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Abstract: This paper presents a mathematical formulation for computing the
gravitational potential of a cuboid (or right rectangular prism) with uniform
density. The resulting analytical expressions are valid inside, on and outside the
cuboid. The methodology systematically organizes logarithmic and arctangent
terms using a hexagonal graph approach, promoting numerical stability and
correct sign allocation. We provide a structured pseudocode algorithm to
facilitate computational implementation, and actual codes written in Python,
Matlab and Julia. We also introduce a test, that we call a Laplacian test, used to
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Introduction

There is a large scientific literature, developed over
more than one century, addressing the gravitational field
produced by three-dimensional bodies with simple or
idealized shapes such as cubes, plates, prisms and
polyhedra (Macmillan, 1930; Telford et al., 1976;
Werner, 1994; Chappell et al., 2012; Tsoulis and
Gavriilidou, 2021). In most cases, the solutions for the
gravitational potential (and/or gravitational acceleration)
are valid outside of the body, but not in its interior.

In situations in which the density and shape of a mass
distribution is varying in two dimensions but not in a
third, we can model the gravitational field as that due to
a polygon or a set of polygons. Hubbert (1948) showed
that the gravitational attraction due to a polygon can be
expressed in terms of a line integral around its periphery.
This idea was further developed by Talwani et al. (1959)
and Grant and West, (1965), and led to computer codes
used by geophysicists to model gravitational
measurements. Won and Bevis (1987) revisited this
problem. They began by formulating expressions already
widely used to compute the gravitational attraction
exterior to the polygon, and showed that by introducing
some special case handling related to terms involving
logarithms and arctangents of quotients, the modified
computations were valid inside, on and outside the

polygon.
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validate our algorithm and codes.
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Given that many published algorithms for the
gravitational field due to 3-D bodies of uniform density,
such as a cube or a polyhedron, are valid only when
evaluating the field exterior to the body, we wondered if
similar special case handling could increase the utility of
such algorithms by allowing the field to be computed
anywhere inside, on or outside of the body. We decided
to focus initially on the cuboid, also called a right
rectangular prism, following Chappell et al. (2012), who
addressed its exterior gravitational potential, V. So, the
goal of this work is to modify the earlier solution so as to
allow us to compute V' anywhere inside, on or outside of
the cuboid.

In what follows, we first describe our mathematical
methods and the development of our algorithm. We then
validate our algorithm and codes. This includes a
discussion of a novel numerical test which we call the
Laplacian test. This requires us to describe how we can
control numerical round-off problems which otherwise
would limit the precision of our tests, and which might
constitute something of a mine field for some of the less
experienced users of our codes. We end with a discussion
and conclusions section, which includes consideration of
potential applications and possible future extensions of
this work.

Methods

We present a complete computational framework for
evaluating the gravitational potential of a homogeneous
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cuboid. This includes a novel mathematical formulation,
singularity handling techniques, and a structured
algorithm with pseudocode for implementation.

Mathematical Formulation

The gravitational potential at a point P(z,y,2) due
to a continuous mass distribution in some finite volume

Q is given by:
V(z,y,2) = G [[ [, &5 M

r

where G is the gravitational constant, p is the mass
density, r is the Euclidean distance from the mass
element to the evaluation point, and df2 is the volumetric
element (Heiskanen and Moritz, 1967).

We consider the case of a cuboid of constant density
p, and dimensions 2L, 2B, and 2D corresponding to
length, breadth, and depth, respectively (Fig. 1).
Chappell et al. (2012) showed that the gravitational
potential due to this cuboid is given by Eq. 2.
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Fig. 1: A cuboid whose center coincides with the origin of a
cartesian axis system. The dimensions of the cuboid are
2L, 2B and 2D in the directions of the x, ¥ and 2 axes,
respectively. In the special case that L = B = D the
cuboid becomes a cube
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where the limits X;, defined thus
X1:L—$, X2:L+-'L', X3:B_y7 (3)
Xy=B+y, Xs=D—-2 X¢=D+=z

represent projected distances from the evaluation point
(z,y, 2) to the boundaries of the cuboid.

