Research Article Open Access

Determination of Nonlinear Optimal Feedback Law for Satellite Injection Problem Using Neighboring Optimal Control

Hamed Hossein Afshari, Alireza Basohbat Novinzadeh and Jafar Roshanian

Abstract

An optimal trajectory design of a nonlinear satellite injection problem for transfer to a final target orbit by minimizing the time was investigated. Indeed, this design was an exact solution to the nonlinear two-point boundary value problem which determined optimal control history as well as optimal state trajectories in the open-loop form. Furthermore, the obtained optimal guidance strategy was exerted in the closed-loop form against the environment disturbances using neighboring optimal control method in the exact solution. Neighboring Optimal Control (NOC) law could produce time-variant feedback gains minimizing the performance measure to second order for perturbations from a nominal optimal path. Generally, this law was a function of perturbations appeared in the states and constraints and could be computed utilizing the backward sweep method. The simulation results indicated that the presented methodology was successfully utilized in the real world applications with good robustness to each noise or disturbance produced in each state variable.

American Journal of Applied Sciences
Volume 6 No. 3, 2009, 430-438

DOI: https://doi.org/10.3844/ajassp.2009.430.438

Submitted On: 24 April 2008 Published On: 31 March 2009

How to Cite: Afshari, H. H., Novinzadeh, A. B. & Roshanian, J. (2009). Determination of Nonlinear Optimal Feedback Law for Satellite Injection Problem Using Neighboring Optimal Control . American Journal of Applied Sciences, 6(3), 430-438. https://doi.org/10.3844/ajassp.2009.430.438

  • 3,685 Views
  • 3,050 Downloads
  • 25 Citations

Download

Keywords

  • Satellite Injection
  • Closed-loop Guidance
  • Exact Solution