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ABSTRACT

We consider the dynamical systefp,; = u(f,), (1) (where usually n, is time) defined by a éonbus
map u. Our target is to find a flow of the system forchanitial statefy, i.e., we seek continuous
solutions of (1), with the same smoothness degeee &Ve start with the introduction of continued
forms which are a generalization of continued fiatd. With the use of continued forms and a
modulator function (i.e., weight functionj, we construct a sequence of smooth functions, kwhic
come arbitrarily close to a smooth flow of (1). Theit of this sequence is a functional transform,
Klul, of u, with respect tom. The functional transform is a solution of (1), tihe sense that,

Kulul(y+c), is a flow of (1) for each translation constantHere we present the first part of our work

where we consider a subclass of dissipative dynalnsigstems in the sence that they have wandering
sets of positive measure. In particular we consglectly increasing real univariate maps,D - D, D

= (ato), where,a<0, or, a=-o, with the propertyu(x)-x=¢>0, which implies that, has no real fixed
points. We briefly give some mathematical and ptgkiapplications and we discuss some open
problems. We demonstrate the method on the simpielinear dynamical systerfy., = (f,)*+1.

Keywords: Non Linear Dynamical Systems, Smooth Flows, Fumetiorransform, Continuous Iterates,
Continued Forms, Abel Functional Equation, Itemthunctional Equations, Iterative Roots

1. INTRODUCTION fl =fo.of,n00\0

—_—
n

1.1. Preliminary Definitions £01 = |
Let Z, be any totally ordered set of integers. We call
an increasing or decreasing sequence of consequtivéhere, |, is the identity function. We adopt the bracket
integers from the se, an index set. We denote index hotation for the iteration exponent to avoid anyfasion
sets for the rest of this article &k, n], Z[k, ), with powers. The bracket notation has been preljiaised
Z(+o0,n] , wherek,n0Z . by Walker (1991) and others. fifis invertible we denote
We denote open, halfopen and closed real intervaldts inverse for simplicity as ~ . If additionaly,D O (D),
as, O(ab), O[ab), O(ab], O[ab], where for closed Wwe define the negative integer iterate$, @fs:
boundaries, abO0 and for open boundaries,
a,b00 O{*o4 , unless otherwise noted. f = (£ nop

We say that a function i<ck smooth if it has
continuous derivatives &th order. The existence of the integer iteratd$), On0Z,
We denote the non-negative integer iterates of animplies, D=f(D). We will use the following known
univariate function,f :D - [0 , where,f(D)OD O0 , as: properties of iterates:
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gl o §0m = ¢[n+m
(f[n])[nj = flnn

Especially for the successor functi®@ix) = x+1, we
define real continuous ‘principal’ iterates as:

JA(x)=x+a, aOC

where, the meaning of ‘principal’ iterates is expéal in
section 4.5 on homologous and principal functions.

1.2. Introduction

In this article we seek smooth solutions of the
dynamical system Equation 1:

frea =u(fy) (1)

For a class of functionsu:D - D,D =[] (a,+»),

where, a<0, or, a=-«, i.e., we seek smooth flows of
(1) through an initial valuef,OD .

In section 2 we start with the definition of a
continued form, which is a compact representatibn o
successive composition of a sequence of functius;

t

jDZ[k’n][uj(t)] SUgo...oly

Provided that the domains are such that
compositions can be performed (according to thimitieh
in 1.1). It is straightforward to use continuednfisrfor the
representation of continued fractions, continued
exponentials, nested radicals, iterates of funstieta. and
generally in cases of successive composition.

function, called a modulator function, which belsng
to a clasM. We call the limit functionh = & [u] , the

functional transform ol, with respect to a modulator
functionm.

In theorem T2 we show thafjuOU ,CmOM , such
that the limit functionsl:nfnlin: h ,.exist for every,

kOZ and moreover are independenkof
In theorem T3 we show thafjuOU ,CmOM , such
that the functional transformy = & [u] , exists.

In section 4 we consider an arbitrary finite supset
S={f}, nO0[0, d , of the orbit of the dynamical system

(1), with initial value, f,0D. For an arbitrary point,
f, fixedOS and for some fixed modulator function,
we define a sequence of translation constants,
¢ (f,,fo)00 , depending onf, and f,, such that,
h (r+c)=f,,0kOZ .

In theorem T4 we show that the smooth functions,
h.(y+c.) , become arbitrarily close $8 as, k - -, in
the sence thalf]e >0,[N0Z;, such that,Ok< N, we
have, 0h (y+¢)-Sl= max |h i+¢ )-f, ke. We also

0<n<q

show that, provided that the functional transform,
Klul, exists, the function X [ul(y+0 , interpolates

the points ofS, where the constant= kIim ¢, depends

theonly on f, and not on the choice of .

In theorem T5 we show that any functional
transform, % [u]l, is a solution of (1) and that,

K lul(y+9 , interpolates the complete orbin(f,), of
the dynamical system (1). Thu&(,[ul(y+0 , is a flow

In section 3 we use continued forms to construct athrough f,, of the dynamical system (1).

function space:

H={h (y+9,k<snOZO{%e}, cOC O}

which contains the functions:

t
hn(y )=t e C miy - ju] (%
iozlk,nl
h(y)= lim hq(y.%)
h(y)= fim h(y) = ey
where, xOD, provided that the limit functions exist.

The function, udU , is a continuous function from a
classU, defined in section 3 andnpOM , is a weight
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In this first part of our work we consider a sutsda
of dissipative dynamical systems in the sence tiney
have wandering sets of positive measure. In pdeticu
we consider strictly increasing real univariate sap
u:D - D,D=0(a,+»), where,a<0, or,a=-w, with the
property, u(x) - x = £ >0, which implies thati, has no real
fixed points.