Hexagonal Graph Representation

To systematically organize the integral terms in the
gravitational potential algorithm, we arranged the six

coordinates X1, X9, X3, X4, X5, X¢ as the nodes of a
hexagonal graph.

Each node represents one of the six limits, and the
edges indicate valid interactions, explicitly excluding
connections to the opposite coordinate. This hexagonal
graph systematically defines the structure of the
integration components of Eq. 4 (Fig. 2).

VoG ¥

i=1 triples (7;)

“)

X2 XX
——L arctan ( L k)
2 XiR
where R = /X2 + XJ? + X? and S; is a sign function.

Mathematical Definition of Valid Triples T;

For each coordinate X;, a valid triple (X;, X;, X))
satisfies the following conditions:
1. X; is always included in the triple.
2. The second and third elements (X, X;) are chosen
from the four nodes connected to X;, ensuring

X, Xi € {Xa, X, X, Xa}, X;# Xp ®)
3. The opposite coordinate X;; is excluded, such that
X, Xr # Xia (0)

Thus, the selection rule ensures a complete yet non-
redundant interaction structure.

General Form of the Gravitational Potential

The gravitational potential of the cuboid is
decomposed as
V=GpYi, (Vi+Vj) )

where V} and Vj represent the logarithmic and
arctangent-based components, respectively.

1) Logarithmic Terms

Each logarithmic component is expressed as

Vi = 8 X x,x, xper Xi X log (SiXi + /XX T X,f) ®)

where the summation over triples 7;, determined by the
local geometric structure of the cuboid.

The sign function S; € {—1,+1} encodes the

orientation of the coordinate axis and is defined as (Fig.
2a):
g {+1, if X; points in the positive direction, (9)
i =
~1,

if X; points in the negative direction.
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Fig. 2: (a) Directional representation (+x, —z, +y, —y, +2, —z) and corresponding limits for the cuboid. (b) Hexagonal graph

depicting the six directional components. Each node corresponds to one of the six limits X7, X5, X3, X4, X5, Xg, with each

connected to four others, excluding its opposite coordinate

The structure of the 7; ensures that each triple
(Xi, Xj, Xy) includes the base coordinate X;, and
selects X; and Xj according to the admissibility
conditions outlined in Egs. 5 and 6.

This formulation inherently reflects the directional
asymmetry of logarithmic singularities across the
surface, ensuring alignment with the cuboid's topological
and geometrical properties. Notably, at the critical

interface where X; =0, the logarithmic expression
simplifies to a finite form: log (, /X JZ +X ]f), provided

that X 32 + X2 > 0, ensuring continuity and numerical
stability of the integrand.

It is important to note that in Eq. 8 the factor S;
appears outside the logarithm. If S; were set to zero
when X; =0, the entire term V{ would incorrectly
vanish. However, Vlf remains finite at X; = 0 due to the
contributions from X; and Xj within the logarithmic
function. Therefore, S; must be assigned based on the
orientation of the coordinate axis relative to the cube's
center, and not based on the instantaneous value of Xj;.
For example, S; = +1 if the corresponding axis points in
the positive direction, and S; = —1 if it points in the

negative direction, even when X; = 0.

2) Arctangent Terms

The arctangent component is given by

i x2 , XX, (10)
VT =9 (X:,X;,Xk)eTi tan ' (Xl- be +)k(],+Xk)
Singularity Handling

We now explain the special case handling that we
introduce for the two functions that are capable of
producing numerical singularities.

1) Logarithmic Function Singularities
The logarithmic term becomes singular when

SiXi+ /X2 + X2+ X2 <0 (11)

To ensure the function remains well-defined, we
require

VXE+ X2+ X2 > -85 X; 12)

Since square roots are non-negative, this condition is
always satisfied.

