1991) one can define the

dependence. Such effective masses for protonsearicbns
determined for nuclear matter if-equilibrium are
displayed inFig. 11 as a function of density considering
non-relativistic approximation schemes.

It is a general feature of all approaches consitithrat

the effective masses for protons as well as nesitron

decrease with increasing density. However, thera is
striking difference between the phenomenologicat Bl
approximation and the BHF ang,)}. approach, which are
based on realistic NN interactions: The effectivaesmfor
protons is smaller than the corresponding one dotrons
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Fig. 11. (Color online) Effective masses for protons (linegh symbols) and neutrons (lines without symbais) obtained for
nuclear matter ift--equilibrium using Skyrme HF (SLy4), BHF ang,\. approaches
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Fig. 12. (Color online) Effective k-massn, k) (solid lines) and effective E-mass, (k) (dashed lines) for neutrons and protons

(lines with symbol) as obtained from the BHF cadtigns for asymmetric nuclear matter at the density0.17 fm®and a
proton abundance of 25%. The Fermi momenta foilopoand neutrons are indicated by vertical doftess|
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Fig. 13.The symmetry potential as a function of the nucléinetic energy at nuclear matter densipy< 0.16 fm°) and at
asymmetry parametér = 0.2 (upper panel) and &t= 0.4 (lower panel). The predictions are obtaiméth the CD-Bonn
potential and compared with the empirical informatfrom the nuclear optical potential data (shaates)

The effective mass can then be calculated from theFockexchange contribution originating froprexchange.
effective k-mass and the effective E-mass by Eqn#87): In neutron-rich matter this contribution leads teti@nger
depletion for the proton mass than for the neutr@ss
(Hassaneen and Muther, 2004; &tal., 2005).

Anyway, the enhancement of the effective mass m*,
which is due to the effective E-mass in Equatio2) (3

Results for the effective k-mass and E-mass ashot strong enough to compensate the effects ofkthe
obtained from BHF calculations for asymmetric nacle Mass. Therefore the final effective mass is belbw t
matter at a density = 0.17 fm® and a proton abundance bare mass M and the effective mass for neutronairem
Y, of 25% ¢ = 0.5) are displayed iRig. 12 We notice larger than the corresponding one for protons.
that the effective k-mass for the protons is sigaittly 2.11. The Symmetry Potential Usym
below the corresponding value for the neutronsliat a ] ]
momenta. Since the k-masses tend to increase as a Regarding ), as functions of the asymmetry
function of the nucleon momentum k, the differeice  Parameter a, one can easily verify that the folfmyi
the Fermi momenta for protons and neutrons enhdmece aPproximate relation applies Equation (38):

difference m;n(an) - m*kvp( ka) :

m’l*\/l(k) i} m;M(k) m;(w'\; £(K) (37)

U,p(kpa)=U  (kp,a=0=+ Uy (kp)a, (38)
The effective k-mass describes the non-localitthef

BHF self-energy. This non-locality and thereby also with the + referring to neutron/proton, respectyelhe

these features of the effective k-mass are rathedifference between the neutron and proton potential

independent on the realistic interaction used.then gives an accurate estimate for the strengtthef

Furthermore it turns out that the values for theass  isovector or symmetry potential in asymmetric nacle

are essentially identical if one derives them frtme  matter, i.e., Equation (39):

nucleon BHF self-energy using the G-matrix or frima

bare interaction V or from ¥ (Frick et al., 2002). This U = u,-Y,

non-locality of the self-energy is dominated by >  2a

(39)
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Fig. 14.The internal energy at T = 8 MeV (upper figure) ahd 12 MeV (lower one) for symmetric nuclear mats a function
of density using different potentials for contingochoice compared with ArgonneMplus microscopic 3BF by Baldo

and Ferreira (1999)

which is of particular interest and importance rioclear
reactions induced by neutron-rich nuclei. The istwe
part of the nucleon potential as a function of eaol
kinetic energy is illustrated ifrig. 13 at asymmetry
parameter a = 0.2 (upper panel) and at a = 0.4eflow
panel). The strength of the isovector nucleon aptic
potential, i.e., the symmetry or Lane potential iéa
1962), can be extracted from Equation (34) pat

Figure 13 shows the theoretical symmetry potentials
that have been calculated in both BHF and SCGF
approaches in comparison with the Lane potential
constrained by the experimental data. The verticab
are used to indicate the uncertainties of the @oefits a
and b. It is seen that the strength of symmetremta!
decreases with increasing energy .This trend is in
agreement with that extracted from the experimental

Systematic analysis of a large number of nucleon-data. At the saturation density, the nuclear symmet

nucleus scattering experiments at beam energiesvbel

potential is found to change from positive to negat

about 100 MeV indicates undoubtedly that the Lanevalues at a nucleon kinetic energy of about (200/Me

potential decreases approximately
increasing the beam energyEi.€., Uane = a-lkin
where al 22-34 MeV and by 0.1-0.2.
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symmetry potential at higher energies in asymmetricdensity and energy of the various saturation pdieiag
nuclear matter. It has been shown that (2ual., 2005) strongly linearly correlated.