From (Belitskii and Lyubich, 1999) we have that
smooth solutions of (1) existlkOO O{+x, ¢} , provided
thatu, is C¥ smooth and,f ™ #0. We believe that the
functional transform, X [u], delivers indeed these
smooth solutions.

For continuous functionas and f, the dynamical
system (1) is equivalent with the Abel Functional
Equation (AFE), f(x+1)=uo-f(x). We also state a
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known lemma which gives a general solution of theEA
from any particular solution.

In section 5 on mathematical and physical
applications we briefly discuss the subject of finenal
definition of continuous iterates of any functiam the
classU, where we propose a split of iterates into two
categories: Principal iterates and homologous tisra
Finally we demonstrate the method on the simple- non

linear dynamical systemf,,, = (f,)*>+1, defined by the

map, u(x) =x?+1. We show a smooth solution of the
system using the logistic function as a modulator
function, along the way pointing out some compotai
difficulties. At the end we give some important npe
problems related to this article.

2. CONTINUED FORMS

The terms ‘continued form’ or ’continued
composition’ seem not to have been used in mathesnat
as all encompassing names for successive compositio
a sequence of functions. In contrast more restritdems
such as, continued fractions, continued powerstiraged
roots, continued radicals, continued exponentidts, e
invariably indicating successive composition, oftgxpear
in use. It seems plausible that they all ultimatelly on
‘continued fractions’, a name first introduced byhd
Wallis in his Opera Mathematica in 1695 (Olds 19&8it
as a mathematical entity it is known since antiquror
ex. continued fractions are implied in Euclid's raats,
as a subresult of his algorithm for the greateshroon
divisor and also used by the Indian mathematician
Aryabhata in the 6 th cent., in his solution oféterminate
equations (Olds 1963).

The relatively rare general term’ Kettenoperationen

in german has more or less the same meaning as
continued forms, but nevertheless seems not to have

been used in a general setting. We will now give a
formal definition of continued forms (the equivaldn
german would be Kettenformen).

Definition
Let, {u;: D; - 00}, D; 00, jOZ k1, be a sequence
of univariate functions such that:

uj(D;) 0 D;,4,0j0Z[k+1,n] if,k<n
uj(D;) 0 Dj4,0j0Z[k-1,n] if,k>n

We call the ordered composition of consequtive
functions of this sequence a continued compositioa
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continued form. We denote a continued form in a
compact way as:

t

ui()] =ugo...ou
& =ue o,

where, the dummy variabld, is the composition
variable. A continued form may be evaluated at atpo
x0D,, in which case we write:

t
C [uj]+(% =ugeo...ou(®

joz[k,n]

We call x, the starting variable because evaluation
begins with s. Continued composition of multivariate
functions is performed with respect to one pardcul
composition variable, which must be the same throug
the continued form. A continued form has an indinit
number of terms if the index set is infinite, as édaample

t t
in, C [u;(01, C[uj(t)], etc. In this case the
JOZ[ K, +e0) j0z
continued form notation represents a formal

expression and the limits may not exist. To avoid
some parenthesis we define that inside an expmessio
a continued form has precedence over composition of
functions and over binary abelian operations sugh a
addition and multiplication.

A continued form is a function since it represeats
composition of functions. Nevertheless an infinite
continued form may not converge towards any pdgicu
function, either pointwise or uniformly.

Definition
t

Let, cr= C [u;(D], be an infinite continued
JOZ[K, +00)

form. We consider the partial continued forms:

t
gn = C [uj()], where,k<n
jozlk.n]

We say thaCF, converges pointwise or uniformly to
a functiong, if and only if, the sequence of functions,
{94 , converges pointwise or uniformly t@, as,

n - +o , respectively. Analogous for:

t

C .

JOZ(~o0,n]

CF
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In the case of a biinfinite continued form the two
- : : . +bja,+...+b,_/a, +
limits are independent unless otherwise noticed. ‘/ai bl‘/ 2 B/ * by
The most important property of continued forms is ;
the following, which stems from the associativepgaay = jm%n][\/ a +b;t}°(1>
of composition.
Continued powers:

Corollary
t
t
Let, 5 n(X) = -DZC[E ][Uj(t)]o(X) , be a continued form (a+ @+ (@)")) = ju(%,n][(ai +t)2}’(0)
] N
and let,| OZ[k,n] . Then: t
8+ (ay+(ag+... + (3y)"..)9)% = J_E[C[;n][(aj +t) ]o(0)

Scn(X¥) =S¢ 0§ n(X)
Mathematical expressions  involving repeated ~ Continued exponentials (towers):
composition may be nicely represented as continued - ¢
: (ag) (%0
forr;s. nge examples are: (30)® = C [(aj)t]o(l)
ums: joo[o,n]

The value of continued forms generally depends on
the starting variable. Nevertheless the value of
converging infinite continued forms may not depemd
the starting variable. An example are taylor series
Products: evaluated within the radius of convergence:

t
aj= C [a+1-(0)
(] i0z[k.n]

- i ((a) + X228 |o( £ D2y =
&% ][ajt]o(l) o= m. iﬂuc[glnl{f (a)+i+1t} O

021k, n] jOzZ[k,n .

C[f<i>(a)+’f_""t}
j+1

Taylor series: i

t

f(x)= C {f(j)(a)+x_it}(f(”+l)(f))

jofo,n] i+
where, 00 B x] (Lagrangeform)

Iterates of functions:

t
o= C uwien
jarL,n]

Continued fractions:

b;
+— 2 a4+ C l_1s(0
% a+ b, % j&[l,n]l:aj+t:| ©

Continued roots (or radicals):

////4 Science Publications

For continued powers see Bo-Yan and Feng (2013)
and Jones (1995).

3. THE FUNCTION SPACE H
3.1. Definitions

We now formally define the function space H, which
depends on a class of continuous functighand on a
class of modulator functiond. In the next sections we
will show that the limits of particular sequencet o
functions from H, are solutions of (1).