2) Arctangent Function Singularities

The arctangent expression is undefined when

Xiy/ X+ X7+ X7 =0 (13)


http://192.168.1.15/data/13558/fig2.png
http://192.168.1.15/data/13558/fig2.png

Thunendran Periyandy and Michael Bevis / Physics International 2025, Volume 16: 7-17

DOI: 10.3844/pisp.2025.7.17

To prevent division by zero, we define a modified
function

(14)

o1 XXk —
tan Y7 ) if X; # 0,

0, ifX; =0,

where R = /X2 + Xj? + X3

Compact Mathematical Representation

special_arctan(X; X, X;R) = {

The full computation is expressed as

VoY Y

i=1 triples

(15)
S;X; X}, - special log (S;X; + R)

X2
- ?l - special_arctan (Xij, Xl-R)

where R = / X? —&—X; + X2

Algorithm 1: Computation of Gravitational Potential of a
Cuboid

Input: z,y,2,L, B, D, p,G
Output: V (Gravitational potential at (z, y, 2))

Compute transformed coordinates:
Xi+L—x2Xo« L+=z
X3« B—-—y, Xy < B+y
X5+ D—2 X¢+ D+ =z

Initialize V < 0

for each direction dir in {Front, Back, Right, Left, Top,
Bottom} do

Compute sign allocation S;

for each valid (X;, X;, X1) do

Check singularity condition:

if $;X; + /X7 + X7 + X; < 0then

Set VLdir = 0 (handle singularity)

else

Compute Viﬁr using logarithm

end if
if X; = 0 then
Set Set ngir = 0 (handle singularity)
else
Compute ngir using arctangent
end if
end for
Update potential: V < V + Vir + ydir
end for

Return: V X G X p

10

This algorithm outlines the computational procedure
for evaluating the gravitational potential of a cuboid. The
algorithm comprises three main components:

1. Singularity handling, which ensures numerical
stability in logarithmic and arctangent evaluations.

2. Directional contributions, computed from the six
directional components.

3. Summation of all contributions to obtain the total
gravitational potential.

Validation

Computational tests demonstrate the accuracy and
robustness of the formulation. These include validating
the gravitational potential and acceleration, comparing
results with a point-mass model, and verifying
consistency through the Laplacian test.

Testing the Computation of Gravitational Potential

The gravitational potential V' should be a continuous
function inside, on and outside the cuboid, and we tested
this by evaluating V' at special locations on the surface
and outside of the cuboid at pairs of points separated by
distances that are tiny relative to the size of the cuboid.
This enabled us to check that our special-case handling
of the arctangent and logarithm terms was working as
intended. In particular we examined exterior points in
planes containing a face, and on lines containing an edge.
On the surface of the cuboid we evaluated V on faces, on
edges and on vertices. Examples results are tabulated in
Appendix 1. Table 1 may prove useful to those adopting
our codes who wish to test them on their computers.

Computation of Gravitational Acceleration

We computed gravitational acceleration g using first-
order finite differences. The vector g at a point (z,y, 2)
is given by g = —VV (z,y, z). The components of g are
approximated thus:

V(xz+h,y,z)—V(z—h,y,z
gm:—%‘;%—( y)2h( y)’ (16)
Vv . V(zythz)-V(z,y—h,z)
9y =~ oy ~ 2h ’
LS Vieweth)-V(eye—h)
9:= ~%; ¥ oh

where h is the finite difference step size. (We must
switch to one-sided finite differences when we wish to
compute g at the origin). The selection of & is crucial to
avoid errors introduced by the linear approximation
when h is too large, or by floating-point cancellation
when h is too small. The optimal value of h varies with
location. We can most easily avoid these problems by
computing the finite difference approximation using
many significant digits, using extended-precision
arithmetic (BigFloat in Julia). We discuss the problem of
selecting the value of A in more detail in Appendices 2
and 3.
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Gravitational Acceleration Difference (Cube and Point Mass) Vs Distance
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Fig. 3: (a) Layout of the z-y plane at z = 0, showing the two evaluation paths: L1 along the y-axis and L2 along the diagonal
direction £ = y. (b) Gravitational acceleration difference between a homogeneous cube and an equivalent point mass along
paths L1 and L2. The cube of dimensions 2 X 2 X 2, with uniform density p = 1 and gravitational constant G = 1. The