the U, is almost independent of the isospin asymmetry ~ We have presented a microscopic calculation of the
a within the BHF framework, implying a linear equation of state of nuclear matte when protons and
dependence of neutron and proton single-particleneutrons have different Fermi momenta. The techasiqu
potentials om. and providing a microscopic support for to evaluate the single-particle green’s functiomiBelf-

the empirical assumption of the Lane potential @,an Consistent G-matrix approach (SCGF). The continuous
1962). Also the present results indicate that tgg, 16 choice has been adopted for the auxiliary poteriiae
almost independent of the isospin asymmetry a withi single-particle energy is calculated self-consigyen

the BHF and SCGF approaches. using BHF and SCGF approximations. The contribution
2.12. Free Energy of the Symmetric Nuclear of the hh terms leads to a repulsive contributiorthe
Matter at Finite Temperatures single-particle energy which decreases with monmantu

The dependence of the E0oS on the neutron excess

Many attempts were made to use the BHF parameter is clearly linear as a function &f @he
calculations at finite temperature (Baldo and Fesre inclusion of the hole-hole ladders and the selfsistent
1999; Bombaciet al., 2006; Frick and Muther, 2003; treatment of the Green’s function in the SCGF aapho
Rios et al., 2005). InFig. 14 the internal energy F of |eads to a small reduction of the binding energy pe
nuclear matter in MeV is plotted against the dgngit  nucleon as compared to the BHF approximation.
in fm?® and the values obtained with the low Various approaches to the nuclear many-body
temperature expansion (26). The results are shown i problem have been investigated to explore their
Fig. 14 for symmetric nuclear matter using different predictions for nuclear matter at high density ¢arge
potentials. For both T = 8 (upper graph) and T = 12 proton-neutron asymmetries. Two of these approaches
MeV (lower one), for continuous choic&igure 14 the Skyrme Hartree-Fock and the Density Dependent
gives the results obtained using the CD-Bonn paiknt Relativistic Mean Field approach are predominaily
(solid line), the Nijm1 potential (dashed line) atid phenomenological origin. Their parameters have been
Reid 93 potential (dashed-dot line) in comparisdthw  adjusted to reproduce data of finite nuclei. Howetiee
a more elaborate calculation using Argonng Wlus  Parameters have been selected in such a way that al

microscopic 3BF (Baldo and Ferreira (1999)) (dashedbulk properties of asymmetric nuclear matter detive
double dotted line). From the plotted figures it is from microscopic calculations are reproduced. Ttheio

observed that the internal energy first decreasis w three approaches are based on realistic NN intersct

increasing the density until it reaches a minimtent it which _f't tt_he N'ﬁ scatteémg EhaseH s?n‘ts. Fln kthBeI-sllg
increases with increasing the density. Our resafts approximation schemes (Brueckner Hartree Foc ’

comparable to those obtained in (Baldo and FeyEa@9). Sejf-consstent Grep ns Fpnctlon_SCGF and _Hartrek Fo
using a renormalized interaction o\, a isoscalar
contact interaction has been added to reproduce the
3. CONCLUSION empirical saturation point of symmetric nuclear texat
These various approximation schemes lead to rather
similar predictions for the energy per nucleon of
symmetric and asymmetric nuclear matter at high

We have investigated the effect of different modern
nucleon-nucleon potentials on the E0S, i.e., theleau

matter bind?ng energy  per nucle-on, within - BHF densities. In detail one finds that the relaticiShDRMF
approach. It is found that our calculations leadesults, leads to a rather stiff Equation of State (EoS) for

which lie along a line (Coester line) shifted wittspect symmetric matter while the BHF approach leads to a
to the  phenomenological  saturation  point relatively soft E0S, a feature which is compensatithin
(po1 0.16fm* E, [ - 16MeV). the microscopic framework by the repulsive featurés
We have reviewed the current status of the Coestethe hole-hole ladders included in SCGF. These featu
line, i.e., the saturation points of nuclear matietained  are also reflected in the study of nuclear matiethe p-
within BHF approach using the conventional and equilibrium and lead to moderate differences in the
continuous choice for the auxiliary potential and predictions for proton abundances and EoS.
employing the modern nucleon-nucleon potentialss It More significant differences are observed when we
found that our results confirm the concept of aéfi inspect details like the effective masses, in paldir the
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isovector effective mass. In neutron-rich mattee th Barranco, M. and J. Treiner, 1981. Self-consistent
microscopic approaches predict a positive diffeeenc description of nuclear level densities. Nucl. PHs.
between neutron and proton effective masses. This  351: 269-284. DOI: 10.1016/0375-9474(81)90444-9
feature can be related to the non-locality of ted-s  Bender, M., P.H. Heenen and P.G. Reinhard, 2008. Se
energy induced by one-pion exchange term and is  consistent mean-field models for nuclear structure.
expressed in terms of an effective k-mass. Rev. Mod. Phys, 75: 121-180. DOL:
Also the symmetry potential has been calculated as 10.1103/RevModPhys.75.121
function of the nucleon kinetic energy. We obsethet Bloch, C. and C. De Domicis, 1958. Un développement

the strength of the predicted symmetry potential du potentiel de gibbs d'un systeme quantique
decreases with energy, a behavior which is comgiste composé d'un grand nombre de particules. Nucl.
with the empirical information. It is interesting hote Phys., 7: 459-479. DOl: 10.1016/0029-
that at normal densityp(= 0.16 fm®), the nuclear 5582(58)90285-2
symmetry potential changes from positive to ne@ativ Bloch, C., 1958. Sur la détermination de I'état
values at nucleon kinetic energy around 200 MeVreMo fondamental d'un systéme de particules. Nucl. Phys.
details can be read in (Mansaatial., 2010). 7: 451-458. DOI: 10.1016/0029-5582(58)90284-0
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