Definition
Let U, M, be classes of continuous functions. We
define a function space H, as:

H={h (y+0, ksnOZDO{#§, cOCO}
where h,, are functions defined as:
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t
hea(vx) =ule C [miy- ju)]=(
jO0Z[k,n]
s (320 = 1My (v

he(Y) =Ny e (¥, X)
h(y) = kllnjwm(y) = Klul( Y

where, x, is in the domain of,u0U, mOM and,
k<nOZ. We call, X [u] , the functional transform af,
with respect tom. The function classed, M, will be
defined such that, Oy OO O{-4 , such that,
Oy 00 (yy,+) , the following existence conditions are
satisfied:

Cl: The functions, h (y,x), exist, Ou,mOUxM,
Ok <nOZ, for everyx, in the domain ofi

C2: The limit functions,  h ..(y,X),
O(u,m0OU xM , OkOZ

C3: uOU ,0mOM , such that the limit functions,
h.(y), are independent of the starting varialile
OkOZ

C4: OuduU, OmOM, such that the functional transform,
h(y) = K[ul(y) , exists

exist,

The conditions C1-C4 pose restrictions to the
function classed) andM. The following definitions of
U, M, are chosen, such that these conditions areisdltisf

Definition

We define a clasd, of continuous functions with the
properties:
e u:D- D,D=0(a,+»), wherea<0, or,a=-o

* U, is strictly increasing
. ux)-x=e>0

Definition

We define a clasM, of CX smooth functions with
the properties:

. m:0 - 0(0,1)
. lim m(x) =00

X - —00

lim m(x) =1
X - +00

We call the functions iM, modulator functions.

In the following existence theorems we show that th
conditions required by the definition of H, areisi&d
by the functions itJ, M.
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3.2. Existence Theorems

The following lemma satisfies the existence cooditi
C1 of the definition of H.

Lemma 1: Assumptions

Al. uOuU
A2. mOM

Propositions
P1. For every,q0Z we have:
t
C
j0zZ[kn
t

][m(y— Du®le(x =

q][m(y+ a- u®] (%

j0zZ[k+q,n+

t
P2. C [M(y - ju(®)]o(® , is strictly increasing with

i0Z[k,n]
respect to x  OumOUxM,
Oy fixeddO (assuming its existence)

Ok<nOZ,

t
P3. The continued form, C [m(y=u®)] (X ,
i0z[k,n]

exists, O(u,m)OU xM ,
OxOD
P4. 0y 00 O{-<3 , such that the functions:

Ok<nOZ, OydOOdo and,

t
hen(vx) =uMe C m(y - hu)]«()
i0Z[k,n]

Exist, O(u,m0OU xM ,
and, OxOD .
This lemma satisfies condition C1 of the definitafrH.

Pr oof: P1:

Ok<nOZ, OyO0(y,+)

t
) [M(y = Hu®] o(®) =
i0z[k.nl
t
) My +a-(j +Qu(t)] (X =
i0z[k.nl
t
. [M(y+g-ju®] (¥ =
(j-9)0Z[k,n]
t

[m(y+a- ju(®] =(x)

j0Z[k+qg,n+q]

Pl
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P2: Since u, is strictly increasing, m(y-n)u(x), is
strictly increasing with respect 1o for fixedy and,
t

OnfixeddZ . Then, C [m(y- ju®)]e(x ., is
i0Z[k,n]

strictly increasing with respect tg since it is a
composition of strictly increasing functions.

P3: For, yoo , let,

~a*\ joZ[k,n

t
ben(y) = lim [ C [ty = Dut] om], (for a, see

definition of U). Then for, (uumOUxM and,

nOZ, we will show by induction that:
b n(y)>a,0k<n
t
* byp(y)= lim [ C [my-hub] o(><)J
x-a*\ j0z[nn]
= lim (m(y =nu(y)=my=n) im ux >a,
since, lim u(x)>a<0 and0<m(y-n)<1
*  We assume that,_y ,(y) >a, where NOO \C
* t\1—(N+1),n(y) =
t
lim [ [m(y = ju(t)] °(><)J=
x—a" \JOZ[n~(N+1),n]
t
Iim+m(y-(N+l))U°£_ C [m(y-J')U(t)]o(X)}
X—a JOZ[n=N,n]
=m(y = (N +1))u(b,_n n (Y)) > &, since,
U(Bh-n,n(Y)) 2 By-n n(y) > @< 0, and,
O<m(y-(N+1)<1
Thus, ben(y)>abksn. Since,

t

C miy- jumie=(» .

j0z[k,n]

is strictly increasing with

]
the continued forms exisflik<nOZ .

t
respect to, then, C [m(y- ju®)]-(p)op and thus
DZ[k,n]

P4a: The iterate,ul , exists, OnO0 , since,u(D)OD .
Let, a,= lim ul(x), nO0 , then sincay, is strictly

X-a
increasing we have that!" , is strictly increasing
thus, ul"(D) =1 (a,,,+®). Since, u(x) >x, we have,
aza,za and, @~ MTa>a e gre

a,=a if,yy=a
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interested in the images of the negative iterates,
u[k], which  thus have the property,
Ok=-nuf(a)=a and since,u®, are strictly
increasing theny! (U (a,,, +)) 0D

t
Pab: Let,  s,(0= C [my-juwie(y, where,
jOZ[k,n]

yOo . We will show that, OxfixeddD,
OnfixedOZ, we have: kIim Scn(Y) =+ . By the

have:  |im o)
k- —e Sk+l,n(y)

ratio test we

m(y = K)u o se,3,(Y)
Sk+1,n (Y)

= lim

K - -0

= lim m(y-K) |im U e Sxs1,n(Y)
k- -0 k- —o Sk+1,n(Y)