plotted quantity is log;, (\gcube — Epoint

We computed g at discrete points with 'special'
locations, such as exterior to the cube but in a plane
containing a face, exterior to the cube but on a line
containing an edge, on a face, on an edge, and on a
vertex (Appendix 1). No numerical difficulties occurred
in any of these locations. As with V, we found that g
varied continuously in e-regions surrounding these points
(to the extent that the number of significant digits
allowed us to resolve).

Comparison with Point Mass Approximation

A classical result in potential theory is that the
gravitational field produced by a finite mass approaches
that due to a point mass as the distance (r) from the
center of the mass becomes very large in comparison to
the size of the mass. The point-mass approximation is
given by:

_ __GM =~
8point — — 2 I

r = ‘/m2+y2+227

(17)

=L _—1

Iz

M = p- (2L)(2B)(2D),
Yy

The gravitational acceleration due to the cuboid is
computed using finite differences. Fig. 3 shows the

1Ogl[) |gcube - gpoint|
log,,(r), along the y axis and along the diagonal
direction (z =y). We observe that the gravitational
acceleration due to the cube converges (as r increases)
with that due to an equivalent point mass.

logarithmic ~ measure versus

As noted above, the accuracy of gravitational
acceleration computed via numerical differentiation is
highly sensitive to the choice of finite difference step
size (Appendix 2, Fig. 6). In this test, central difference
gradients were computed using high-precision arithmetic

), as a function of radial distance from the cube's center

in Julia's BigFloat environment (Appendix 2, Fig. 7), and
step sizes were carefully selected to balance
discretization error and numerical precision. As shown in
Appendix 2, this approach ensures reliable evaluation of
acceleration discrepancies across a wide spatial domain,
from near-field to far-field regions.

Gravitational Acccleration in the Planc z = 0
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Fig. 4: Gravitational acceleration vectors inside and outside a
cube, evaluated on a grid in the 2 = 0 plane. Vectors g
were computed via central differences of the potential
V = 0. Because z =0, symmetry requires g, = 0
everywhere. The boundary of the cube is shown in black

Another means to test our algorithm and codes is to
examine the directionality of gravitational acceleration.
Fig. 4 illustrates the gravitational acceleration due to a
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cube centered on the origin, with side lengths 2,
computed on a grid established in the z = 0 plane. The
vector field demonstrates the expected directional
symmetry imposed by the cube's geometry. The
magnitude of the exterior vector field decays with
increasing distance from the origin, reflecting Newtonian
inverse-square behavior, and the magnitude of the
internal vector field also decays towards zero as the
evaluation point approaches the center of the cube.

The Laplacian Test

In classical potential theory, the gravitational
potential V' satisfies Poisson's equation or Laplace's

equation (Macmillan, 1930), depending on the location:
_ 18

0 outside the mass (in free space)

inside the mass,

where G is the gravitational constant, p is the mass
density, and V? is the Laplacian operator. To validate the
correctness of the computed gravitational potential, we
perform a series of Laplacian tests implemented using
finite difference approximations. The Laplace operator is
discretized via the second-order central difference
scheme:

VIV (2,y,2) ~ + V(z+h,y,z) — 2V(z,y,2) + V(z—h,y,2) (19)

h2
V(z,y+h, z) —2V(z,y, z) + V(z,y—h, z)
+ e
+ V(I, Y, Z+h) B 2V(I, Y, Z) + V(l‘, Y, Zﬁh)
h2

where h is the step size. (We must switch to one-sided
finite differences if we wish to compute V2V at the
origin). This discretization enables the evaluation of the
Laplacian at various locations, allowing for the
distinction between interior and exterior regions of the
homogeneous cube of density p.

