Applications of Artificial Intelligence Based Technologies in Weed and Pest Detection
- 1 Department of Information Technology, Ajay Kumar Garg Engineering College, Ghaziabad, India
- 2 Department of Computer Science and Information Technology, Jaypee Institute of Information Technology, Noida, India
- 3 School of Engineering and Computer Science, Laurentian University, Sudbury, Canada
- 4 Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
Abstract
Unprecedented population growth and climate change has burdened food security and scarcity worldwide, where the agriculture sector can significantly contribute to accomplishing the demands and contribute to the economic growth of a country. Artificial Intelligence (AI) has revolutionized the agricultural domain. Pest and weed detection is significant to yielding good quality crops. The AI-based tools and technologies such as drones and robots bring advancement in crop production by performing the early detection of weeds and pests. The tools utilize image processing and machine learning algorithms to capture, analyze and detect the presence of weeds and pests in plants. The research work carried out provides a comprehensive survey for the application of artificial intelligence for both weed and pest detection. It presents widely used techniques, their evaluation parameters, and publicly available datasets which provide the current status of work for the researchers working in the domain of weed and pest detection.
DOI: https://doi.org/10.3844/jcssp.2022.520.529
Copyright: © 2022 Nidhi Gupta, Bharat Gupta, Kalpdrum Passi and Chakresh Kumar Jain. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- 3,194 Views
- 1,838 Downloads
- 4 Citations
Download
Keywords
- Weed Detection
- Pest Detection
- Machine Learning
- Deep Learning
- Image Processing