- iim LS o true since, lim m(y—k) =1
k- —o s|<+j|_,n(y) k-0

xz0
and,u(x)-x=&>0= M>1+.s>1.
X

Thus for, y=0 and arbitrary x, n, we have,
kIim Sn(0)=+», hence, Ord0, there is some,

L<00L<n, such thats ,(0)>a,,0l < L. Then from P4a
we have, uM(s,(0)>u¥ (a)>akz-r. Then ff,

k<L, we have, (s ,(0))>a and,

t

ha©@x)=uMe C [m-ju]=(x, exists, Ok>-r .

j0z[k.nl

If, k>L, we set, k-L=qO0 . Then from P1:

t
W (s0@) =t C im-jurepo=d¥ -
! jOZ[L,n]

t t

[m(g- ju®]o(x =uMo

jOZ[L+qg,n+q] jOZ[k,n+q]
[m(q - u(®)] (%)

Thus, h.q(a,x), exists, Ok=-r and sincen, is
arbitrary we conclude thath, ,(q,x), exists, Ok>-r .
From P1 we have thaty ,(y,x), exists, Oy>q. Butq,
depends only oh, for fixedk and sincé., always exists we
have thatg, always exists for everyk<nOZ. Thus
condition C1 of the definition of H, is satisfiedhis
concludes the proof.

The following theorem satisfies the existence
conditions C2 and C3 of the definition of H.
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Theorem 2: Assumptions

Al. uOU
A2. mOM

A3. h ,(y,x)0OH, satisfy condition C1 of the definition

of H.

Propositions
P1. The limit functions,h ,.,(y) = lim h ,(y,X), exist,
n- +oo
O(u,mOUxM, OkOZ, OyO0(y,+0). This
satisfies condition C2 of the definition of H.

P2. OuOU, OmOM, such that the limit functions,
h(y) =h ., (y,x), are independent of the starting
variable x, OkOZ, OyO0 (y,+e) . This satisfies
condition C3 of the definition of H.

Pr oof

P1. We will first prove this proposition for,
ho(Y) = hy.e(y,X) . For fixed, yOU and, mOM,
we define the sequence; =m(y-n),n0O0 .

t
Let, s,x= C [cjuihlo(x - From L1 the
joz[o,n]
continued forms exist and are strictly increasinghw
respect toxOD, Ou,mOUxM , On0OZ .
Let, 5(X)=n"”:m~°h(x)- We will show that, s(x)00 ,
OuOU,OxOD.
A: Let, x fixed >0, then:
. c,u(x) >0,0n0O0
(sinceu(0),c, > 0)
*  cu(x), is strictly increasingnO0
(since,c, >0 andu, is strictly increasing)
e [NOO, such thatOn= N, we have,c,u(x) < x=
(since,c, - 0 and, x,u(x)>0)
. O<cu(0)<cuX)<x=
(since x>0 andu, is strictly increasing)
. cu@[0,x]) 0C0[0,X] =
. s,(@[0,x]) O[O, X]
* 5(0)=54(Cu(0))> 5,4 (0)In=N =
(since, cu(0)>0 and, s,(x), is strictly increasing
with respect tx)
* 50> %(0)=cu(0)> 0=

////4 Science Publications
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*  {s(0)}.sn s IS a strictly increasing sequence

* 5007 54(CUM)) < S99, 0n= N =
(since, cu(x) <x and, s,(x), is strictly increasing
with respect tx)

*  {s{(X} =N IS a strictly decreasing sequence

. 0<s,(0)<s,x)<x,0n=N=

e the limits, s(0),s(x),
0<s(0)<s(x)<x
This proves P1 fork =0and,x> 0.

exist and moreover,

B: If, x = 0, let,x; = cu(0)>0 and we are done by A.
Otherwise let fixek, be such thag<x<0. Then:
If, Iim+ u(x) =0 ,we let, x =c.u(x)>0,0x00 (a,0)

X-a
and we are done by A

If, lim u(¥) <0, there exists,b<0, such that,
X—a

u(b)=0. Then:

Let, xOUO[b,0), then letx =c,u(x) 20 and we are
done by A

Let, a<x<b<0, which implies thatu(x) <0, then,
CNDOO , such that,On=N, we have, c,u(x)>b,
(since, ¢, -~ 0 and, b, u(x)<0. We let, % =c,u(x)
and we are done by Bbi

t
Thus, s = lim C

[c;u(] o(® , exists, DutU
n- +eo jOZ[0,n]

and, OxOD . Since the sequencég} , is arbitrary and
exists,OmOM , we have that:

lim

n— +oo

t
Moo () = M hon(v = im  C [m(y= un] o3,
n- 40 jOZ[0,n]
exists[J ¢ m)YJUxM [OxOD Qy0O0o

t

Then by LL feo()=im ho(y0 = im G
[my—ju®)]e(X , exists, Oum0OUxM, OxOD,

Oy 00 (yp,+) .
This completes the proof of P1:
P2. Let, J,(x) =s,(X)—s,(0),xO0D. We will prove that,
(X)) » (¥) =0, as,n - +wo . If, x<0, we are done.
In P1 we have shown that all cases whearep, can
be reduced tox<0, where in this case we have:
* 0<5(0)< 541 (0)< 841 X)< 5 )=

Pl
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(from P1A)
¢ 0<5m(0-51(0)< 5 (-5, (0)=
« 0<8,,()< )= O (X) - Sh+1(X) ~ $h+4(0) -
() () -%(0)
Sh(Ch+1U(X)) = $h(Ch+1u(0))
$h(X) —$,(0)
. o (X) - o(x) 00 , as,n— +oo

<1,0n=N=

This condition is not sufficient to show thai(x) =0,
for every sequencéc,} 1 - Nevetheless since,u(x) - 0
and, c,u(0) - 0, there is always aequence,{c} 1 -
converging to zero fast enough such thatzN, [D<e<1,
such that, s,(C4u(X)) = $(Ch+1u(0)) < € (5, (X) — 5, (0)) =

%((?sgq and this finally implies that,d(x)=0,
n (X

OxOD.