We set G=1 and p =1, and evaluated V2V on
dense 2D grids established on various sections through
the cube, for example, on the z-y plane (Fig. 5). We
computed the value of V2V at every grid point and color
coded the result. We did this in Matlab, Python, and later
using the BigFloat environment in Julia, which allowed
us to compute V2V to any desired degree of accuracy.

o Interior (V2V = —4mwGp): colored in blue.
e Exterior (V2V = 0): colored in red.
¢ Boundary: shown in white.

For every section we examined (not just the x-y
plane) we found that V2V obeyed Poisson's equation
inside the cube, and Laplace's equation outside the cube.
Since V2V is discontinuous on the boundary, it is not
defined there. The solutions to Laplace's equation are
unique, so this test validates our algorithm and codes.

Discussion and Conclusions

We have presented a numerically stable formulation
for computing the gravitational potential of a cuboid with

12

uniform density. The derived expressions are valid
inside, on and outside the cuboid. We achieved this using
a hexagonal graph to properly structure the logarithmic
and arctangent terms, and keep track of the sign of the
result.

r Laplacian Test in the x-y Plane Through the Cube — mmr 0
5
r-2
1.0
-
0.5
6 =
= 0.0 (>3
~0.5 -8
~1.0 F-10
—— Cube Boundary
~15 F-12
—1.5 —-1.0 —0.5 0.0 0.5 1.0 1.5 el

X

Fig. 5: The value of V2V computed on a 300 by 300 grid on
the z-y plane through the center of a cube with uniform
density p = 1. The computations assume that G = 1.
The resulting grid values are colored coded. Interior
regions satisfy V2V = —4m, and exterior regions
satisfy V2V =0, to within the numerical precision
obtained by the computations. The cube's boundary is
indicated in white. Note that the Laplacian is not defined
on the boundary

To verify the correctness of the formulation and its
implementations, we introduced the Laplacian test,
which evaluates whether the computed potential satisfies
Poisson's equation within the cuboid and Laplace's
equation outside of it. The results of this test, visualized
over representative planar slices, confirm the theoretical
expectations and thus the fidelity of our algorithm and
codes.

We suggest that the Laplacian test can be used to
validate similar codes for other simply-shaped, constant-
density bodies.

Importantly, our experience with the Laplacian test
highlights the sensitivity of numerical differentiation,
particularly with respect to the choice of finite difference
step size (Appendix 3, Fig. 8). Inappropriate step sizes
can lead to misleading results, even when the underlying
potential expression is analytically correct. Therefore,
careful calibration of discretization parameters is
essential for accurate numerical validation. Robust
numerical validation requires the use of arbitrary
precision arithmetic, such as that provided by the
BigFloat environment in Julia.

We provide pseudocode and Matlab, Julia and Python
implementations to assist our readers with their
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gravitational modeling applications. As far as we know,
ours is the only algorithm published to date that can
compute the gravitational potential anywhere ---inside,
on and outside the cuboid, with no spatial restrictions
whatsoever. Werner (1994) addressed the polyhedron,
which is a more general shape than the cuboid, but his
solution is not valid inside the polyhedron, just as the
Chappel et al. (2012) solution is not valid inside the
cuboid. Our special case handling for arctangents and
logarithms of quotients is essentially the same scheme
employed by Won and Bevis (1987), but they were
addressing constant density mass elements in two
dimensions, and our treatment of the cuboid is fully three
dimensional. Thus our work complements that of these
previous authors.

We point out that sets of abutting but not overlapping
cubes (or cuboids) can be used to model planetary
bodies, such as asteroids, with complex shapes. This can
be achieved through linear superposition. This is most
easily done if all individual cubes have edges that are
parallel to the axes of the global cartesian system in
which their geometry is described. Then, the
transformation from global coordinates to local
coordinates (in which the solution is formulated) is
simply a translation that maps the global coordinates of
the center of each cube onto the origin of the local
system.