Combining this result with the existence of(x),
OxOD, from P1, we conclude that the limig(x), is
independent ok. Applying the same arguments as at the
end of P1B above, we conclude thayyOU , CmOM ,
such that the limit functions,h(y)=h .(y.x), are

independent of the starting variablg, 0OkOZ,

OyO0 (y;,+) and this satisfies condition C3 of the :

definition of H.
The following theorem satisfies
condition C4 of H.

Theorem 3: Assumptions

Al. uOU

A2. mOM

A3. h (v, x)0OH,
definition of H.

A4. h(y)OH, satisfy condition C2, C3 of the

definition of H
A5. y, 00 O{-3

the existence

satisfy condition C1 of the

Propositions

P1. OuOuU , OmOM , such that the functional transform,
h(y) = ZKa[ul(y) , exists, Oy 00 (yy, +o0) .

Pr oof

P1. For, m fixed 0OM, we define the sequence:
de =m(y-k),kOZ" . Let, xOD and let:

t
)= C [du®)] (% and,p )= uM o1, ()
j0zZ[k,~1]

////4 Science Publications 119

By A3 both r, and p,, exist, OkOZ~ and
OyO0 (y,+) . We want to show thatiuOu , CmOM
such that,klim P(X) , exists,0Ox0OD and Oy 00 (y;,+) .

To simplify this proof we setn=-k, c,=m(y+n),

t
s;0= C [c;u(t)] (%) and, q,()=u"es,(x),
jOo [n1]
where,n0 . Then:

o ul"(x), is strictly increasingIn0Z

(iterate and inverse of a strictly increasing fuma}i
*  cyu(x), is strictly increasingn00

(sincec, >0)
*  s,(%), is strictly increasind,)nO0 \0

(a composition of strictly increasing functions)
. O > 0:5(x) = cu(x) = u(x—Xxy)

(since,c, <1)
* >0:s(x)=cucux) =
o cuou(x=x) =ul?(x=x;- x,)
« X >0,jO00[Ln]:

J _ g [ _

2 X

I<jsn-1

2 X

I<j<n

$n() = cpu™ [x—

}3

* g =ulog () =d ™ od”[x— > XJJD
I1<j<n
W) =x= Y X,
I<js<n

(this is easily proved by induction)
Thus, q,(x), converges, if and only if, the series,

z X; , converges. We have:
I<j<n

2 X

1<j<n

lim g,(X) = lim (x—
n - +oo n - +oo

j:X‘ZXi
i<

The series, x; , converges if and only if (since,
i<j
X,>0):

X
lim 2*tl=1-45
n - +oo Xn

X
lim 0t <] o
n- +oo Xn

where, d >0, (independent afi). We have:

-n]

Xn = Ong(X) = Gy (%) = Gy () Ul M o5, (x) =

X = Ona(X) = T Cnd 1. An-1(X)
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For, nfixedOO \0, xfixedOD and fixed,g, we have
fixed, x; >0, where, j =1,2,..n- 1. This implies thatx,,
depends only ong,. Let assume that;, can take any
value, 0<c, <1.

Let, X,(Gy) = Ghg () ~ul ™ o i o g 4(x), then for,

Cp =12 %,() = Gy 0)=U M otV 01 ()= 0
and asc, decreases from 1x, increases (since the
function,x,(c,) , is strictly decreasing with respectdy).

Thus (sincex, , varies continuously with continuogs)
for any, 0>0,0¢,>0, such that: 1-¢,<c,<1=>
0< Xy <Xpq +O= Ogneg >0, such that,

1-&4 <C<1= o g (sincen, is arbitrary andd ,
)+ 0
does not depend on), :%sdﬁl (where, 9,>0,

does not depend a1), = lim Yot g
n - +oo )(n

Thus the series,) x; , converges if and only if,
I<j
CN OO \O, such thatl-¢, <c,<10n=N.
It is easy to show thatg, - 0,asn - +», thus in
other words the series converges df, tends to 1,

sufficiently fast. Notice that the rate of converge
depends on the choice of It can also be shown that
for fast increasing functions, the rate of convergence
of ¢,, may be slow and vice versa.

Thus, OuOU , OmOM , such that, lim g,(x) , exists,
n- +oo

OxOD , which implies that,JuOU , OmOM , such that,
kIim p(X) , exists,OxOD and, OyO0 (y;, ) .

By A4, hy(y), exists according to C3. Setting,
x=hy(y), we have that:

h(y) = Klul(y) = k'@m P e (Y
Exists as required by condition C4 of the defimitad H.

4. SOLUTIONSOF THE DYNAMICAL
SYSTEM, fns1 = u(fy)

4.1. Smooth Approximations of the Solutions

We consider an arbitrary finite subset,
S={f},0 =n<qO0 , of the orbit of, f,,; =u(f,) (1),
depending on an initial valué,, in the domain of.
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For some fixed modulator functiomOM , such that,
h.(y), exists, OyOll (y;,+») , we consider an arbitrary

point, f, fixedOS. We define a sequence of translation
constantsc (f,, fo)O0 , depending onf, and f,, such
that, h.(r +¢) = f,,0kOZ™. The translation constants will
necessarily be such that+c >y, .

In the next theorem we show among others that the
smooth functions h (y+c,), become arbitrarily close to
all points ofS§, as,k - -« .

Theorem 4: Assumptions:

Al.

A2.
A3.

A4.