A future extension of this work might involve
computing not only the potential V/, but also its partial
derivatives, using a similarly analytical approach. This
would allow us to compute gravitational acceleration, g,
without resorting to numerical derivatives.

Another future research direction is to seek a
spatially-general solution for other simple constant-
density mass elements, such as a tetrahedron. Since the
tetrahedron can be viewed as a building block for any
polyhedron, if this effort was successful, then it should
also be possible to compute the gravitational potential
inside, on or outside any constant-density polyhedron.
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Appendix 1: Example Computations for Gravitational Potential and Acceleration

Table 1 was computed using our Julia code, which utilizes Julia's BigFloat environment. All digits in the table are

significant. Similar results, but not exact ones, can be computed using Matlab, since its carries only 15 significant digits
in its floating point operations, and is susceptible to numerical precision problems.

Table 1: Gravitational potential and gravity vector at selected test points due to a cube of dimensions 2 X 2 X 2 (thatis, L=B=D=1),
with gravitational constant G = 1.0 and density p = 1.0. The locations of the test points are described in the right hand column.
By "on extended edge' we mean that the test point is on a line that incorporates an edge, but not on the edge itself. By ‘on extended
face' we mean that the point lies in a plane that incorporates a face, but not in the face itself

ID Test Point (x,y,z) Potential Gravitational acceleration Location
1 (%’ %7 %) 8.043586363964623e + 00 g = —1.845778162369231¢ + 00 Interior

gy = —1.845778162369231e +- 00

g = —1.845778162369231e + 00
2 (1,11 6.504625741605996e + 00, _ _1.996479052953900¢ + 00 On face

gy = —1.296479052953900e + 00
g, = —4.515510073496715¢e + 00
3 (L,1,14¢) 6.504625741151316e + 00 gs = —1.296479052819571e + 00 Exterior (by €)
gy = —1.296479052819571e + 00
g. = —4.515510073568636€ + 00
4 (%’ %’ 1— 5) 6.504625742060676e + 00 g = —1.296479053088229¢ + 00 Interior (by €)

gy = —1.296479053088229¢ +- 00
g, = —4.515510073424793e + 00
5 (1,1,1) 4.760154727959107e + 00 g. = —1.930929097605087¢ + 00 On vertex

gy = —1.930929097605087¢ + 00
g, = —1.930929097605087¢ + 00
6 (1,1+¢,1) 4.760154727765229¢ + 00 g. = —1.930929097016367¢ + 00 On extended edge

gy = —1.930929097657447¢ + 00
g, = —1.930929097016367¢ -+ 00
g: = —1.930929097657447e + 00 On extended edge
gy = —1.930929097016367¢ + 00

g. = —1.930929097016367¢e + 00
8 (0,2,1) 3.569191738087612e + 00 gs = —8.380208987159455¢ — 248 On extended face

gy = —1.426422695721153¢e + 00
g, = —6.791372154057112¢ — 01
9 (4, 4, 4) 1.154780286871141e + 00 gr = —9.625844144561081e — 02 Far exterior point

gy = —9.625844144561081e — 02
g, = —9.625844144561081e — 02
10 (4+¢e,4+¢,4+¢) 1.154780286842264¢ + 00 g» = —9.625844144079449¢ — 02 Far exterior + €

gy = —9.625844144079449¢ — 02
g, = —9.625844144079449e — 02

7 (1+¢,1,1) 4.760154727765229e + 00

Note: The perturbation used in evaluations is € = 10710
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Appendix 2: First-Order Finite Difference Step Size Selection

This analysis examines the sensitivity of gravitational acceleration computations for a homogeneous cube with
dimensions 2 x 2 x 2 (that is, L=B =D = 1) and density p = 1, to the choice of the step size of the finite difference.
Again, we choose the normalization G = 1. We emphasize the impact of step size on numerical accuracy. The computed
gravitational acceleration is compared against the analytical solution of an equivalent point mass located at the

cubed€™s center. Analytically, we expect the magnitude of the vector difference gcube — Epoint to decrease rapidly, and
continuously, as r increases. In practice, finite-precision computations can cause departures from this expectation.

The MATLAB implementation (Fig. 6) uses machine-precision arithmetic (approximately 15 significant digits),
which makes the results highly sensitive to the selected step size. Inappropriate step sizes introduce significant
numerical noise, as reflected in the fluctuating difference curves.

The analysis is conducted along the diagonal direction (z =y, 2z = 0), covering radial distances r € [v/2,500].
Gravitational acceleration is computed using central finite differences of the gravitational potential (Eq. 16), and the
absolute difference relative to the point-mass model is evaluated for various step sizes h € {107%,1078}. Results are
shown in log-log scale to illustrate the sensitivity to step size across different distances.

Sensitivity of g computations to step size in MATLAB (machine precision)
I T I

Inpv i Yy
i

lOgl(] (|gcube - gpoint|)

11k

—h = le4
12 H= =h = 1e-8 =

I 1 | L 1 |

0.5 1 1.5 2 2.5
loglo(r)

Fig. 6: Sensitivity of gravitational acceleration computations for a homogeneous cube to finite difference step size along the diagonal

direction (z = y, 2 = 0), across radial distances r € [\/Q, 500]. MATLAB implementation using machine precision (15
significant digits) shows significant variability in error magnitude depending on the h, highlighting the strong sensitivity to
numerical discretization.

There is a way to mitigate this numerical error: make the step size a judiciously chosen function of r. However,
there is an easier alternative, which we now describe.

Using Julia's BigFloat environment with 250-digit precision, gravitational acceleration is also computed via central
finite differences of the potential. The absolute error relative to the point-mass model is evaluated for step sizes h €

15


http://192.168.1.15/data/13558/fig6.png
http://192.168.1.15/data/13558/fig6.png

Thunendran Periyandy and Michael Bevis / Physics International 2025, Volume 16: 7-17
DOI: 10.3844/pisp.2025.7.17

{10710,10-20,...,10-60}. Results are likewise presented in log-log scale to reveal the sensitivity to step size over
distance (Fig. 7).
Insensitivity of g computations to step size in Julia, given sufficient precision
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Fig. 7: Logarithmic plot of the gravitational acceleration difference between a homogeneous cuboid and an equivalent point mass,

evaluated along the diagonal direction (z = y, 2 = 0) for distances ranging from r = V2 to 7 = 500. The gravitational
acceleration of the cube is computed numerically using central differences with multiple step sizes h, in a high-precision

(BigFloat) environment. The quantity plotted is 1081( (|8cuboid — Spoint|), With curves labeled by their respective step sizes.
Smaller step sizes yield improved accuracy up to a limit, beyond which round-off errors dominate. The optimal step size

minimizes the error, depending on the local curvature of the potential field and numerical precision.

Clearly, if we perform our finite difference computations using sufficient numerical precision, we can eliminate
numerical round-off problems even for relatively large values of 7.
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Appendix 3: Laplacian Test RMS Error vs Step Size at BigFloat Precision

The results shown in Fig. 8 computed using our Julia code, executed within Julia's BigFloat environment at 250-digit
and 500-digit precision levels. In this Laplacian test, the true values for the interior and exterior regions are known
analytically as —47wGp and 0, respectively. The figure presents the root mean square (RMS) of the error across a range
of step sizes h, plotted as log,,(h) versus log;,(RMS error). The horizontal axis indicates the number of significant

digits in the step size, while the vertical axis reflects the relative error magnitude. The optimal step size minimizing the
RMS error is identified by the minima of the plotted curves.

RMS Error vs Step Size, BigFloat Precision: 250 vs 500-digits

e [nterior 250 digits
s Exterior 250 digits
100 + e [ terior 500 digits | |
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Fig. 8: RMS error comparison for Laplacian test using different step sizes h, evaluated for interior and exterior regions of a cuboid.
Results are shown for BigFloat precision set to 250 digits and 500 digits. The optimal step size minimizing RMS error can be
identified by the minima in each curve
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