Let, f4q =u(f,),n0O0

uOU and,mOM

hc(y). h(y)OH

Let, hy(y),u,m, be CP smooth functions where,

pO0 O{+wo,«} , where by € smooth we denote

real analytic functions
A5. Let, S={f}, nO00, d

. Let, {Ck}kmza’ be a
h(r+c)=f,,0kOZg,
Zo =77 0{0}

sequence such that,

where, f, fixedOS and,

Propositions:

P1. The functionsh,(y), areCP smooth,0k0Z
P2. Oe>0,INOZg, such that,
Ih(y+c)-9|<e OksN, where,
In(y+o)-9= sup | b+g ) f,
il [0,q]
P3. h(n+c)=X,[u(n+09 = f,, Of,O0S
P4. The limit constantc =c(f,), is independent of the
choice ofr
Pr oof
t
PLLet s(y=_C [my-juw)-
JOZ[ Kk, +0)

Without loss of generality we can assume that,
k<0, then:

t

— K, T i . =
) =u e =de Gy - Hucle sy
t
[k] o - o
ule G Imly = Pucoe ()
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Thus, h(y), is CP smooth since it is a composition
of CP smooth functions.

P2. Either, r-100[0,q], or, r+100[0,q]. Without
loss of generality we can assume that,100[0,q]=
f..,0S. We will show that,h (r +1+¢,)-f,,; - 0, as,
k - —o0 .
e Let:
3 =h(r +146) = frag =uM o g (r +14G) = fr 4y =
W os 4 (r+g)=fy=
(since, s(y) =Suq(y+a), by L1,P1)
uldo (m(r = (k=1))ue s (r +6)) = fruy =
© WMo —k+Dued ™M od ¥ o (r+g))- frug =
ut o (m(r =k + UM (£, ) - f =
(since,u“‘] og(r+g)="1 )
uomr —k+)H N (£ )= g+ fry =
o dHo(mir —k+ DU () =u (G +u(f,) =
im [u* T o(m(r -k +)ut M () ]= f, =
(since,klim m(r-k+1)=1)
-+ Jim u (g +u(f) =1, = lim 3 =0=
(sinceu,is strictly increasing)
kIim h(r+l+g)="f, = kIim Cc=C=
h(r +1+c) = Kp[ul(r +1+0) = f g

In a similar way we can show that,
kIim h.(n+c) = f,, Of,0S. SinceS, has a finite number

of points the supremum always exists and tend€to: z

sup | O6+g )>-f, b C Then, Os>0,INOZ,, such
i [0,q]
that, sup |h 6+c ) f, ¥|h ¢+c 9 <e.
n1[0,q]
P3, P4. P2 immediately implies that,

h(n+c) = K [ul(n+9 = f,, Of,0S. This again
immediately implies that, is independent of the
choice ofr and for any particulaws, depends only
on,f, andm.

4.2.The Functional Transform, % [u, as a
Solution of (1)

Theorem 5: Assumptions:
Al. uOU and,mOM
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A2. h(y), K [ul(y) OH , where,y Ol (y;,+0),
Y, 00 O{—¢
A3. Let, C:klim ¢ , be the limit translation constant as

—

defined in T4.
Propositions:

P1. The transformed functionsy(y) = &, [u](y) , satisfy
the Abel functional equation,h(y+1)=uoh(y),
Oy 00 (yg,+0) .

P2. The functional transform&_[ul(y+9 , is a flow of
(1) through f, and thus completely interpolates the
orbit O(fy).

Pr oof
P1. We have:

t
hy+D=u¥o C [my+1-ju@)=
JOZ[ K, +o0)

t

o  C o my-jum]= (by L1,P1)
JOZ[k-1,+)
t
uoulk e C my- ju®] =uehy(y) =
JOZ[k-1,+)

kIim h(y+1) = kIim uoh_1(y) = h(y+1) =uch(y)

And this proves P1.

P2. Since, X, [ul(9 = fy, the proposition P2 follows
from P1. Q.E.D.

4.3.General Solution of the Abel Functional
Equation, f(x+1)=uo f(x)

For, uOU, the functional transform delivers
particular solutions of the Abel FE, cS=u- f , where
S, is the successor function. The following knowmiea
gives a general solution of the AFE, from any pafar
solution, where it is not necessary that the paldic
solution is derived from the functional transform.

Lemma 6: Assumptions:
Al. |, is the identity function,S, is the successor
function and, ¢:0 -~ 0,®:0 -0,u:D - DO,
f:AO0 - 0O, are continuous functions.
A2. Consider the FEs:
foS=uof (1) Abel FE
®oS=So®d (2) FE of diagonally 1-periodic functions
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@oS=10¢ (3) FE of 1-periodic functions
where the domainA, of f, is such that FE (1) is
completely satisfied on the respective domains.

Propositions

P1. The general solution of (1) iszfo®, where,
f:A- 0, is a particular continuous solution of (1)
and®, is an arbitrary solution of (2).

P2. The general solution of (2) i®,=1+¢ , whereg, is
an arbitrary solution of (3). We catll, a diagonally
1- periodic function.

P3. The general solution of (3) &sn arbitraryl-periodic
function ¢.

Pr oof

P1. We have:
hoS=fo®oS=foSo®=uofod=uoch

P2. We have:
DoS=(l +@)oS=10S+@PoS=Sol +¢=
So(l +§)=So®

where, we have used the following property of the
successor functiorBo (U+Vv) = Sou+v=u+Sov.

P3. ¢oS=1.¢=¢,
functions

is the definition of 1-periodic

In assumption A2 we have included the identity
function in FE (3), to stress the elegant symmefrthe
three functional equations. This theorem can edsdly
extended to wider classes of functions by taking i
the respective domains and image sets.

Notice that the related functional equation,
gou=Sog, is also called the Abel FE. Actually this was

the original FE considered by Abel (1881).
4.4. Existence of Smooth Solutions of (1)

The following lemma is an adaptation of the main
theorem stated by (Belitskii and Lyubich, 1999).

Lemma 7: Assumptions:

Al.f, satisfies the AFEf cS=uo f (1).

A2. uOuU

A3. u, is C* smooth where kO O{+cx, ¢} , where C*
smooth means real analytic.

A4 If, k=1, let,(f7) #0.

Propositions:

Pla. If, k=0, there exists a continuous solution of (1)
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Pib. If, k=1, there exists a&c¥ diffeomorphic solution of
@
Pr oof

P1. We consider the FEgou=Sog. Assumption A2

implies thatu, has no real fixed points and this implies
that every compact subset oA , is wandering
under u, which means thatN OO , such that for

p,q00 , we have:ulP(A)ndd(A) =g Op-q=N,
see Belitskii and Lyubich (1999). From the main

result in (Belitskii and Lyubich, 1999) we havettha
this case there exists armnvertible solution

of, gou=Sog, which is CK smooth. Lei, be such
a solution. Since, is invertible let, f =g~. Then:
fTou=Sof = foS=uof. Thusf, is a solution
of (1)

For, k=0, g,
continuous. Fork=1, g, is ck* smooth and the chain
rule implies thatf, is cX smooth provided that,
(f7) 20 (A4). Thusf, isa C* diffeomorphism.

Thus we have established th@lf smooth solutions of
(1) exist. We have not proved in this article thia¢
functional transform, & [u] , indeed delivers theseX

smooth solutions for appropriate  modulator funation
Nevertheless we have strong evidence that tHieisdse.

is continuous thus, f=g7, is

4.5.Homologous and Principal Functions

The general solution in Lemma 6 of the AFE (1) with
respect tay, defines a clasd,, of continuous functions:

H, ={f| f,is a solution of the AFE (1) in L¢

We call any two functions inH,, homologous
functions. By L6 any two homologous functiorfg f,
are related asf, = f,o®, where® is a real diagonally
1- periodic function. The question arises whetlerée
is any unique privileged function irH,, called the
principal function of H,. Kuczma et al. (1990)

describes such principal solutions of the AFE ie th
sense of(Szekeres, 1958 which however do not apply
to functions of the clasdJ), as defined in section 3.
Nevertheless we have found strong evidence (not
presented in this article) that unigpeivileged functions
exist for functions of the cladd. These functions define
principal solutions of the dynamical system defifgd..
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In some cases of AFE with known principal solutions,
have found an appropriate modulator function (called a
principal modulator function that correspondsujcsuch that,
KLUl , is identical with the principal solution. The pripal

modulator function corresponding to eaghis probably not

unigue.A most surprising property though of many functiona :

transforms, K [u] , was that by using a variety of simple

modulator functionswe got homologous solutions that are
extremely close to the principal solution. Indefechi= f o @,

is a homologous solution anf] is the principal solution we
have found that thamplitudes ofb, are of the order of IDto
10" By amplitude of®, we mean the amplitude of the 1 -
periodic functiong(x) = ®(x) - x .

5. APPLICATIONS: MATHEMATICAL
AND PHYSICAL

5.1. Continuous lter ates of Functions

experiment we measure the inpdgand the output
f,, of a physical quantity at timet=0 and t=1,
respectively. We make following assumptions:

The experiment can be performed repeatedly
The output f;, depends deterministically on the

input f,, which implies that for identical inputs we

get identical outputs
The input and output vary continuously and from
the measurements we can estimate a continuous
function u, that governs the dynamical system,
fy =u(fo)

« We assume that the dynamical system is controlled
by u, for a time period

«  The functionu, belongs to the cla&$ described in 3.1
Then is a

the functional transform, & [u] ,

The functional transform method presented in this continuous solution of the dynamical system ancegjiv

article has both mathematical and physical apptinat

In the area of mathematics it is an approach tmelef
continuous iterates of functions. It is known tHat
continuous strictly increasing functionsthere is always a
subclass of homologous continuoatrictly increasing
functionsh, which are solutions of the AFE (1). With the help
of these solutions we can give a rigorous definitiof
continuous iterates of a functienFollowing the discussiom
subsection 4.5 about homologous functions, we @D
definition of continuous iterates as:

UM (S yg £ x(
ud x (=N yeh x(

principal iterates:

homologous iterates:

where f, is the principal solution of (1, is a homologous
solution and®, is a diagonally 1-periodic function such
that, h=fo® . A principal iterate is also a homologous
iterate, but not vice versa. If we defin@(n)=0,0n0Z,

all homologous iterates are identical with the gipal
iterate at integer values of. For non-integery, the
homologous iterates generally have different val(ies
differentiable®d, they may have identical values only on a
set of measure zerdh our opinion the functional transform
is a significant step towards the usénofmologous iterates,
since it substantially expands the class of funstig for
which asolution of (1)is available.

5.2. Physical Applications

We describe ajeneral physical experiment where
the functional transform could be usefull. In this
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the quantity, f (t), at any time,tOT .
Next we give an example to demonstrisite method.

An Example: u(x) = x?+1
We demonstrate our method on the Dynamical
System (DS), f,,; = (f,)*>+1, hence the defining map

iS, u:D-0,D=0(0,40),ux)=x+1u" K)=vx- 1.
For this example we chose the logistic function,

m(x) = , as the modulator function and we seek a

1+e*
smooth solution for the starting valudy =0. With the

functional transform method, we will approximatechsse
as possible (considering the limitations of our pater)
the values f,, r =1,2,3,4,5,¢, of the orbit of this DS,

assuming only the starting valué, =0. The first few
exact values of the orbit are given by the integers

458 330

Applying the functional transform method tq we
have:
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t orbit point, f, =0, (which implies,y = 0). We use the
ha(y=ule C miy- ju@]ey = i
R j0z[kn]

equation:
l 2 0+c¢ )= 0
hayd=(EDMe C | Er ol h(0+6) = h(6)
n jozfkn | 1+e 7D ( )[k] Ct: [ . }
1 VG ~1) o —— = [oe()T fp=0
hk(Y)‘( t—l)[k] { t?+1 } & iozik.15]| 1+ e (&1 M o
- *irzikas)| 1+ e 0D |

correct decimal digits; , for variousk:

1+e 0D

. Below we give the convergentg, showing only the
t2+1
JOZ[16,+e0]

k Ck Cuig
We have checked that using the first 15 terms of-6

0.3208 4.4
the continued form is sufficient for our purposes, -11 0.32086284 8.1
since the later terms contribute only about®i@ the  -16 0.32086284925 11.8
result. Of course in principle one can take any hem .21 0.320862849249683 15.5
of terms. First we will determine the translation _2g 0.3208628492496829344 19.1
constantsc,, for, k = -1, -2,..., -31,for the chosen _31 0.3208628492496829344748 228

Fig. 1. Interpolation of the orbit points ofyl™ (0),n=0,1,2,5, by the convergents (x), where, k=-1,-2-3-4
5.2). At the limit,h (x) - h(x) = K [ul(®

- £ (Section
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L J

ARLE. (y)
1
mixl= —
1+e %
L 4
»
. . + . . .
-z -1 z 5 4
—z L

Fig. 2. First three derivatives (brown, purple, blue }te functional transformh(x) = X, [ul(X) , (orange). (Section 5.2)

Clearly ¢, approaches a limit value. The correct Next we give the difference between the functioluea
digits increase linearly with k| according to, and the orbit points, A\ =f -h(r+c), where,
Cgig || 0.735k . r =1,2,3,4,5,¢, for variousk.
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K\r 1 2 3 4 5 6

-6 2.7%10° 6.4x10° 2.6x10% 2.6x10°3 0.14 190

-11 5.%10° 1.3x10°8 5.5x10°8 5.5¢10°7 2.9x10°° 3.9x1072
-16 1.x10%2 2.8x10°12 1.2x101 1.2x10%° 6.1x10° 8.2x10°®
-21 2.5¢10°16 6.0x107® 2.4x107%5 2.5x10° 1.3x1012 1.7x10°
-26 5.%10% 1.3x10° 5.2x10°%° 5.2x1078 2.7x10°16 3.7x10°%2
-27 9.%10% 2.3x10°2° 9.5x102° 9.5x10™%0 5.0x10°Y7 Overflow
-28 1.810% 4.2x10°% 1.7x10% 1.8x10%° Overflow Overflow
-29 3.%x10% 7.8x10°% 3.2x10% Overflow Overflow Overflow
-30 6.1x10°% 1.4x10 22 Overflow Overflow Overflow Overflow
-31 1.x10% Overflow Overflow Overflow Overflow Overflow

We see thath (r +¢), converges fast tof, , ask,

decreases, until the computation is stopped byflover
This is acomputational difficulty that eventually will be
met on all computersThere are some methods (not
mentioned in this article) to temporarily overcomtés
problem, which add few more steps at the cost of rapidly
increasing complexity of calculation§&igure 1 shows
how fast, h (v +¢,) , approaches the orbit pointstof

It is straightforward to compute higher derivatiws
the functional transfornfig. 2 shows the first three
derivatives. From these we get the first few teohthe
series expansion ay;,=1:

K [x2+1)(y) =h(y) =1+0.735198¢ — 1}

_1n\2 _1\3 _1\4
0.22182;_“’2—1)+ 0.7837993%)— 0.101éé4'i)+...

With this example we have demonstrated that the
functional transform may seem complicated to caleyl
but with the computer it is in principle no more faitilt
than the calculation of the exponential functioanfr its
Taylor series. The main obstacle we encountered in
calculating functional transforms of various furcts
was the overflow barrier and only seldom the time
limitation of calculations was problem. For example
the highest order translation constany;, of our sample

functional transform, & [x* +1], needed only a split

second to calculate with 23 accuralecimal digits on an
average PC, before it was interrupted by overflowthe
future the overflow barrier will be pushed to much
higher numbers. This means that fotarge subclass of
functions in the clasy, the functional transform will be
computable almost instantly to any desired preaisia
turn this will make the functional transform and the
homologous iterates even more usefull.

We have calculated the functional transform folious
smooth functionsy, with simple and complicated rules. In
all cases the functional transform method has dediy
quite smooth solutions for which we have in cases
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calculated and plotted the derivatives in excesthefl0 th
order. The evidence is that the functional trarmmsfonethod
delivers very smooth solutions.

Form the physical perspective the functional
transform presented in this article applies to dyical
systems that increase to infinity. Since infinitea® not
directly observable in the universe, we must expeat
there will bea sudden break down of the dynamical
system at some point. Nevertheless it is perfectly
legitimate to apply the continuous solution for tirae
period before the break down. The fact that the
functional transform uses internally an extrapolatio
infinity does not affect the solution for the petizvhen
the dynamical system is valid. Contrariwise this
extrapolation facilitates or at least greatly .ioyes the
convergence of the functional transform.

6. DISCUSSION

The functional transform delivers smooth solutidos
dynamical systems governed by the Abel F&,S=u- f ,
where, u0U , is defined in Section 3.1. A large number
of known results deals with particular functiongex.
Hooshmand, 2006). Although a few methods are
available which deliver solutions for more general
classes ofi, (most deal with the related original Abel FE,

f ou=Sof7), none of the previous results known to
us, directly applies to strictly increasing funcitso
without fixed points with,u(x) >x. Via these solutions
we can determine the iterative roots of functiomgJi
which are usefull in many applications. See Barad a
Jarczyk (2001) for a survey on iterative roots tredAFE.
The functional transform presents a novel method
using continued forms for the determination of §ohs
of functional equations, which to our knowledge has
been previously used. Moreover the continued forms
themselves, which represent arbitrary successive
compositions, may prove a handy notation for aetgri
of mathematical settings where a large number of
repeated compositions is required.
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